用户名: 密码: 验证码:
土壤生态系统对典型有机肥的响应及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大量化肥支持的农田土壤出现的土壤退化、贫瘠化新动向,有机肥施用成为国内外维持土壤健康和肥力水平的新宠,然而,人们把更多焦点放在有机肥的肥力效果上,而不同有机肥的施用可能对农田土壤系统的碳库、氮库、微生物及温室气体排放等过程产生不同的影响,进而对土壤生态系统的稳定和健康产生不同的影响,而对这些方面的关注还远不够系统。因此,本文以猪粪堆肥(PMC)、污泥堆肥(SMC)和饼肥(CM)为典型有机肥,以无机肥(IF)和不施肥对照(CK)为参照,通过温室大棚的盆栽试验,考察了不同有机肥对植物生长和土壤pH值和电导率的影响动态、探讨了土壤碳库、氮库对有机肥施用的响应情况、比较了有机肥对土壤微生物活性、功能多样性以及土壤细菌群落结构多样性的影响,并分析了土壤-植物系统CO2和CH4排放通量对有机肥的响应。获得的主要研究结果包括:
     1、通过小青菜(Brassica Chinensis)和黑麦草(Lolium perenne L.)种子的发芽试验和有机肥对植物生物量的影响研究发现,经过堆制的猪粪堆肥和污泥堆肥对两种供试植物无明显的植物毒性,且能促进小青菜的生长,使生物量增加;而未经腐熟的饼肥有机肥对小青菜和黑麦草都表现出明显的毒性效应,其发芽指数(GI)和小青菜的生物量均显著低于CK对照。
     2、施肥对土壤pH和EC值的影响研究结果表明,CM处理和无机肥IF处理都会导致土壤pH值在短期内的明显下降,25天后趋于稳定,试验结束时的第35天,两种处理对应的pH值分别下降了1.18和1.42个单位;SMC处理土壤的pH值基本在7.0左右稳定波动,表明其对土壤pH值没有影响;而PMC处理也会导致土壤pH值的短期下降,但在第25天后出现缓慢回升,到第35天时只比第1天时下降0.58个单位。表明CM和IF施用会导致土壤的酸化,而污泥堆肥不会,猪粪堆肥短期会使土壤酸化,但随时间会部分恢复。各施肥处理均可明显提高土壤电导率值,不同处理电导率平均值从大到小依次为IF>PMC>SMC>CM。
     3、施肥对土壤碳库的影响研究表明,各施肥处理土壤中总碳(TC)和有机碳(SOC)含量均明显高于CK对照,各处理的TC和SOC含量从高到低依次都是PMC≈SMC>CM>IF>CK,它们随时间变化都在相对稳定的水平内小幅波动。而各施肥处理土壤可溶性有机碳(DOC)含量在试验初期呈快速上升趋势,经过大约14天的稳定期后开始下降,在试验结束的第35天时,CM、SMC和PMC处理分别是初始值的7.06倍、5.19和5.08倍,CM处理下降到第27天后进入下一个相对稳定期。外源有机肥和无机肥的施用都会增加土壤的碳库水平,其原因,一方面肥料本身碳的输入,另一方面肥料促进植物生长和根分泌物的增加以及土壤微生物生物量的增长等促使土壤有机碳含量增加。
     4、各施肥处理的土壤总氮(TN)和总可溶性氮(TDN)的平均水平从大到小依次都是CM>IF>PMC>SMC>CK,各处理TN随时间也均呈波形变化趋势。而各施肥处理TDN的变化趋势不同,CK对照和SMC处理呈缓慢下降趋势,PMC处理在前20天内较稳定,之后缓慢下降;CM处理和IF处理则分别经过13天和11天的稳定期后迅速上升到一个较高水平,直到30天后才开始下降。各施肥处理土壤铵态氮(NH4+-N)随时间变化都呈持续下降趋势,并在30天左右时降到CK的水平;而各施肥处理土壤的硝态氮(NO3--N)含量呈波形变化,IF处理和CM处理在第25天出现增长并开始明显高于PMC处理和SMC处理。各施肥处理土壤中可溶性有机氮(DON)与TDN含量变化趋势相似。可见,无机肥和饼肥可在较短的时间内释放可溶性氮,而两种堆肥的释放速度相对较缓慢。
     5、各施肥处理土壤中微生物量碳(MBC)和微生物量氮(MBN)均高于CK对照,MBC先持续增长到第29天后逐渐趋于平稳;而MBN始终呈波形变化规律。在试验后期,CM处理的MBC含量明显高于PMC处理和SMC处理,而PMC和SMC之间无明显差异;IF处理呈不规则起伏变化规律并无明显增幅。各处理之间的土壤呼吸速率无明显差异,总体都呈现先增加后降低趋势,从初始阶段缓慢增加到第21天后急剧上升,27天出现峰值后急剧下降,33天后趋于稳定,但在培养结束时均仍高于初始值。各处理土壤的微生物代谢商(q(C02))分别在第1天到第7天、第27天到第31天出现两次阶梯式下降规律,各处理之间没有表现出明显差异。可见,有机肥处理不仅可促进土壤中微生物量的增长,而且可激励微生物的活性。
     6、通过BIOLOG ECO微平板分析了不同肥料对土壤微生物碳源利用功能的影响,研究表明,各有机肥处理都可以增强土壤微生物碳源利用功能,而无机肥则使土壤微生物碳源利用功能明显减弱,但各处理微生物碳源利用功能之间的差异随时间变化逐渐缩小,有明显的回归趋势。利用Shannon指数、McIntosh指数和Simpson旨数对土壤微生物群落碳源利用功能多样性的研究表明,在试验第35天时各处理土壤微生物群落的Shannon指数的大小排序为SMC>PMC>CM>CK>IF,而到第75天时变为CM>PMC>SMC>CK>IF.从第35天到第75天,SMC处理的Simpson指数从显著高于变为显著低于PMC处理和CM处理。在第35天和第75天时,PMC和CM的McIntosh指数都显著低于SMC。表明,不同有机肥施用对微生物群落优势度和均匀性的影响存在差异。IF处理不仅降低了微生物群落碳源利用功能,其功能多样性也显著降低。各施肥处理AWCD值的主成分分析表明,随时间变化,土壤pH值都为酸性的PMC和CM处理的碳源利用功能多样性表现出相似性;IF处理与有机肥处理之间差异逐渐明显,而与CK对照之间的差异逐渐缩小
     7、采用末端限制性片段长度多态性(T-RFLP)分析技术对有机肥施用的土壤细菌群落结构多样性进行了研究。结果表明,不同有机肥处理的土壤细菌群落结构多样性均高于CK对照处理,在试验初期,以CM处理的Shannon指数和种群丰富度最高,而两种堆肥处理的种群丰富度随时间而增大,到试验结束时,SMC处理的多样性指数最高。说明,有机肥有利于细菌群落多样性增长。主成分分析表明,两种堆肥处理土壤中细菌群落结构的相似性随时间而降低,PMC与CM处理的相似性增加,而IF和CK之间的差异逐渐缩小。土壤pH值可能是影响微生物群落结构变化的重要因素。
     8、采用静态箱法考察了不同施肥处理对土壤-植物系统CO2和CH4排放通量的影响。结果发现,各施肥处理土壤-植物系统都表现为CO2的吸收汇,Pearson相关性分析表明,相比较于微生物量、无机态氮等影响因素,各施肥处理系统CO2净通量的变化主要受控于温度变化。各施肥处理系统CH4呈现源与汇的不规则波动,且主要表现为CH4吸收汇。有机肥对CH4的排放和吸收同时具有激励作用。各施肥处理系统CO2和CH4的排放通量的变化都呈相似的变化规律,彼此之间无明显差异。
The increasing demand for food intensive farming leads to soil infertility, in order to improve soil fertility, organic fertilizers are widely used all over the world. However, organic fertilizers may have effects on levels of soil carbon and nitrogen, the global soil microorganism, emissions of greenhouse gases in agricultural systems. In this study, typical organic fertilizers including pig manure compost (PMC), sludge manure compost (SMC) and cake manure (CM) were selected as research objects, while both inorganic fertilizer (IF) and control treatment (CK) were as the contrasts. A pot experiment in a greenhouse was carried out to analyze soil carbon and nitrogen pool; to discuss the effects of organic fertilizers on soil microbial activity, functional diversity, the diversity of bacterial community structure, and CO2and CH4fluxes from the plant-soil systems. The responses of soil ecosystems to different organic fertilizers could provide theoretical basis for the application of organic fertilizer in agricultural production. The main findings are as following:
     1. Both PMC and SMC didn't show plant toxicity through Brassica Chinensis and Lolium perenne L. seed germination test, and they both increased the biomass of Brassica Chinensis. Cake manure showed obvious plant toxicity on Brassica Chinensis and Lolium perenne L, resulting in the lower biomass of Brassica Chinensis comparing with those for the unfertilized treatment.
     In the study, SMC did not change the pH values comparing with those for CK, while PMC, CM and IF exhibited acidification phenomenon, which all decreased pH gradually. The pH values of CM and IF both began to be stable after25days; the pH value of PMC dropped until the25th day and then rose at6.41at the end of the trial. All the fertilized treatments can improve the value of soil EC values following the order IF>PMC>SMC>CM.
     2. Soil total carbon (TC) and soil organic carbon (SOC) content for all fertilized treatments, which followed the order PMC≈SMC>CM>IF>CK. The organic fertilizers can cause the soil dissolved organic carbon (DOC) to increase initially and then to decrease after about13days. On the day35, DOC of CM, SMC and PMC treatments was still7.06,5.19and5.08times than the initials respectively; Meanwhile CM entered into the next equilibrium after27days. It supposed that additional organic matter or the increase of soil microbial biomass could result in the enhancement of soil organic carbon.
     3. The average levels of total nitrogen (TN) for treatments followed the order CM>IF>PMC>SMC>CK, which all fluctuated up and down over the study. And total dissolved nitrogen (TDN) levels also the same order as TN for all treatments, among which both CK and SMC slowly declined, PMC began to decline after day20th, both CM and IF increased sharply after equilibrium periods of13and11days respectively following by decreases since day30. Ammonia-N (NH4+-N) for fertilized treatments all declined gradually and arrived at the level of CK; nitrate-N (NO3-N) for all treatments displayed fluctuations in the study. Dissolved organic nitrogen (DOC) for all treatments kept the similar trends with TDN. These showed both IF and CM could release dissolved nitrogen in a short period, while composts were longer.
     4. Microbial biomass carbon (MBC) for fertilized treatments all exceeded the level of that for CK; meanwhile microbial biomass nitrogen (MBN) all displayed fluctuations over the study. Basal respiration (BR) rates for fertilized treatments have no obvious differences, which followed the processes of increase, decrease and then tend to be stable, and were all still higher than the initials. The metabolic quotients (qCO2) for all treatments experienced twice declines, among which were no obvious different. These results showed that soil microbial biomass and microbial activity could be enchanced by organic fertilizers, and they tend to be stable and regress.
     The effects of organic fertilizers on the metabolic diversity of microbial communities were assessed by Eco-Biolog plate. The values of the average well cell development (AWCD) were stimulated during incubations for organic fertilizer treatments, among which the differences were diminished gradually and tend to clear away. The diversity of CLPP was evaluated by Shannon index, McIntosh index and Simpson index. Shannon index for all treatments followed the order SMC>PMC>CM>CK>IF on the day35th, and CM>PMC>SMC>CK>IF on the day75th. These results indicated organic fertilizers enhanced the microbial metabolic diversity, while inorganic fertilizer not only decreased the metabolic potential, the potential metabolic diversity was also be depressed. Principal component analysis (PCA) distinguished the microbial communities for PMC and CM had the similar metabolic diversity, and the same to IF and CK at the end of the study.
     5. Both organic and inorganic fertilizers can both increase bacterial community structure richness in soil, but at the same time reduce homogeneous degree. The number of restriction fragments in organic fertilizer treatment was larger than that of IF and no fertilizer treatments. In the1st day, bacterial community structure of the PMC and SMC are similar; the difference between PMC and sewage SMC treatments increased on the35th day; and after75days, the PMC is similar to CM, and the gap between IF and CK narrowed. Principal component analysis suggested both bacterial function diversities and bacterial communities were influenced by pig manure compost and cake manure applications.
     The effects of organic fertilizers on bacterial community structures were investigated using terminal restriction fragment length polymorphism (T-RFLP) analysis. The same terminal restriction fragment (T-RFs) were enhanced among fertilizerd treatments in the beginning, and then declined to the initial status. Specific T-RF was happened for different fertilized treatments. The diversity of bacterial community was evaluated based on dominant T-RFs. Both Shannon index and richness index for organic fertilized treatments were all higher than those for CK. The diversity index for CM were highest among all treatments at the begining, meanwhile SMC grew and began to be the largest at the end of the study. The results showed that organic fertilizers could stimulate the diversity of bacterial community. The T-RFLPs profiles of bacterial communities for treatments were compared by principle component analysis (PCA). The results suggested pH value for soil must be an important factor affecting the bacterial community structures.
     6. Gas samples for the plant-soil ecosystems were collected using a static chamber approach, and the concentrations of CO2and CH4were determined using gas chromatography. The results showed that CO2was fixed by the plant-soil ecosystem during Brassica chinensis growth after fertilisation and that the CO2and CH4fluxes were not significantly different among the treatments compared with CK. The ecosystem uptake of CO2increased with the soil temperature and the variation was in agreement with a first-order exponential curve. The plant-soil ecosystems were minor CH4sinks and sources, especially CH4sink, for all of the treatments. The results indicate that a plant-soil ecosystem could be a carbon sink, and that fertiliser application had no significant effects on either the CO2or the CH4uptake in a plant-soil ecosystem.
引文
Adviento-Borbe, M.A.A., Doran, J.W., Drijber, R.A., Dobermann, A. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils[J]. Journal of Environmental Quality.2006,35(6):1999-2010
    Allard, V., Soussana, J.F., Falcimagne, R., Berbigier, P., Bonnefond, J.M., Ceschia, E., D'Hour, P., Henault, C., Laville, P., Martin, C., Pinares-Patino, C. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland[J]. Agriculture Ecosystems & Environment.2007,121(1-2):47-58
    Alvarez, R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage[J]. Soil Use and Management.2005,21(1):38-52
    An, Y.J. Soil ecotoxicity assessment using cadmium sensitive plants[J]. Environmental Pollution. 2004,127(1):21-26
    Anderson, T.H., Domsch, K. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry.1989,21(4):471-479
    Anderson, T.H., Domsch, K.H. Carbon assimilation and microbial activity in soil. [J]. Zeitschrifr fur Pflanzenernahrung und Boaknkunde.1986 149:457-468
    Andersson, S., Nilsson, S.I., Saetre, P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH[J]. Soil Biology and Biochemistry.2000,32(1):1-10
    Asagi, N., Ueno, H., Ebid, A. Effects of Sewage Sludge Application on Rice Growth, Soil Properties, and N Fate in Low Fertile Paddy Soil[J]. International Journal of Soil Science. 2007,2(3):171-181
    Askegaard, M., Eriksen, J. Growth of legume and nonlegume catch crops and residual N effects in spring barley on coarse sand[J]. Journal of Plant Nutrition and Soil Science.2007, 170(6):773-780
    Aulakh, M.S., Khera, T.S., Doran, J.W. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil I. Effect of nitrate and ammoniacal nitrogen[J]. Biology and fertility of soils.2000,31(2):162-167
    Aulakh, M.S., Khera, T.S., Doran, J.W., Bronson, K.F. Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure[J]. Biology and fertility of soils.2001,34(6):375-389
    Bailey, K., Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments[J]. Soil and Tillage Research.2003,72(2):169-180
    Beauregard, M., Hamel, C., St-Arnaud, M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa[J]. Microbial Ecology. 2010,59(2):379-389
    Ben Said, O., Goni-Urriza, M., El Bour, M., Aissa, P., Duran, R. Bacterial Community Structure of Sediments of the Bizerte Lagoon (Tunisia), a Southern Mediterranean Coastal Anthropized Lagoon[J]. Microbial Ecology.2010,59(3):445-456
    Benbi, D., Toor, A., Kumar, S. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered[J]. Plant and Soil.2012,360: 145-162
    Bengtson, P., Bengtsson, G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures[J]. Ecology Letters.2007,10(9):783-790
    Bernal, M., Alburquerque, J., Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource technology.2009,100(22): 5444-5453
    Bhattacharyya, R., Kundu, S., Prakash, V., Gupta, H. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas[J]. European Journal of Agronomy.2008,28(1):33-46
    Birkhofer, K., Bezemer, T.M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D., Ekelund, F., Flieβbach, A., Gunst, L., Hedlund, K. Long-term organic farming fosters below and aboveground biota:implications for soil quality, biological control and productivity[J]. Soil Biology and Biochemistry.2008,40(9):2297-2308
    Bishop, P., Godfrey, C. Nitrogen transformations during sludge composting [J]. Biocycle.1983, 24(5):34-39
    Boone, R.D., Nadelhoffer, K.J., Canary, J.D., Kaye, J.P. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature.1998,396(6711):570-572
    Bowden, R.D., Davidson, E., Savage, K., Arabia, C., Steudler, P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology and Management.2004,196(1):43-56
    Brandt, C.C., Heuscher, S.A., Jardine, P.M. Using soil physical and chemical properties to estimate bulk density[J]. Soil Science Society of America Journal.2005,69(1):51-56
    Brueggemann, N., Gessler, A., Kayler, Z., Keel, S.G., Badeck, F., Barthel, M., Boeckx, P., Buchmann, N., Brugnoli, E., Esperschuetz, J., Gavrichkova, O., Ghashghaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., Bahn, M. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum:a review[J]. Biogeosciences.2011,8(11):3457-3489
    Burney, J.A., Davis, S.J., Lobell, D.B. Greenhouse gas mitigation by agricultural intensification[J]. Proceedings of the National Academy of Sciences.2010,107(26):12052
    Calbrix, R., Barray, S., Chabrerie, O., Fourrie, L., Laval, K. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land[J]. Applied Soil Ecology.2007,35(3):511-522
    Campbell, C., Biederbeck, V., Zentner, R., Lafond, G. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem[J]. Canadian Journal of Soil Science.1991,71(3):363-376
    Carrera, L., Buyer, J., Vinyard, B., Abdul-Baki, A., Sikora, L., Teasdale, J. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems[J]. Applied Soil Ecology.2007,37(3):247-255
    Carter, M.R. Soil Quality for Sustainable Land Management[J]. Agronomy Journal.2002,94(1): 38-47
    Chen, Z., Luo, X., Hu, R., Wu, M., Wu, J., Wei, W. Impact of Long-Term Fertilization on the Composition of Denitrifier Communities Based on Nitrite Reductase Analyses in a Paddy Soil[J]. Microbial Ecology.2010,60(4):850-861
    Chien, S., Prochnow, L., Cantarella, H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts[J]. Advances in Agronomy.2009,102:267-322
    Chirinda, N., Olesen, J.E., Porter, J.R., Schj nning, P. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems[J]. Agriculture, Ecosystems & Environment.2010,139:584-594
    Chivenge, P., Vanlauwe, B., Gentile, R., Six, J. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation[J]. Soil Biology and Biochemistry.2011,43(3):657-666
    Chretien, S., Gosselin, A., Dorais, M. High electrical conductivity and radiation-based water management improve fruit quality of greenhouse tomatoes grown in rockwool[J]. HortScience.2000,35(4):627-631
    Christopher, S.F., Lal, R. Nitrogen management affects carbon sequestration in North American cropland soils[J]. Critical Reviews in Plant Sciences.2007,26(1):45-64
    Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., Zhang, J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management[J]. Soil Biology and Biochemistry.2007,39(11):2971-2976
    Cleveland, C.C., Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere[J]. Proceedings of the National Academy of Sciences.2006,103(27):10316-10321
    Coleman, D.C., Hunter, M.D., Hutton, J., Pomeroy, S., Swift, L. Soil respiration from four aggrading forested watersheds measured over a quarter century [J]. Forest Ecology and Management.2002,157(1-3):247-253
    Cookson, W., Murphy, D. Quantifying the contribution of dissolved organic matter to soil nitrogen cycling using 15N isotopic pool dilution[J]. Soil Biology and Biochemistry.2004,36(12): 2097-2100
    Cookson, W.R., Abaye, D.A., Marschner, P., Murphy, D.V., Stockdale, E.A., Goulding, K.W.T. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure[J]. Soil Biology and Biochemistry.2005, 37(9):1726-1737
    Crecchio, C., Curci, M., Mininni, R., Ricciuti, P., Ruggiero, P. Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity[J]. Biology and fertility of soils.2001,34(5):311-318
    Culman, S., Duxbury, J., Lauren, J., Thies, J. Microbial community response to soil solarization in Nepal's rice-wheat cropping system[J]. Soil Biology and Biochemistry.2006,38(12): 3359-3371
    Culman, S., Gauch, H., Blackwood, C., Thies, J. Analysis of T-RFLP data using analysis of variance and ordination methods:a comparative study [J]. Journal of Microbiological Methods.2008,75(1):55-63
    Datta, A., Yeluripati, J.B., Nayak, D., Mahata, K., Santra, S., Adhya, T. Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures[J]. Atmospheric Environment.2013,66:114-122
    De Visscher, A., Cleemput, O.V. Induction of enhanced CH4 oxidation in soils:NH4+inhibition patterns[J]. Soil Biology and Biochemistry.2003,35(7):907-913
    Del Amor, F., Martinez, V, A., C. Salt tolerance of tomato plants as affected by stage of plant development[J]. HortScience.2001,36(7):1260-1263
    DeLong, E.F. Archaea in coastal marine environments[J]. Proceedings of the National Academy of Sciences.1992,89(12):5685-5689
    Deng, S., Parham, J., Hattey, J., Babu, D. Animal manure and anhydrous ammonia amendment alter microbial carbon use efficiency, microbial biomass, and activities of dehydrogenase and amidohydrolases in semiarid agroecosystems[J]. Applied Soil Ecology.2006,33(3): 258-268
    Deng, S.P., Parham, J.A., Hattey, J.A., Babu, D. Animal manure and anhydrous ammonia amendment alter microbial carbon use efficiency, microbial biomass, and activities of dehydrogenase and amidohydrolases in semiarid agroecosystems[J]. Applied Soil Ecology. 2006,33(3):258-268
    Derry, A., Staddon, W., Kevan, P., Trevors, J.T. Functional diversity and community structure of microorganisms in rhizosphere and non-rhizosphere Canadian arctic soils[J]. Biodiversity and Conservation.2001,10(11):1933-1947
    Dexter, A., Richard, G., Arrouays, D., Czyz, E., Jolivet, C., Duval, O. Complexed organic matter controls soil physical properties[J]. Geoderma.2008,144(3):620-627
    Dilly, O., Munch, J.C. Ratios between estimates of microbial biomass content and microbial activity in soils[J]. Biology and fertility of soils.1998,27(4):374-379
    Dilustro, J.J., Collins, B., Duncan, L., Crawford, C. Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests[J]. Forest Ecology and Management.2005,204(1):87-97
    Ding, W., Cai, Y., Cai, Z., Zheng, X. Diel pattern of soil respiration in N-amended soil under maize cultivation[J]. Atmospheric Environment.2006,40(18):3294-3305
    Ding, W., Cai, Z., Tsuruta, H., Li, X. Key factors affecting spatial variation of methane emissions from freshwater marshes[J]. Chemosphere.2003,51(3):167-173
    Ding, W., Yu, H., Cai, Z., Han, F., Xu, Z. Responses of soil respiration to N fertilization in a loamy soil under maize cultivation[J]. Geoderma.2010,155(3-4):381-389
    Ding, W.X., Meng, L., Yin, Y.F., Cai, Z.C., Zheng, X.H. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer[J]. Soil Biology & Biochemistry.2007,39(2):669-679
    Dittert, K., Lampe, C., Gasche, R., Butterbach-Bahl, K., Wachendorf, M., Papen, H., Sattelmacher, B., Taube, F. Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil[J]. Soil Biology and Biochemistry.2005,37(9):1665-1674
    Enwall, K., Nyberg, K., Bertilsson, S., Cederlund, H., Stenstrom, J., Hallin, S. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil[J]. Soil Biology and Biochemistry.2007,39(1):106-115
    Fang, C, Smith, P., Moncrieff, J.B., Smith, J.U. Similar response of labile and resistant soil organic matter pools to changes in temperature [J]. Nature.2005,433:57-59
    Fender, A.C., Pfeiffer, B., Gansert, D., Leuschner, C., Daniel, R., Jungkunst, H.F. The inhibiting effect of nitrate fertilisation on methane uptake of a temperate forest soil is influenced by labile carbon[J]. Biology and Fertility of Soils.2012,48:621-631
    Filep, T., Rekasi, M. Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary [J]. Geoderma.2011,162(3-4):312-318
    Flessa, H., Ruser, R., Dorsch, P., Kamp, T., Jimenez, M.A., Munch, J.C., Beese, F. Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany[J]. Agriculture Ecosystems & Environment.2002,91(1-3):175-189
    Fog, K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews.1988,63(3):433-462
    Fontaine, S., Mariotti, A., Abbadie, L. The priming effect of organic matter:a question of microbial competition? [J]. Soil Biology and Biochemistry.2003,35:837-843
    Fonte, S.J., Yeboah, E., Six, J., Ofori, P., Quansah, GW., Vanlauwe, B. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates [J]. Soil Science Society of America Journal.2009,73(3):961-966
    Franzluebbers, A., Hons, F., Zuberer, D. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping[J]. Soil and Tillage Research.1995,34(1):41-60
    Gomoryova, E., Stfelcova, K., Fleischer, P., Gomory, D. Soil microbial characteristics at the monitoring plots on windthrow areas of the Tatra National Park (Slovakia):their assessment as environmental indicators[J]. Environmental monitoring and assessment. 2011,174(1):31-45
    Garland, J.L. Analysis and interpretation of community level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology.1997,24(4):289-300
    Garland, J.L., Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology.1991,57(8):2351-2359
    Gauder, M., Butterbach-Bahl, K., Graeff-Hoenninger, S., Claupein, W., Wiegel, R. Soil-derived trace gas fluxes from different energy crops-results from a field experiment in Southwest Germany[J]. Global Change Biology Bioenergy.2012,4(3):289-301
    Gavrichkova, O., Kuzyakov, Y. Ammonium versus nitrate nutrition of Zea mays and Lupinus albus:effect on root-derived CO2 efflux[J]. Soil Biology and Biochemistry.2008,40(11): 2835-2842
    Gelsomino, A., Cacco, G. Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis[J]. Soil Biology and Biochemistry.2006,38(1):91-102
    Ghani, A., Muller, K., Dodd, M., Mackay, A. Dissolved organic matter leaching in some contrasting New Zealand pasture soils[J]. European Journal of Soil Science.2007,61(4): 525-538
    Gong, P., Wilke, B.M., Strozzi, E., Fleischmann, S. Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils[J]. Chemosphere.2001,44(3):491-500
    Gong, W., Yan, X., Wang, J., Hu, T., Gong, Y. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain[J]. Plant and Soil.2009,314(1):67-76
    Govaerts, B., Sayre, K., Ceballos-Ramirez, J., Luna-Guido, M., Limon-Ortega, A., Deckers, J., Dendooven, L. Conventionally tilled and permanent raised beds with different crop residue management:Effects on soil C and N dynamics[J]. Plant and Soil.2006,280(1): 143-155
    Griffiths, B., Bonkowski, M., Roy, J., Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts[J]. Applied Soil Ecology. 2001,16(1):49-61
    Hutsch, B. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH[J]. Biology and Fertility of Soils.1998,28(1):27-35
    Hutsch, B.W. Methane oxidation in non-flooded soils as affected by crop production--invited paper[J]. European Journal of Agronomy.2001,14(4):237-260
    Haack, S.K., Garchow, H., Klug, M.J. Analysis of factors affecting the accuracy, reproducibility and interpretation of microbial community carbon source utilization patterns [J]. Appl. Environ. Microb.1995,61:1458-1468
    Haack, S.K., Garchow, H., Klug, M.J., Forney, L.J. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns[J]. Applied and Environmental Microbiology.1995,61(4):1458-1468
    Hafez, S.L., Sundararaj, P. Efficacy of seed crop meals for the management of Heterodera schachtii and Meloidogyne chitwoodi in pots [J]. Nematologia Mediterranea.2002, 30:159-161
    Haynes, R.J., Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions:a review[J]. Nutrient Cycling in Agroecosystems. 1998,51(2):123-137
    He, M.-m., Tian, G.-m., Liang, X.-q. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge[J]. Journal of Hazardous Materials.2009, 163(2-3):671-677
    Heenan, D., Chan, K., Knight, P. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol[J]. Soil and Tillage Research.2004,76(1):59-68
    Heinze, S., Raupp, J., Joergensen, R.G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture[J]. Plant and Soil.2010,328(1-2):203-215
    Hellebrand, H.J., Kern, J., Scholz, V. Long-term studies on greenhouse gas fluxes during cultivation of energy crops on sandy soils[J]. Atmospheric Environment.2003,37(12): 1635-1644
    Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., Cao, G., Mariko, S. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau[J]. Ecosystems.2006,9(4):673-688
    Hoekstra, N., Bosker, T., Lantinga, E. Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.)[J]. Agriculture, Ecosystems & Environment.2002,93(1-3):189-196
    Hu, S., Van Bruggen, A., Grunwald, N. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil[J]. Applied Soil Ecology.1999,13(1):21-30
    Huang, G., Wu, Q., Wong, J., Nagar, B. Transformation of organic matter during co-composting of pig manure with sawdust[J]. Bioresource technology.2006,97(15):1834-1842
    Insam, H., Domsch, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites[J]. Microbial Ecology.1988,15:177-188
    Insam, H., Haselwandter, K. Metabolic quotient of the soil microflora in relation to plant succession[J]. Oecologia.1989,79(2):174-178
    IPCC (2003). Good practice guidance for land use, land-use change and forestry [M]. IPCC 2003: National Greenhouse Gases Inventory Programme, Institute for Global Environmental Strategies (IGES) Hayama. ISBN 4-88788-003-0. http://www.ipcc-nggip.iges.or.jp
    IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme, ed by:Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Volume 4, Chapter 11, N2O emissions from managed soils, and CO2 emissions from lime and urea application, Institute for Global Environmental Strategies (IGES) for the IPCC, Hayama, Japan.
    IPCC (2007a) Summary for Policymakers. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller),1-18. Cambridge University Press, UK. http://www.ipcc.ch/pdf/assessment-report/ar4/wgl/ar4-wgl-spm.pdf
    IPCC (2007b) Summary for Policymakers. In:Climate Change 2007:Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. By M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson),7-22. Cambridge University Press, UK. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf
    Iqbal, J., Hu, R.G., Lin, S., Hatano, R., Feng, M.L., Lu, L., Ahamadou, B., Du, L.J. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China[J]. Agriculture Ecosystems & Environment.2009, 131(3-4):292-302
    Iqbal, J., Lin, S., Hu, R., Feng, M. Temporal variability of soil-atmospheric CO2 and CH4 fluxes from different land uses in mid-subtropical China[J]. Atmospheric Environment.2009, 43(37):5865-5875
    Iqbal, J., Ronggui, H., Lijun, D., Lan, L., Shan, L., Tao, C, Leilei, R. Differences in soil CO2 flux between different land use types in mid-subtropical China[J]. Soil Biology and Biochemistry.2008,40(9):2324-2333
    Jager, N., Duffner, A., Ludwig, B., Flessa, H. Effect of fertilization history on short-term emission of CO2 and N2O after the application of different N fertilizers-a laboratory study[J].2012, 59(2):161-171
    Jagadamma, S., Lal, R., Hoeft, R.G., Nafziger, E.D., Adee, E.A. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois[J]. Soil and Tillage Research.2007,95(1-2):348-356
    Janzen, H.H., Beauchemin, K.A., Bruinsma, Y., Campbell, C.A., Desjardins, R.L., Ellert, B.H., Smith, E.G. The fate of nitrogen in agroecosystems:An illustration using Canadian estimates[J]. Nutrient Cycling in Agroecosystems.2003,67(1):85-102
    Jassal, R.S., Black, T.A., Trofymow, J.A., Roy, R., Nesic, Z. Soil CO2 and N2O flux dynamics in a nitrogen-fertilized Pacific Northwest Douglas-fir stand[J]. Geoderma.2010,157(3-4): 118-125
    Jensen, L.E., Nybroe, O. Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere[J]. Applied and Environmental Microbiology.1999,65(10):4320-4328
    Joergensen, R.G., Mueller, T. The fumigation extraction method to estimate soil microbial biomass: calibration of the kEC-factor. [J]. Soil Biol.Biochem.1996a,28:25-31
    Joergensen, R.G., Mueller, T. The fumigation extraction method to estimate soil microbial biomass: calibration of the kEN-factor. [J]. Soil Biol.Biochem.1996b,28:33-37
    Jones, D., Hughes, L., Murphy, D., Healey, J. Dissolved organic carbon and nitrogen dynamics in temperate coniferous forest plantations[J]. European Journal of Soil Science.2008,59(6): 1038-1048
    Jones, D., Shannon, D. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J]. Soil Biology and Biochemistry.2004,36(5):749-756
    Jones, D., Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry. 2006,38(5):991-999
    Jordao, C.P., Nascentes, C.C., Cecon, P.R., Fontes, R.L.F., Pereira, J.L. Heavy metal availability in soilamended with composted urban solids[J]. Environmental monitoring and assessment. 2006,112:309-326
    Jouraiphy, A., Amir, S., El Gharous, M., Revel, J.C., Hafidi, M. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation.2005,56(2):101-108
    Kiisel, K., Drake, H.L. Microbial turnover of low molecular weight organic acids during leaf litter decomposition[J]. Soil Biology and Biochemistry.1998,31(1):107-118
    Kandeler, E., Tscherko, D., Spiegel, H. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management[J]. Biology and fertility of soils.1999,28(4):343-351
    Karlen, D., Mausbach, M., Doran, J., Cline, R., Harris, R., Schuman, G. Soil quality:a concept, definition, and framework for evaluation[J].1997,61(1):4-10
    Keppler, F., Hamilton, J.T.G., Braβ, M., Rockmann, T. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature.2006,439(7073):187-191
    Kern, J., Hellebrand, H., Gommel, M., Ammon, C., Berg, W. Effects of climatic factors and soil management on the methane flux in soils from annual and perennial energy crops[J]. Biology and Fertility of Soils.2012,48(1):1-8
    Khalil, K., Mary, B., Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration[J]. Soil Biology and Biochemistry.2004, 36(4):687-699
    Kim, S.Y., Lee, S.H., Freeman, C., Fenner, N., Kang, H. Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands[J]. Soil Biology and Biochemistry.2008,40(11):2874-2880
    Kirchmann, H., Haberhauer, G., Kandeler, E., Sessitsch, A., Gerzabek, M.H. Effects of level and quality of organic matter input on carbon storage and biological activity in soil:synthesis of a long-term experiment[J]. Global Biogeochemical Cycles.2004,18:GB4011,9pp
    Kirk, J.L., Klironomos, J.N., Lee, H., Trevors, J.T. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil[J]. Environmental Pollution.2005,133(3):455-465
    Kravchenko, I., Boeckx, P., Galchenko, V., Van Cleemput, O. Short-and medium-term effects of NH4+on CH4 and N2O fluxes in arable soils with a different texture[J]. Soil Biology and Biochemistry.2002,34(5):669-678
    Kumar, N., Shah, V., Walker, V.K. Influence of a nanoparticle mixture on an arctic soil community[J]. Environmental Toxicology and Chemistry.2012,31(1):131-135
    Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry.2006,38(3):425-448
    Kuzyakov, Y., Gavrichkova, O. Time lag between photosynthesis and carbon dioxide efflux from soil:a review of mechanisms and controls[J]. Global Change Biology.2010,16(12): 3386-3406
    Ladd, J., Amato, M., Zhou, L.K., Schultz, J. Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian Alfisol[J]. Soil Biology and Biochemistry.1994,26(7):821-831
    Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect[J]. Critical Reviews in Plant Sciences.2003,22(2):151-184
    Lal, R. Soils and food sufficiency. A review[J]. Agronomy for sustainable Development.2009, 29(1):113-133
    Lee, D., Doolittle, J., Owens, V. Soil carbon dioxide fluxes in established switchgrass land managed for biomass production[J]. Soil Biology and Biochemistry.2007,39(1):178-186
    Leon, M.C.C., Stone, A., Dick, R.P. Organic soil amendments:Impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality[J]. Applied Soil Ecology.2006,31(3): 199-210
    Li, Z., Schulz, R., Miiller, T. Short-term nitrogen availability from lupine seed meal as an organic fertilizer is affected by seed quality at low temperatures[J]. Biological Agriculture & Horticulture.2009,26(4):337-352
    Lin, X., Wang, S., Ma, X., Xu, G., Luo, C., Li, Y., Jiang, G., Xie, Z. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods[J]. Soil Biology and Biochemistry.2009,41(4):718-725
    Linderman, R.G., Davis, E.A. Evaluation of commercial inorganic and organic fertilizer effects on arbuscular mycorrhizae formed by Glomus intraradices[J]. Horttechnology.2004,14: 196-202
    Liu, B., Gumpertz, M.L., Hu, S., Ristaino, J.B. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight[J]. Soil Biology and Biochemistry.2007,39(9):2302-2316
    Liu, L., Greaver, T.L. A review of nitrogen enrichment effects on three biogenic GHGs:the CO2 sink may be largely offset by stimulated N2O and CH4 emission[J]. Ecology letters.2009, 12(10):1103-1117
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Applied and Environmental Microbiology.1997,63(11):4516-4522
    Liu, X.J., Mosier, A.R., Halvorson, A.D., Reule, C.A., Zhang, F.S. Dinitrogen and N2O emissions in arable soils:Effect of tillage, N source and soil moisture[J]. Soil Biology and Biochemistry.2007,39(9):2362-2370
    Livesley, S., Kiese, R., Graham, J., Weston, C., Butterbach-Bahl, K., Arndt, S. Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity[J]. Plant and Soil.2008,309(1):89-103
    Lou, Y., Li, Z., Zhang, T., Liang, Y. CO2 emissions from subtropical arable soils of China[J]. Soil Biology and Biochemistry.2004,36(11):1835-1842
    Lou, Y, Ren, L., Li, Z., Zhang, T., Inubushi, K. Effect of rice residues on carbon dioxide and nitrous oxide emissions from a paddy soil of subtropical China[J]. Water Air and Soil Pollution.2007,178(1-4):157-168
    Lovell, R., Jarvis, S., Bardgett, R. Soil microbial biomass and activity in long-term grassland: effects of management changes[J]. Soil Biology and Biochemistry.1995,27(7):969-975
    Lu, H., Wu, W., Chen, Y., Wang, H., Devare, M., Thies, J.E. Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field[J]. Journal of Soils and Sediments.2010,10(8):1598-1605
    Lukina, E., Freeman, K., Wynn, K., Thomason, W., Mullen, R., Stone, M. Nitrogen fertilization optimization algorithm based on in-season estimatesof yield and plant nitrogen uptake[J]. Journal of Plant Nutrition.2001,24(6)
    Lundquist, E., Jackson, L., Scow, K., Hsu, C. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils[J]. Soil Biology and Biochemistry.1999,31(2):221-236
    Luo, Y, Wan, S., Hui, D., Wallace, L.L. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature.2001,413:622-625
    Ma, Z., Wood, C., Bransby, D. Carbon dynamics subsequent to establishment of switchgrass[J]. Biomass and Bioenergy.2000,18(2):93-104
    Madejon, E., Burgos, P., Lopez, R., Cabrera, F. Soil enzymatic response to addition of heavy metals with organic residues[J]. Biology and fertility of soils.2001,34(3):144-150
    Mando, A., Bonzi, M., Wopereis, M., Lompo, F., Stroosnijder, L. Long term effects of mineral and organic fertilization on soil organic matter fractions and sorghum yield under Sudano Sahelian conditions[J]. Soil Use and Management.2005,21(4):396-401
    Manteghi, N.A., Rhoades, J., Alves, W., Lesch, S., Shouse, P. Determining soil salinity from soil electrical conductivity using different models and estimates[J]. Soil Science Society of America Journal.1990,54(1):46-54
    Mao, D.M., Min, Y.W., Yu, L.L., Martens, R., Insam, H. Effect of afforestation on microbial biomass and activity in soils of tropical China[J]. Soil Biology and Biochemistry.1992, 24(9):865-872
    Mapanda, F., Mupini, J., Wuta, M., Nyamangara, J., Rees, R. A cross ecosystem assessment of the effects of land cover and land use on soil emission of selected greenhouse gases and related soil properties in Zimbabwe[J]. European journal of soil science.2010,61(5): 721-733
    Mapanda, F., Wuta, M., Nyamangara, J., Rees, R.M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe[J]. Plant and Soil.2011,343(1-2):67-81
    Mariani, L., Chang, S.X., Kabzems, R. Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration, and N availability in a boreal aspen forest in British Columbia[J]. Soil Biology and Biochemistry.2006,38(7): 1734-1744
    Marschner, P., Kandeler, E., Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment J]. Soil Biology and Biochemistry.2003,35(3): 453-461
    McFarland, J.W., Ruess, R.W., Kielland, K., Doyle, A.P. Cycling dynamics of NH4+and amino acid nitrogen in soils of a deciduous boreal forest ecosystem[J]. Ecosystems.2002,5: 775-788
    McIntosh, R.P. An index of diversity and the relation of certain concepts to diversity [J]. Ecology. 1967,48(3):392-404
    Meijide, A., Cardenas, L.M., Sanchez-Martin, L., Vallejo, A. Carbon dioxide and methane fluxes from a barley field amended with organic fertilizers under Mediterranean climatic conditions[J]. Plant and Soil.2010,328(1):353-367
    Mikha, M.M., Nielsen, D.C., Halvorson, A.D., Benjamin, J.G. Crop management effects on crop residue production and changes in soil organic carbon in the central Great Plains[J]. Agronomy Journal.2010,102(3):990-997
    Moeseneder, M.M., Arrieta, J.M., Muyzer, G., Winter, C., Herndl, G.J. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology.1999,65(8):3518-3525
    Moore, J., Klose, S., Tabatabai, M. Soil microbial biomass carbon and nitrogen as affected by cropping systems[J]. Biology and fertility of soils.2000,31(3):200-210
    Mora, M., Cartes, P., Nunez, P., Salazar, M., Demanet, R. Movement of NO3--N and NH4+-N in an Andisol and its influence on ryegrass production in a short term study[J]. Journal of soil science and plant nutrition.2007,7(2):46-64
    Mosier, A., Wassmann, R., Verchot, L., King, J., Palm, C. Methane and nitrogen oxide fluxes in tropical agricultural soils:Sources, sinks and mechanisms[J]. Environment Development and Sustainability.2004,6(1-2):11-49
    Murphy, D., Macdonald, A., Stockdale, E., Goulding, K., Fortune, S., Gaunt, J., Poulton, P., Wakefield, J., Webster, C., Wilmer, W. Soluble organic nitrogen in agricultural soils[J]. Biology and fertility of soils.2000,30(5):374-387
    Neff, J.C., Chapin Ⅲ, F.S., Vitousek, P.M. Breaks in the cycle:dissolved organic nitrogen in terrestrial ecosystems[J]. Frontiers in Ecology and the Environment.2003,1(4):205-211
    NOAA. National Oceanographic and Atmospheric Administration.2008, United States Department of Commerce. http://www.noaanews.noaa.gov/stories2008/20080423_methane.html
    O'Donnell, A.G, Seasman, M., Macrae, A., Waite, I., Davies, J.T. Plants and fertilisers as drivers of change in microbial community structure and function in soils[J]. Plant and Soil.2001, 232(1):135-145
    Ogle, S.M., Paustian, K. Soil organic carbon as an indicator of environmental quality at the national scale:Inventory monitoring methods and policy relevance[J]. Canadian journal of soil science.2005,85:531-540
    Ogunwande, G., Osunade, J., Adekalu, K., Ogunjimi, L. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency[J]. Bioresource technology. 2008,99(16):7495-7503
    Oka, Y, Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z., Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode[J]. Phytopathology.2000,90(7): 710-715
    Olesen, J.E., Hansen, E.M., Askegaard, M., Rasmussen, I.A. The value of catch crops and organic manures for spring barley in organic arable farming[J]. Field crops research.2007,100(2): 168-178
    Omar, S., Ismail, M. Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts[J]. Folia microbiologica.1999,44(2):205-212
    Omar, S.A., Ismail, M.A. Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts[J]. Folia microbiologica.1999,44(2):205-212.
    Perez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., Steinberg, C. Response of soil microbial communities to compost amendments[J]. Soil Biology and Biochemistry.2006,38(3): 460-470
    Padre, A.T., Ladha, J.K., van Kessel, C., Reddy, C.K. Role of Nitrogen Fertilization in Sustaining Organic Matter in Cultivated Soils[J]. Journal of Environmental Quality.2011,40(6): 1756-1766
    Pagans, E., Barrena, R., Font, X., Sanchez, A. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature[J]. Chemosphere.2006, 62(9):1534-1542
    Pan, G.X., Zhou, P., Li, Z.P., Smith, P., Li, L.Q., Qiu, D.S., Zhang, X.H., Xu, X.B., Shen, S.Y., Chen, X.M. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China[J]. Agriculture Ecosystems & Environment.2009,131(3-4):274-280
    Panwar, P., Pal, S., Reza, S., Sharma, B. Soil Fertility Index, Soil Evaluation Factor, and Microbial Indices under Different Land Uses in Acidic Soil of Humid Subtropical India[J]. Communications in Soil Science and Plant Analysis.2011,42(22):2724-2737
    Parham, J.A., Deng, S.P., Raun, W.R. Long-term cattle manure application in soil. Part II. effect on soil microbial populations and community structure[J]. Biology and fertility of soils. 2003,38:209-215
    Peacock, A., Mullen, M., Ringelberg, D., Tyler, D., Hedrick, D., Gale, P., White, D. Soil microbial community responses to dairy manure or ammonium nitrate applications [J]. Soil Biology and Biochemistry.2001,33(7-8):1011-1019
    Peng, J., Lu, Z., Rui, J., Lu, Y. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil[J]. Applied and Environmental Microbiology.2008,74(9):2894-2901
    Phillips, R.L., Tanaka, D.L., Archer, D.W., Hanson, J.D. Fertilizer Application Timing Influences Greenhouse Gas Fluxes Over a Growing Season[J]. Journal of environmental quality. 2009,38(4):1569-1579
    Picek, T., Kastovska, E., Edwards, K., Zemanova, K., Dusek, J. Short term effects of experimental eutrophication on carbon and nitrogen cycling in two types of wet grassland[J]. Community Ecology.2008,9:81-90
    Plaza, C., Hernandez, D., Garcia-Gil, J.C., Polo, A. Microbial activity in pig slurry-amended soils under semiarid conditions.[J]. Soil Biology and Biochemistry.2004,36:1577-1585
    Prieme, A., Christensen, S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils[J]. Soil Biology and Biochemistry.2001,33(15):2083-2091
    Rolling, W.F.M., van Breukelen, B.M., Braster, M., van Verseveld, H.W. Linking microbial community structure to pollution:Biolog-substrate utilization in and near a landfill leachate plume[J]. Water Science and Technology.2000,41(12):47-53
    Raich, J.W., Tufekciogul, A. Vegetation and soil respiration:correlations and controls[J]. Biogeochemistry.2000,48(1):71-90
    Reynolds, W., Drury, C., Yang, X., Tan, C. Optimal soil physical quality inferred through structural regression and parameter interactions[J]. Geoderma.2008,146(3):466-474
    Rochette, P., Gregorich, E. Dynamics of soil microbial biomass C, soluble organic C and CO2 evolution after three years of manure application[J]. Canadian journal of soil science. 1998,78(2):283-290
    Ros, G.H., Hoffland, E., Temminghoff, E.J.M. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues[J]. Soil Biology & Biochemistry.2010, 42(12):2094-2101
    Rosenkranz, P., Bruggemann, N., Papen, H., Xu, Z., Horvath, L., Butterbach-Bahl, K. Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary[J]. Plant and Soil.2006,286(1):301-322
    Russell, A.E., Cambardella, C.A., Laird, D.A., Jaynes, D.B., Meek, D.W. Nitrogen fertilizer effects on soil carbon balances in Midwestern US agricultural systems[J]. Ecological Applications.2009,19(5):1102-1113
    Said-Pullicino, D., Erriquens, F.G., Gigliotti, G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity[J]. Bioresource technology.2007,98(9):1822-1831
    Sarathchandra, S., Ghani, A., Yeates, G., Burch, G., Cox, N. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils[J]. Soil Biology and Biochemistry.2001,33(7-8):953-964
    Schimel, J.P., Weintraub, M.N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil:a theoretical model[J]. Soil Biology and Biochemistry.2003, 35(4):549-563
    Schlesinger, W.H. Carbon sequestration in soils[J]. Science.1999,284:2095-2097
    Schnell, S., King, G.M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils[J]. Applied and Environmental Microbiology.1994,60(10): 3514-3521
    Schutter, M., Dick, R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology and Biochemistry.2001, 33(11):1481-1491
    Scialabba, N.E.H., Muller-Lindenlauf, M. Organic agriculture and climate change[J]. Renewable Agriculture and Food Systems.2010,25(02):158-169
    Shannon, C.E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review.1948,5(1):3-55
    Silgram, M., Chambers, B.J. Effects of long-term straw management and fertilizer nitrogen additions on soil nitrogen supply and crop yields at two sites in eastern England[J]. The Journal of Agricultural Science.2002,139(02):115-127
    Simpson, E.H. Measurement of diversity[J]. Nature; Nature.1949,163:688-674
    Singh, J.S., Raghubahshi, A.S., Singh, R.S., Srivastava, S.C. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature.1989,338:499-500
    Singh, K., Ghoshal, N., Singh, S. Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem:Influence of organic inputs of varying resource quality[J]. Applied Soil Ecology.2009,42(3):243-253
    Singh, S., Kushwaha, B.P., Nag, S.K., Bhattacharya, S., Gupta, P.K., Mishra, A.K., Singh, A. Assessment of enteric methane emission of Indian livestock in different agro-ecological regions[J]. Current Science.2012,102(7):1017-1027
    Smalla, K., Wachtendorf, U., Heuer, H., Liu, W.T., Forney, L. Analysis of BIOLOG GN substrate utilization patterns by microbial communities[J]. Applied and Environmental Microbiology.1998,64(4):1220-1225
    Smith, P. Carbon sequestration in croplands:the potential in Europe and the global context[J]. European Journal of Agronomy.2004,20(3):229-236
    Smith, P., Fang, C., Dawson, J.J.C., Moncrieff, J.B. Impact of global warming on soil organic carbon[M]//. Advances in agronomy.2008,97:1-43
    Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society B-Biological Sciences. 2008,363(1492):789-813
    Somda, Z.C., Powell, J.M., Bationo, A. Soil pH and nitrogen changes following cattle and sheep urine deposition[J]. Communications in soil science and plant analysis.1997,28(15-16): 1253-1268
    Sonneveld, C., Voogt, W. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment[J]. Plant and Soil.1990,124(2):251-256
    Soussana, J.F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands[J]. Soil Use and Management.2004,20(2):219-230
    Sparling, G. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Australian Journal of Soil Research.1992,30(2): 195-207
    Staddon, W., Duchesne, L., Trevors, J. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns[J]. Microbial Ecology.1997,34(2):125-130
    Stark, C., Condron, L.M., Stewart, A., Di, H.J., O'Callaghan, M. Influence of organic and mineral amendments on microbial soil properties and processes[J]. Applied Soil Ecology.2007, 35(1):79-93
    Tam, L., Derry, A., Kevan, P., Trevors, J. Functional diversity and community structure of microorganisms in rhizosphere and non-rhizosphere Canadian arctic soils[J]. Biodiversity and Conservation.2001,10(11):1933-1947
    Thies, J.E. Soil microbial community analysis using terminal restriction fragment length polymorphisms [J]. Soil Science Society of America Journal.2007,71(2):579-591
    Thomsen, I.K., Olesen, J.E. C and N mineralization of composted and anaerobically stored ruminant manure in differently textured soils[J]. The Journal of Agricultural Science. 2000,135(2):151-159
    Thorup-Kristensen, K., Dresboll, D.B. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop[J]. Soil Use and Management.2010,26(1):27-35
    Thorup Kristensen, K., Dresb(?)ll, D.B. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop[J]. Soil Use and Management.2010,26(1):27-35
    Tiquia, S., Richard, T., Honeyman, M. Carbon, nutrient, and mass loss during composting[J]. Nutrient Cycling in Agroecosystems.2002,62(1):15-24
    Tiquia, S., Tam, N. Fate of nitrogen during composting of chicken litter[J]. Environmental Pollution.2000,110(3):535-541
    Tiquia, S., Tam, N., Hodgkiss, I. Effects of composting on phytotoxicity of spent pig-manure sawdust litter[J]. Environmental Pollution.1996,93(3):249-256
    Toyota, K., Kuninaga, S. Comparison of soil microbial community between soils amended with or without farmyard manure[J]. Applied Soil Ecology.2006,33(1):39-48
    Treseder, K.K. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies[J]. Ecology letters.2008,11(10):1111-1120
    van Bruggen, A.H.C., Semenov, A. A new approach to the search for indicators of root disease suppression[J]. Australasian Plant Pathology.1999,28(1):4-10
    van Bruggen, A.H.C., Semenov, A.M., Diepeningen, A.D., Vos, O.J., Blok, W.J. Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management[J]. European Journal of Plant Pathology.2006:105-122
    van Hees, P.A.W., Jones, D.L., Finlay, R., Godbold, D.L., Lundstrom, U.S. The carbon we do not see--the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils:a review [M].Soil Biology and Biochemistry.2005:1-13
    Verachtert, E., Govaerts, B., Lichter, K., Sayre, K., Ceballos-Ramirez, J., Luna-Guido, M., Deckers, J., Dendooven, L. Short term changes in dynamics of C and N in soil when crops are cultivated on permanent raised beds[J]. Plant and Soil.2009,320(1):281-293
    Verburg, P.H., Van Der Gon, H.A.C. Spatial and temporal dynamics of methane emissions from agricultural sources in China[J]. Global Change Biology.2001,7(1):31-47
    Vogel, K.P., Brejda, J.J., Walters, D.T., Buxton, D.R. Switchgrass biomass production in the Midwest USA:harvest and nitrogen management[J]. Agronomy Journal 2002,94(3): 413-420
    Walter, I., Martinez, F., Cala, V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses[J]. Environmental Pollution.2006, 139(3):507-514
    Wang, G., Chen, S., Frear, C. Estimating greenhouse gas emissions from soil following liquid manure applications using a unit response curve method[J]. Geoderma.2012,170: 295-304
    Wang, K., Zhang, J., Zhu, Z., Huang, H., Li, T., He, Z., Yang, X., Alva, A. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii[J]. Journal of Soils and Sediments.2012,12(7):1089-1099
    Wardle, D.A. Controls of temporal variability of the soil microbial biomass:a global-scale synthesis[J]. Soil Biology and Biochemistry.1998,30(13):1627-1637
    Wardle, D.A., Ghani, A. A critique of the microbial metabolic (qCO2) as a bioindicator of disturbance and ecosystem development.[J]. Soil Biol. Biochem.1995,27:1601-1610
    Wassmann, R., Aulakh, M.S. The role of rice plants in regulating mechanisms of methane missions[J]. Biology and Fertility of Soils.2000,31(1):20-29
    Wei, D., Yang, Q., Zhang, J.Z., Wang, S., Chen, X.L., Zhang, X.L., Li, W.Q. Bacterial community structure and diversity in a black soil as affected by long-term fertilization[J]. Pedosphere. 2008,18(5):582-592
    Wei, Y., Yu, L.F., Zhang, J.C., Yu, Y.C., Deangelis, D. Relationship between vegetation restoration and soil microbial characteristics in degraded karst regions:A case study[J]. Pedosphere. 2011,21(1):132-138
    Welbaum, G.E., Sturz, A.V., Dong, Z., Nowak, J. Managing soil microorganisms to improve productivity of agro-ecosystems [J]. Critical Reviews in Plant Sciences.2004,23(2): 175-193
    Wessen, E., Nyberg, K., Jansson, J.K., Hallin, S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management J]. Applied Soil Ecology.2010,45(3):193-200
    Wheatley, R., Ritz, K., Crabb, D., Caul, S. Temporal variations in potential nitrification dynamics in soil related to differences in rates and types of carbon and nitrogen inputs[J]. Soil Biology and Biochemistry.2001,33(15):2135-2144
    Wu, J., Joergensen, R., Pommerening, B., Chaussod, R., Brookes, P. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology & Biochemistry.1990,22(8):1167-1169
    Xiao, Y, Xie, G., Lu, C., Ding, X., Lu, Y. The value of gas exchange as a service by rice paddies in suburban Shanghai, PR China[J]. Agriculture, Ecosystems & Environment.2005, 109(3-4):273-283
    Yu, L., Tang, J., Zhang, R., Wu, Q., Gong, M. Effects of biochar application on soil methane emission at different soil moisture levels[J]. Biology and Fertility of Soils.2012:1-10
    Yuan, B.C., Yue, D.X. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the Loess Plateau of China[J]. Pedosphere.2012,22(1): 1-12
    Zaman, M., Di, H., Sakamoto, K., Goto, S., Hayashi, H., Inubushi, K. Effects of sewage sludge compost and chemical fertilizer application on microbial biomass and N mineralization rates[J]. Soil Science and Plant Nutrition.2002,48(2):195-201
    Zaman, M., Matsushima, M., Chang, S., Inubushi, K., Nguyen, L., Goto, S., Kaneko, F., Yoneyama, T. Nitrogen mineralization, N 2 O production and soil microbiological properties as affected by long-term applications of sewage sludge composts[J]. Biology and Fertility of Soils.2004,40(2):101-109
    Zanatta, J.A., Bayer, C., Vieira, F.C.B., Gomes, J., Tomazi, M. Nitrous oxide and methane fluxes in south Brazilian gleysol as affected by nitrogen fertilizers[J]. Revista Brasileira De Ciencia Do Solo.2010,34(5):1653-1665
    Zapusek, U., Lestan, D. Functioning and toxicity of artificial soil mixtures with metal-bearing sewage sludge[J]. Ecological Engineering.2011,37(12):1977-1982
    Zelenev, V., Van Bruggen, A., Semenov, A. Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues[J]. Microbial Ecology.2005,49(1): 83-93
    Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil.2012,351(1-2):263-275
    Zhang, C.B., Huang, L.N., Wong, M.H., Zhang, J.T., Zhai, C.J., Lan, C.Y. Characterization of soil physico-chemical and microbial parameters after revegetation near Shaoguan Pb/Zn smelter, Guangdong, PR China[J]. Water, Air,& Soil Pollution.2006,177(1):81-101
    Zhang, Q.-C, Shamsi, I.H., Xu, D.-T., Wang, G.-H., Lin, X.-Y., Jilani, G., Hussain, N., Chaudhry, A.N. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure[J]. Applied Soil Ecology.2012,57:1-8
    Zhang, W., Mo, J., Zhou, G., Gundersen, P., Fang, Y, Lu, X., Zhang, T., Dong, S. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. J. Geophys. Res.2008,113:D11116,10pp
    Zhang, X.-h., Li, L.-q., Pan, G.-x. Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence[J]. Journal of Environmental Sciences.2007,19(3):319-326
    Zheng, H., Ouyang, Z.Y., Fang, Z., Zhao, T., Application of biolog to study on soil microbial community functional diversity[J]. Acta Pedologica Sinica.2004,41(3):456-461
    Zheng, J., Li, L., Pan, G., Zhang, X., Smith, P., Hussain, Q. Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under long term fertilizer treatments[J]. Soil Use and Management.2012,28(2):185-193
    Zheng, J., Zhang, X., Li, L., Zhang, P., Pan, G. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil.[J]. Agriculture, Ecosystems & Environment.2007,120(2):129-138
    Zheng, J., Zhang, X., Li, L., Zhang, P., Pan, G. Effects of long-term straw management and fertilizer nitrogen additions on soil nitrogen supply and crop yields at two sites in eastern England[J]. The Journal of Agricultural Science.2007,139(2):115-127
    鲍士旦.土壤农化分析[M].北京:中国农业出版社.2000:34-38.
    陈同斌,罗维,高定,郑国砥.混合堆肥过程中容重的层次效应及动态变化[J].环境科学.2004,25(5):143-145
    仇少君,彭佩钦,荣湘民,刘强,唐麒.淹水培养条件下土壤微生物生物量碳,氮和可溶性有机碳,氮的动态[J].应用生态学报.2006,17(11):2052-2058
    方乐金,张运斌.杉木幼林地土壤肥力变化研究[J].土壤学报.2003,40(2):316-319
    高定,陈同斌,刘斌,郑袁明,郑国砥,李艳霞.我国畜禽养殖业粪便污染风险与控制策略[J].地理研究.2006,25(2):311-319
    郭瑞英,陈清,李晓林.土壤微生物-抑病性与土壤健康[J].中国蔬菜.2005,(B10):78-82
    郝晓晖,肖宏宇,苏以荣,吴金水,胡荣桂.长期不同施肥稻田土壤的氮素形态及矿化作用特征[J].浙江大学学报(农业与生命科学版).2007,33(5):544-550
    何鹏,吴敏,韦家少.海南省胶园土壤肥力质量指标的时空变异特性研究[J].中国农学通报.2008,24(10)
    洪瑜,方晰,田大伦.湘中丘陵区不同土地利用方式土壤碳氮含量的特征[J].中南林学院学报.2007,26(6):9-16
    侯晓杰,汪景宽,李世朋.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J].生态学报.2007,27(2):655-661
    蒋成爱.城市污水污泥处理利用研究进展[J].农业环境与发展.1999,(1):13-17
    李东坡,陈利军,武志杰,朱平,任军,梁成华,彭畅,高红军.不同施肥黑土微生物量氮变化特征及相关因素[J].应用生态学报.2004,15(10):1891-1896
    李贵桐,张宝贵,李保国.秸秆预处理对土壤微生物量及呼吸活性的影响[J].应用生态学报.2003,14(12):2225-2228
    李琳,胡立峰,陈阜,肖小平,杨光立.长期不同施肥类型对稻田甲烷和氧化亚氮排放速率的影响[J].农业环境科学学报.2006,25(B09):707-710
    李秀英,赵秉强,李絮花,李燕婷,孙瑞莲,朱鲁生,徐晶,王丽霞,李小平,张夫道.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学.2005,38(8):1591-1599
    练成燕,张桃林,王兴祥.有机物料对红壤几种形态碳氮及酸度的影响[J].中国农业科学.2009,42(11):3922-3932
    刘恩科,赵秉强,李秀英,姜瑞波,李燕婷,So,H.B.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报.2008,32(1):176-182
    刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报.2005,42(002):247-252
    刘文娜,吴文良,王秀斌,王明新,毛文峰.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报.2006,12(3):406-411
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.2000,
    罗兰芳,聂军,郑圣先,廖育林,谢坚.施用控释氮肥对稻田土壤微生物生物量碳,氮的影响[J].生态学报.2010,30(011):2925-2932
    马克平,刘玉明.生物群落多样性的测度方法I(下)[J].生物多样性.1994,2(4):231-239
    倪进治,徐建民,谢正苗.有机肥料施用后潮土中活性有机质组分的动态变化[J].农业环境科学学报.2003,22(4):416-419
    潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展.2003,18(4):609-618
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展.2005,20(4):384-393
    彭静静,张又弛,侯艳伟,黎慧娟,蔡超.炼油厂周边PAHs污染土壤中微生物群落结构多样性研究[J].生态环境学报.2011,20(5):962-965
    任天志,Grego.持续农业中的土壤生物指标研究[J].中国农业科学.2000,33(1):68-75
    阮维斌,刘默涵,潘洁,王静,陆文龙,马成仓,王敬国,高玉葆.不同饼肥对连作黄瓜生长的影响及其机制初探[J].中国农业科学.2003,36(12):1519-1524
    时鹏,高强,王淑平,张妍.玉米连作及其施肥对土壤微生物群落功能多样性的影响[J].生态学报.2010,22
    孙凤霞,张伟华,徐明岗,张文菊,李兆强,张敬业.长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J].应用生态学报.2010,21(11):2792-2798
    孙宇瑞.土壤含水率和盐分对土壤电导率的影响[J].中国农业大学学报.2000,5(4):39-41
    王常慧,邢雪荣,韩兴国.草地生态系统中土壤氮素矿化影响因素的研究进展[J][J].应用生态学报.2004,15(11):2184-2188
    王光华,刘俊杰,齐晓宁,金剑,王洋,刘晓冰Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J].生态学报.2008,28(1):220-226
    王霖晓,沈阿林,寇长林,郭战玲,马政华.小麦-玉米轮作下有机肥与氮肥配施对土壤微生物量氮及作物氮利用的影响[J].河南农业科学.2007,(6):96-99
    王斯佳,韩晓增,侯雪莹.长期施肥对黑土氮素矿化与硝化作用特征的影响[J].水土保持学报.2008,22(2):170-173
    王秀丽,孙波.红壤旱地施用有机肥的氮素淋失过程[J].土壤学报.2008,45(4):745-749
    王毅,瞿兴,杨跃,王巍,耿明建,付丽波,杨华,洪丽芳.菜籽饼肥与化肥配合施用对烤烟生长及土壤养分的影响[J].华中农业大学学报.2006,25(1):50-54
    王芸,韩宾,史忠强,邵国庆,江晓东,宁堂原,焦念元,李增嘉.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报.2006,20(4):120-122
    吴永成,周顺利,王志敏,罗延庆.华北地区夏玉米土壤硝态氮的时空氮的时空动态与残留[J].生态学报.2005,25(7):1620-1625
    武雪萍,刘国顺,郭平毅,杨超,朱凯.饼肥中的有机营养物质及其在发酵过程中的变化[J].植物营养与肥料学报.2003,9(3):303-307
    武雪萍,刘增俊,赵跃华,刘国顺,杨超,郭伟玲,荆冬梅.施用芝麻饼肥对植烟根际土壤酶活性和微生物碳,氮的影响[J].植物营养与肥料学报.2005,11(4):541-546
    谢秉楼,吴家森,徐秋芳,姜培坤.覆盖与施肥处理对雷竹林土壤水溶性有机氮的影响[J].土壤学报.2009,(6):1168-1171
    徐华勤,肖润林,邹冬生,宋同清,罗文,李盛华.长期施肥对茶园土壤微生物群落功能多样性的影响[J].生态学报.2007,27(8):3356-3361
    徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社.2003
    徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳,氮,磷的影响[J].土壤学报.2002,39(1):89-96
    徐永刚,宇万太,马强,周桦.不同施肥制度下潮棕壤氮素功能群活性的研究[J].水土保持学报.2010,24(3):160-163
    杨帆,邓伟,章光新,杨建锋,李秀军.苏打盐渍土地区芦苇地土壤盐分离子空间变异与群 落关系研究[J].土壤学报.2008,45(4):594-600
    易志刚,蚁伟民,周丽霞,王新明.鼎湖山主要植被类型土壤微生物生物量研究[J].生态环境.2005,14(5):727-729
    于芳芳,常智慧,韩烈保.城市污泥和污泥堆肥在草坪的利用研究进展[J].草业学报.2011,20(5):259-265
    袁红朝,秦红灵,刘守龙,童成立,魏文学,吴金水.长期施肥对红壤性水稻土细菌群落结构和数量的影响[J].中国农业科学.2011,44(22):4610-4617
    袁婧,李金玲,赵致,王华磊,刘红昌,罗春丽,陈仁琴,曹国瑶.不同处理对黑草种子发芽能力影响的研究[J].种子.2012,31(6):49-50
    张增强,殷宪强.污泥土地利用对环境的影响[J].农业环境科学学报.2005,23(6):1182-1187
    赵庆祥.污泥资源化技术[M].北京:化学工业出版社.2002
    郑聚锋,张旭辉,潘根兴,李恋卿.水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化[J].植物营养与肥料学报.2006,12(4):485-494
    周建斌,陈竹君,李生秀.土壤微生物量氮含量,矿化特性及其供氮作用[J].生态学报.2001,21(10):1718-1725
    朱兆良,诺斯,孙波.中国农业面源污染控制对策[M].中国环境科学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700