用户名: 密码: 验证码:
高层结构体系弹性整体稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着建筑物高度的不断增加以及建筑体型的不断复杂化,各国学者对高层超高层结构体系进行了大量的研究,相应的理论体系也日趋完善。然而高层结构设计构件太多,结构的整体稳定难以简单地把握,可喜的是,现在的计算机有限元程序可以相对容易的解决高层结构稳定性问题。本文分析各类结构的特点,对结构进行合理的简化,并对相应的结构体系进行了整体性分析,得到了四类高层结构稳定性的基本规律。
     对伸臂位于顶部及中部任意高度的巨型结构整体稳定性进行了分析,提出了双伸臂巨型结构中模拟伸臂和柱子作用的独立弹簧和关联弹簧的模型。推导了核心筒及边框柱中轴力不同时结构整体失稳的临界方程,通过具体算例的计算分析,得出了双伸臂巨型结构失稳时,伸臂层总的临界荷载与荷载在核心筒与伸臂端柱子之间的分布基本无关的结论。通过算例分析揭示了巨型层层与层之间存在较大的相互作用。通过对比普通框架的合并解法,揭示了伸臂巨型结构与框架结构在稳定问题上的区别,通过对基于整体的和层的荷载负刚度概念的伸臂结构屈曲的近似分析,进一步揭示了伸臂巨型结构在性质上更加接近于框架结构,而偏离整体弯曲型结构更远的性质。
     采用连续化模型,对双肢剪力墙结构平面内稳定性进行了研究,求得了顶部作用集中压力时临界荷载的精确显式表达式和显式屈曲波形。这个临界荷载公式表明,联肢剪力墙是一种双重抗侧力结构,并且可以采用串并联电路模型来表示两者之间的相互作用。串并联模型推广到线性分析的情况,得到顶部抗侧刚度的近似显式表达式,与精确解进行了比较。推导了顶部作用竖向集中荷载时,在不同水平荷载作用下结构的侧移、墙肢弯矩、墙肢轴力和连梁弯矩放大系数,并提供了近似计算公式。
     基于对等截面等轴力的联肢剪力墙的稳定性研究成果,并运用串并联电路模型,研究了变截面变轴力联肢剪力墙结构的稳定性。运用能量法,构建弯曲型、剪切型曲线,考察了变刚度变轴力联肢剪力墙结构的失稳波形,得出结论,变截面变轴力联肢墙的屈曲问题比较复杂,不简单的等效于弯曲、剪切或简单的弯剪型。进而文章通过大量的算例拟合出了联肢墙的屈曲荷载表达式,有比较好的精确度。
     用有限元的方法,通过建立多个巨型框架结构以及相关的巨型框架结构模型,分析了巨型框架结构失稳特性。揭示了单层和多层巨型框架失稳时,一级框架和二级框架共同工作、相互作用的机理。阐述了巨型框架与双重抗侧力结构稳定特性的相似性,从而得出简化的求解结构屈曲荷载的方法。对于巨型框架结构的设计研究,有一定的参考作用。
     研究了单个吊挂荷载的悬挂结构的弹性屈曲,求得了解析解。对多层吊挂荷载的巨型悬挂结构,运用连续化模型,推导了稳定平衡微分方程。结果表明:悬挂结构的弹性稳定,等同于将竖向荷载直接作用于悬挂巨型柱相同高度处的变轴力巨型框架柱的稳定。运用能量法,求出了竖向均布荷载作用下两端转动约束柱的屈曲荷载表达式,有限元方法验证说明其具有良好的精度。对两个巨型层的悬挂结构,用初等代数方法阐述了考虑层与层相互作用的屈曲荷载求解方法,与有限元方法比较表明,初等代数方法也具有良好的精度。
As more and more high-rise structures were built in the past decades, researchers had done lots of studies on high-rise structural systems, and the theories are comparatively perfect. However, understanding the overall stability of a structure is not an easy task. Fortunately, current designers have computer software to analyze it. Based on reasonable simplification, this thesis analyzed the overall stability of several different high-rise structure systems, accurate or approximate buckling load expressions are obtained, the stability behaviors of these structures are illustrated.
     The second chapter analyze a simplified model of double-outrigger-braced structure, a model composed of independent rotational spring and relative rotational spring is proposed for the outrigger-column systems. The critical buckling equation is presented where the axial force of the core and the exterior columns may be varied. By analyzing a specific example, the second chapter reveals the total buckling load of each mega-story is independent of the load distribution among the core and the exterior columns. The analysis reveals also the strong inter-story interaction of the double-outrigger braced structures. By comparing the buckling of the normal frame and the double-outrigger-braced structures, and also by using the approximate buckling analysis based on the negative stiffness concept of gravity loads, which is very successful in normal frame buckling analysis, it is concluded that the double-outrigger braced mega-structure is closer to a normal frame in its buckling behavior, although it has a stronger inter-storey interaction than normal frames.
     Using the continuum model, the third chapter made a study on buckling of coupled shear walls. A closed form solution and an explicit formula for the buckling load are obtained. The form of the formula implies that the coupled shear wall is a kind of dual structural system, and the interaction between two structural components may be elucidated by a series-parallel circuit. Based on this circuit, an explicit expression for the lateral stiffness of coupled shear wall is found and compared with exact solution. Amplification factors of drift, bending moments and axial forces in walls and bending moments in the link beams due to the second order effect are studied and a simple formula for the amplification factor is also provided.
     Based on the study of coupled shear walls in the third chapter, the forth chapter studies the stability problem on coupled shear walls with cross section and axial force varies uniformly through the height. Using energy method, shear and flexural deformation curve are assumed to simulate the real buckling deflection curve. It is proved that coupled wall structure behaviors more complicated than a single shear or flexural system. Then a fitted buckling load expression is given, which has a fine accuracy.
     The fifth chapter pays attention on studies of mega frame structure. Several model are established to analyze and illustrate the nature of stability of mega frame structure. Mega frame structures with single and double storey are presented. The interaction behavior between mega stories are explained. Then a simplified method of solving buckling load of mega frame structure is proposed, which could be a estimation for design work.
     The sixth chapter analyze at first the buckling of frames with one suspended storey, closed form solution was obtained. Mega-frames with multiple suspended storeys were then studied using the continuum method, equilibrium differential equation for buckling was established. It was found that the stability of suspension mega frames is the same as the frames supporting the gravity loads at the same level at the mega columns. Using the energy method, an approximate expression for the buckling load of columns rotationally restrained at two ends is presented, its accuracy was verified by EFM. For suspension frames with two mega storeys, an elementary algebra method is proposed to solve for the buckling loads an the interaction between two storeys, its accuracy is also verified using numerical analysis.
引文
[1]雷春浓(1997).现代高层建筑设计[M].北京:中国建筑工业出版社.
    [2]徐培福(2005).复杂高层建筑结构设计[M].北京:中国建筑工业出版社.
    [3]陈富生,邱国桦,范重(2004).高层建筑钢结构设计[M].北京:中国建筑工业出版社.
    [4]李国强(2004).多高层建筑钢结构设计[M].北京:中国建筑工业出版社.
    [5]Timoshenko S.P., Gere J.M(1961). Theory of Elastic Stability 2th Edition [M]. McGraw-Hill, New York.
    [6]童根树(2005).钢结构的平面内稳定[M].北京:中国建筑工业出版社.
    [7]Bryan Stafford Smith, Alex Coull(1991). Tall Building Structures:Analysis And Design[M]. New York:John Wiley & Sons, INC.
    [8]陈骥(2003).钢结构稳定理论与设计(第二版)[M].北京:科学技术出版社.
    [9]陈绍蕃(2001).钢结构设计原理(第二版)[M].北京:科学出版社.
    [10]陈绍蕃(2004).钢结构稳定设计指南(第二版)[M].北京:中国建筑工业出版社.
    [11]陈惠发,周绥平(1999).钢框架稳定设计[M].上海:上海世界图文出版公司.
    [12]陈绍蕃(2004).钢结构稳定设计的新进展[J].建筑钢结构进展,6(2):1-13.
    [13]饶芝英,童根树(2002).钢结构稳定性的新诠释[J].建筑结构,32(5):12—14.
    [14]高宇(2006).双重弯剪型抗侧力体系的相互作用[D].杭州:浙江大学..
    [15]周坚,邓思华(1998).巨型框架超高层建筑结构分析[C].第九届建筑工程计算机应用学术会议论文集.
    [16]饶芝英,童根树(2002).多高层钢结构的分类及其稳定性设计[J].建筑结构,32(5):7-11.
    [17]童根树,金阳(2005).框架柱计算长度系数法和二阶分析设计法的比较[J].钢结构,20(2):8—11.
    [18]郝仕玲,陈瑞金(2003).框架支撑类型判别中的若干问题[J].工业建筑,33(5):13-15.
    [19]包世华,龚耀清(2002).超高层建筑空间巨型框架的简化分析[J].工程力学增刊.
    [20]童根树,胡进秀(2007).弯曲型支撑-框架结构的屈曲及位移和弯矩放大系数[J].建筑钢结构进展,9(1):52-56.
    [21]龚耀清,包世华(2004).超高层建筑空间巨型框架的稳定计算[J].工程力学,21(6):36-40
    [22]赵西安,徐培福(1992).高层建筑结构的选型构造及简化计算[M].北京:中国建筑工业出版社.
    [23]龙驭球(1981).弹性地基梁的计算[M].北京:人民教育出版社.
    [24]刘大海,杨翠如(1996).高层建筑结构方案选优[M]北京:中国建筑工业出版社.
    [25]包世华(2001).新编高层建筑结构[M].北京:中国水利水电出版社.
    [26]包世华,方鄂华(1990).高层建筑结构设计(第二版)[M].北京:清华大学出版社.
    [27]翁赞(2009).考虑剪切变形影响的框架及巨型框架稳定理论[D].杭州:浙江大学.
    [28]曹志毅(2006).顶部带伸臂的框架—筒体结构的弹性稳定分析[D].杭州:浙江大学.
    [29]翁赞,童根树(2008).顶部带伸臂的框架核心筒结构的稳定性和位移、弯矩放大系数[J].工程力学,25(3):132—138.
    [30]胡进秀(2006).框架—弯曲型支撑体系中框架柱弯矩放大系数及整体弹性稳定[D].杭州:浙江大学.
    [31]周晓峰(2001).巨型钢框架结构的静力、抗震和抗风分析[D].杭州:浙江大学.
    [32]童根树,高宇(2008).两个弯剪型抗侧力体系的线性相互作用[J].建筑钢结构进展.10(5):28-34.
    [33]陈麟,周云,张耀春(2004).巨型钢框架结构性能分析及二阶效应的影响[J].钢结构,19(2):13—16.
    [34]李君,张耀春(1997).超高层结构新体系—巨型结构[J].哈尔滨建筑大学学报,30(6):21-27.
    [35]梁启智,谢理(1986).框—剪结构的二阶分析,建筑结构学报,7(5):1—8.
    [36]梁启智(1992).高层建筑结构与设计[M].广州:华南理工大学出版社.
    [37]刘开国(1991).高层钢框架P-△效应的简化计算[J].建筑结构学报,12(5):42-46.
    [38]吕烈武,沈世钊,沈祖炎,胡学仁(1983).钢结构构件稳定理论[M].北京:中国建筑工业出版社.
    [39]张磊(2005).薄壁构件稳定性新理论及其应用[D].杭州:浙江大学.
    [40]沈祖炎,陈荣毅(2001).巨型结构的应用与发展,同济大学学报,29(3):258-262.
    [41]童根树,施祖元,李志飚(2004).计算长度系数的物理意义及对各种钢框架稳定设计方法的评论,建筑钢结构进展,6(4):1-8.
    [42]童根树,金阳(2005).框架柱计算长度系数法和二阶分析设计法的比较[J].钢结构,20(2):8—11.
    [43]王金鹏(2004).考虑层与层相互作用的框架稳定分析[D].杭州:浙江大学..
    [44]吴惠弼(1982).框架柱的计算长度[R].钢结构研究论文报告选集(第一册).全国钢结构标准技术委员会,94—120.
    [45]JGJ99-98(1998).高层民用建筑钢结构设计规程[S].北京:中国建筑工业出版社.
    [46]GB50017-2003(2003).钢结构设计规范[S].北京:中国计划出版社.
    [47]夏志斌,潘有昌(1988).结构稳定理论[M].北京:高等教育出版社.
    [48]郑廷银,赵惠麟(2000).高层建筑支撑钢框架结构二阶位移的实用计算[J].东南大学学报(自然科学版),30(4):43-47.
    [49]童根树(2007).钢结构设计方法[M].北京:中国建筑工业出版社.
    [50]郑廷银(2003).钢结构设计方法的研究进展与展望[J].南京工业大学学报,25(5):101—106.
    [51]童根树,翁赞(2008a).顶部带伸臂的框架-核心筒结构的稳定性和位移、弯矩放大系数[J].工程力学,25(3):132—138.
    [52]童根树,翁赞(2008b).考虑剪切变形影响的框架柱弹性稳定[J].工程力学,25(12):171—178
    [53]翁赞,童根树(2009).考虑剪切变形影响的框架结构稳定性[J].土木工程学报,42(1):1-9
    [54]叶文洪,梁启智(1999).考虑二阶效应时框-剪结构的简化分析[J].工程力学,16(1):26—34
    [55]赵熙元(1995).建筑钢结构设计手册(上册)[M].北京,冶金工业出版社.
    [56]郑延银(2000).高层钢结构框架-支撑体系整体稳定与二阶分析的等效模型[J].钢结构,(增刊):32—37
    [57]郑延银,董军,朱惠(2001).高层钢结构双重抗侧力体系的二阶简化分析[J].南京建筑工程学院学报,2001(2):7—13.
    [58]郑廷银(2002).考虑P-△效应的巨型钢框架结构实用分析[J].南京工业大学学报,24(5):61—64.
    [59]郑廷银,赵惠麟(2002).高层钢结构巨型框架体系的二阶位移实用计算[J].东南大学学报(自然科学版),32(5):794-798.
    [60]郑廷银,马梦寒,张玉,赵惠麟(2003).巨型钢框架结构的二阶实用分析[J].工业建筑,33(11):58—60.
    [61]涂永明(2005). CFRP索悬挂建筑结构静力和动力分析及研究[D].南京:东南大学.
    [62]周坚,伍孝波,刘娜(2003).高层建筑悬挂结构体系动力分析[J].北京建筑工程学院学报,11(4):1—8.
    [63]王肇民,邓洪洲,董军(1999).高层巨型框架悬挂结构体系抗震性能研究[J].建筑结构学报,20(1):23—30.
    [64]杨允表(1998).核心单筒式悬挂结构中四面开洞核心筒体的屈曲荷载与振动频率[J].工业建筑,28(4):20-23
    [65]王春林,吕志涛(2007).核筒悬挂结构的动力特性及参数优化[J].东南大学学报,37(2):181-185.
    [66]吴景祥(1981).高层建筑设计[M].北京:中国建筑工业出版社,1981.
    [67]刘郁馨,吕志涛(1997).悬挂建筑框架结构弹性稳定性估算方法[J].工程力学,14(4):29-37.
    [68]岑伟(2008).简单模型弯剪型抗侧力体系的相互作用[D].杭州:浙江大学.
    [69]童根树,金阳,米旭峰(2008).双重弯剪型抗侧力结构的屈曲及其二阶效应[J].工程力学,25(10):92—98.
    [70]邢国然(2007).纯框架和支撑框架弹塑性稳定分析[D].杭州:浙江大学.
    [71]赵钦(2010).多重抗侧力结构体系二阶效应及串并联模型[D].杭州:浙江大学.
    [72]金阳(2010).楔形变截面工字钢梁腹板的抗剪承载力研究[D].杭州:浙江大学.
    [73]Rosman R(1973). Dynamics and stability of shear wall building structures[J]. Proc. Instn Civil Engrs,55:411-23.
    [74]Kuang J S, Chau C K(1999). Dynamic behaviour of stiffened coupled shear walls with flexible bases[J]. Computers and Structures,73:327-339.
    [75]Tong Gengshu, Shi Zuyuan(2001). Buckling of weakly braced frame[J]. Advances in Structural Engineering,4(4):211-215.
    [76]Tong G S, Ji Y(2007). Buckling of frames braced by flexural type bracing[J]. Journal of the Constructional Steel Research,63(2):135-145.
    [77]Tong Genshu, Pi Yong-Lin(2008). Buckling and second-order effects in dual shear-flexural systems[J]. Journal of Structural Engineering,134(11):1726-1732.
    [78]Aristizabal Ochoa J. D.(1994), K-factor for Columns in Any Type of Construction:Nonparadoxical Approach, Journal of Structural Engineering, ASCE,120(4):1272-1290.
    [79]Bryan Stafford Smith, Irawan Salim(1981). Parameter Study Of Outrigger-Braced Tall Building Structures[J]. Journal of the Structural Division,107(10):2001-2014.
    [80]J.C.D.Hoenderkamp, M.C.M.Bakker(2003). Analysis Of High-Rise Braced Frames With Outriggers[J].Struct. Design Tall Spec. Build.,12:335-350
    [81]Aristizabal-Ochoa J. D.(1997), Story Stability of Braced, Partially Braced and Unbraced Frames: Classical Approach, Journal of Structural Engineering, ASCE,123(6)
    [82]J.C.D.Hoenderkamp, M.C.M.Bakker(2003). Shear Wall Wit Outrigger Trusses On Wall And Column Foundations[J].Struct. Design Tall Spec. Build.,13:73-87.
    [83]J.C.D.Hoenderkamp, H.H.Snijder(2000), Simplified Analysis of Facade Rigger Braced High-Rise Structures, The Structural Design of Tall Buildings,9,309-319.
    [84]Thirty Floors Hang from Core Branches. Engineering. News-Record,1968, (14):34.
    [85]White D. W., Hajjar J.F(1997). Design of Steel Frames without consideration of effective length [J]. Engineering Structures,19(10):797-810.
    [86]White D.W., Hajjar J.F(1997). Buckling models and stability design of steel frames:a unified approach[J]. Journal of Constructional Steel Research,42(3):171-208.
    [87]White D.W., Hajjar J.F(1997). Accuracy and simplicity of alternative procedures for stability design of steel frames [J]. Journal of Constructional Steel Research,42(3):209-261.
    [88]White D.W, Clarke M.J(1997a). Design of beam-columns in steel frames, Ⅰ:Philosophies and procedures [J]. Journal of Structural Engineering, ASCE,123 (12):1556-1564.
    [89]White D.W, Clarke M.J(1997b). Design of beam-columns in steel frames, Ⅱ:Comparison of standards [J]. Journal of Structural Engineering, ASCE,123(12):1565-1575
    [90]Yura, J A(1971). The effective length of columns in unbraced frames[J]. Engineering Journal, AISC,8(2):37-42
    [91]Yura, J A(1972). Discussion of the effective length of columns in unbraced frames[J]. Engineering Journal, AISC,9(1):40-48.
    [92]Andrea E. Surovek-Maleck, Donald W. White, A.M(1997). Alternative Approaches for Elastic Analysis and Design of Steel Frames. Ⅰ:Overview[J]. Journal of Structural Engineering, ASCE, 130(8):1186-1196
    [93]J. Dario Aristizabal-Ochoa(2004). Elastic stability of beam-columns with flexural connections Under various conservative end axial forces. Journal of structural engineering[J]. ASCE,123(9): 1194-1200
    [94]J. Dario Aristizabal-Ochoa(1994a). Slenderness K factor for leaning columns[J]. Journal of structural engineering, ASCE,120(10):2977-2991
    [95]J. Dario Aristizabal-Ochoa(2001). Stability and second-order analyses of frames with semi-rigid connections under distributed axial loads[J]. Journal of structural engineering, ASCE,127(11): 1306-1315.
    [96]J. Dario Aristizabal-Ochoa(1994b). Stability of columns under uniform axial load with semirigid connections [J]. Journal of structural engineering, ASCE,120(11):3212-3222.
    [97]J. Dario Aristizabal-Ochoa(2005). Static Stability of Beam-Columns under Combined Conservative and nonconservative End Forces:Effects of Semirigid Connections [J]. Journal of structural engineering, ASCE,131(5):473-484.
    [98]J.M. Cabrero, E. Bayo(2001). Lateral stability of coupled simply supported beams [J]. Journal of Constructional Steel Research.57:517-523.
    [99]J. Dario Aristizabal-Ochoa(1997). Story stability of braced, partially braced, and unbraced frames: classical approach [J]. Journal of structural engineering, ASCE,123(6):799-807.
    [100]J. Dario Aristizabal-Ochoa(2007). Tension and compression stability and second-order analyses of three-dimensional multicolumn systems:effects of shear deformations [J]. Journal of structural engineering, ASCE,133(1):106-116.
    [101]J. Dario Aristizabal-Ochoa(2004). Timoshenko beam-column with generalized end conditions and non-classical modes of vibration of shear beams [J]. Journal of structural engineering, ASCE, 130(10):1151-1159
    [102]Mauricio Areiza-Hurtado, Carlos Vega-Posada, J. Dario Aristizabal-Ochoa(2005). Second-order stiffness matrix and loading vector of a beam-column with semirigid connections on an elastic Foundation [J]. Journal of structural engineering, ASCE,131(7):752-762.
    [103]L.Xu, X.H.Wang(2007). Stability of multi-storey unbraced steel frames subjected to variable loading [J]. Journal of constructional steel research,63:1506-1514.
    [104]L.Xu, X.H.Wang(2008). Storey-based column effective length factors with accounting for initial geometric imperfections [J]. Engineering Structures,30:3434-3444.
    [105]L.Xu, Y. Liu(2002a). Story stability of semi-braced steel frames [J]. Journal of Constructional Steel Research,58:467-491.
    [106]Lei Xu(2002b). The buckling loads of unbraced PR frames under non-proportional loading [J]. Journal of constructional steel research,58:443-465.
    [107]J.M. Cabrero, E. Bayo(2005). Development of practical design methods for steel structures with semi-rigid connections [J]. Engineering Structures,27:1125-1137.
    [108]Pa'l Tomka(2005). Development of practical design methods for steel structures with semi-rigid connections [J]. Engineering Structures,27:1125-1137.
    [109]J.C.D.Hoenderkamp(2002). Critical Loads of Lateral Load Resisting Structures for Tall Buildings[J]. The Structural Design of Tall Buildings,11,221-232.
    [110]J.C.D.Hoenderkamp, H.H.Snijder(2003). Preliminary Analysis of High-Rise Braced Frames with Facade Riggers[J]. Journal of Structural Engineering,129(5):640-647.
    [111]Areiza-Hurtado M., Vega-Posada C., Aristizabal-Ochoa J.D.(2005). Second-Order Stiffness Matrix and Loading Vector of a Beam-Column with Semirigid Connections on an Elastic Foundation [J]. Journal of Engineering Mechanics,131(7):752-762.
    [112]Coull A, Puri R D(1967). Analysis of coupled shear walls of variable thickness[J]. Build. Sci,2: 181-188.
    [113]Coull A, Puri R D(1968). Analysis of coupled shear walls of variable cross-section [J]. Build. Sci, 2:313-320.
    [1]童根树(2005).钢结构的平面内稳定[M].北京:中国建筑工业出版社.
    [2]翁赞(2009).考虑剪切变形影响的框架及巨型框架稳定理论[D].杭州:浙江大学.
    [3]Bryan Stafford Smith, Alex Coull(1991). Tall Building Structures:Analysis And Design[M]. New York:John Wiley & Sons, INC.
    [4]Bryan Stafford Smith, Irawan Salim(1981). Parameter Study Of Outrigger-Braced Tall Building Structures[J]. Journal of the Structural Division,107(10):2001-2014.
    [5]J.C.D.Hoenderkamp, M.C.M.Bakker(2003). Analysis Of High-Rise Braced Frames With Outriggers[J]. Struct. Design Tall Spec. Build.,12:335-350.
    [6]J.C.D.Hoenderkamp, M.C.M.Bakker(2003). Shear Wall Wit Outrigger Trusses On Wall AndColumnFoundations[J].Struct. Design Tall Spec. Build.,13:73-87.
    [7]J.C.D.Hoenderkamp, H.H.Snijder(2009). Simplified Analysis of Facade Rigger Braced High-Rise Structures[J]. The Structural Design of Tall Buildings,9:309-319.
    [8]J.C.D.Hoenderkamp(2002). Critical Loads of Lateral Load Resisting Structures for Tall Buildings[J]. The Structural Design of Tall Buildings,11:221-232.
    [9]J.C.D.Hoenderkamp, H.H.Snijder(2003). Preliminary Analysis of High-Rise Braced Frames with Facade Riggers[J]. Journal of Structural Engineering,129(5):640-647.
    [10]张杰(2007).加强层对高层框—筒结构力学行为的影响研究[D].武汉:华中科技大学.
    [11]苏志彬(2006).大连国贸大厦中设置加强层问题的研究[D].大连:大连理工大学.
    [12]黄怡,王元清,陈宏,温四清(2005).水平加强层对超高层钢框架—支撑结构的影响[J].重庆建筑大学学报.27(3):49-56.
    [13]曹志毅(2006).顶部带伸臂的框架—筒体结构的弹性稳定分析[D].杭州:浙江大学.
    [14]翁赞,童根树(2008).顶部带伸臂的框架核心筒结构的稳定性和位移、弯矩放大系数[J].工程力学,25(3):132-138.
    [15]Stephen P. Timoshenko, James M. Gere(1961). Theory of Elastic Stability, second edition[M]. New York:McGraw Hill Book Company, INC.
    [16]陈骥(2001).钢结构稳定理论与设计[M].北京:科学出版社.
    [1]Stafford S B, Coull A(1991). Tall building structures:analysis and design[M].New York, John Wiley & Sons.
    [2]Coull A, Puri R D(1967). Analysis of coupled shear walls of variable thickness[J]. Build. Sci., 2:181-188.
    [3]Coull A, Puri R D(1968). Analysis of coupled shear walls of variable cross-section[J]. Build. Sci., 2:313-320.
    [4]Rosman R(1973). Dynamics and stability of shear wall building structures[J]. Proc. Instn Civil Engrs,55:411-23.
    [5]Kuang J S, Chau C K(1999). Dynamic behaviour of stiffened coupled shear walls with flexible bases[J]. Computers and Structures,73:327-339.
    [6]Domenico Capuani, Maurizio Merli, Marco Savoia(1994). An equivalent continuum approach for coupled shear walls[J]. Engng Struct.,16:63-73.
    [7]O.Aksogan, M.Bikce, E Emsen, H.M.Arslan(2007). A simplified dynamic analysis of multi-bay stiffened coupled shear walls[J]. Advances in Engineering Software,38:552-560.
    [8]W. K. TSO, J. K. BISWAS(1972). An Approximate Seismic Analysis of Coupled Shear Walls[J]. Build. Sci.,7:249-256.
    [9]I. A. S. Elkholy, H. Robinson(1973). Analysis of Multi-Bay Coupled Shear Walls[J]. Build. Sci., 8:153-157.
    [10]R.Resatoglu, O.Aksogan, E.Emsen(2010). Static analysis of laterally arbitrarily loaded non-planar non-symmetrical coupled shear walls[J]. Thin-Walled Structures,48:696-708.
    [11]梁启智(1980).空间联肢剪力墙结构抗侧力分析[J].华南工学院学报,8(4):27-39.
    [12]梁启智(1979).联肢剪力墙在水平荷载下的分析[J].华南工学院学报,7(4):2-19.
    [13]沈世钊(1982).联肢墙和墙一框架复合体系的侧移系数[J].哈尔滨建筑工程学院学报,4:12-28.
    [14]王社良,陈平,沈亚鹏(1996).钢筋混凝土双肢剪力墙的抗震性能[J].西安建筑科技大学学报,28(4):398-401
    [15]陈云涛,吕西林(2003).联肢剪力墙抗震性能研究—试验和理论分析[J].建筑结构学报,24(4):25-34.
    [16]王寿康,张毛心(1996).厚度有突变的联肢剪力墙的整体稳定[J].建筑结构学报,17(1):40-45.
    [17]陈波(2003).高层多肢剪力墙结构的整体稳定[J].土木工程学报,36(8):43-47.
    [18]Tong Gengshu, Shi Zuyuan(2001). Buckling of weakly braced frame[J]. Advances in Structural Engineering,4(4):211-215.
    [19]Tong G S, Ji Y(2007). Buckling of frames braced by flexural type bracing[J]. Journal of the Constructional Steel Research,63(2):135-145.
    [20]Tong Genshu, Pi Yong-Lin(2008). Buckling and second-order effects in dual shear-flexural systems[J]. Journal of Structural Engineering,134(11):1726-1732.
    [21]童根树,胡进秀(2007).弯曲型支撑-框架结构的屈曲及位移和弯矩放大系数[J].建筑钢结构进展,9(1):52-56.
    [22]Rosman R(1974). Stability and dynamics of shear-wall frame structures[J]. Build. Sci.,9:55-63.
    [23]童根树(2005).钢结构的平面内稳定[M].北京:中国建筑工业出版社.
    [24]童根树,高宇(2008).两个弯剪型抗侧力体系的线性相互作用[J].建筑钢结构进展.10(5):28—34.
    [25]B.Stafford Smith, D. P. Abergel(1983). Approximate Analysis of High-rise Structures Comprising Coupled Walls and Shear Walls[J]. Building and Environment,18:91-96.
    [1]Stafford S B(1991), Coull A. Tall building structures:analysis and design[M].New York, John Wiley &Sons,.
    [2]童根树,苏健.联肢剪力墙的刚度、稳定性以及二阶效应[J].工程力学,2011,录用.
    [3]童根树(2005).钢结构的平面内稳定[M].北京:中国建筑工业出版社.
    [4]Ayigdor Rutenberg, Itai Leviathan(1988), Mosfae Decalo. Stability of shear-wall structures[J]. Journal of Structural Engineering,114(3):707-716.
    [5]A.Rutenberg(1979). An accurate approximate formula for the natural frequencies of sandwich beams[J].computer and structures,10:875-878.
    [6]Rosman R(1974). Stability and dynamics of shear-wall frame structures[J], Build. Sci.,9:55-63.
    [7]Jacek Wdowicki, Elz bieta Wdowicka(2012). Analysis of shear wall structures of variable cross section[J]. Struct. Design Tall Spec. Build,1:1-15.
    [8]Raham Pisanty, Eliahu E(1970). Traum. Simplified analysis of coupled shearwalls of Variable Cross-Section[J]. Build. Sci.5:11-20.
    [9]I. A. S. Elkholy, H. Robinson(1974). An inelastic analysis of coupled shearwalls[J]. Build. Sci.,9:1-8.
    [10]Rosman R(1973). Dynamics and stability of shear wall building structures[J]. Proc. Instn Civil Engrs,55:411-23.
    [11]Coull A, Puri R D(1967). Analysis of coupled shear walls of variable thickness[J]. Build. Sci, 2:181-188.
    [12]Coull A, Puri R D(1968). Analysis of coupled shear walls of variable cross-section [J]. Build. Sci, 2:313-320.
    [13]Kuang J S, Chau C K(1999). Dynamic behaviour of stiffened coupled shear walls with flexible bases[J]. Computers and Structures,73:327-339.
    [14]O.Aksogan, M.Bikce b, E.Emsen, H.M(2007). Arslan. A simplified dynamic analysis of multi-bay stiffened coupled shear walls[J]. Advances in engineering software,38:552-560.
    [15]K.K.Koo,Y.K.Cheung(1984). The Static Analysis of Multi-Bay Coupled Shear Walls[J]. Building and environment,19:93-99.
    [16]R.Resatoglu, O.Aksogan, E.Emsen(2010). Static analysis of laterally arbitrarily loaded non-planar non-symmetrical coupled shear walls[J]. Thin-Walled Structures,48:696-708
    [17]Gluck, Gellert(1971). On the stability of elastically supported cantilever with continuous lateral restraint. [J]. Int. J. of Mech. Sci.,13:887-891.
    [18]王寿康,张毛心(1996).厚度有突变的联肢剪力墙的整体稳定[J].建筑结构学报,17(1):40-45.
    [19]陈波(2003).高层多肢剪力墙结构的整体稳定[J].土木工程学报,36(8):43—47.
    [20]Tong Gengshu, Shi Zuyuan(2001). Buckling of weakly braced frame[J]. Advances in Structural Engineering,4(4):211-215.
    [21]Tong G S, Ji Y(2007). Buckling of frames braced by flexural type bracing[J]. Journal of the Constructional Steel Research,63(2):135-145.
    [22]Tong Genshu, Pi Yong-Lin(2008). Buckling and second-order effects in dual shear-flexural systems[J]. Journal of Structural Engineering,134(11):1726-1732.
    [23]B. Stafford Smith, D. P. Abergel(1983). Approximate Analysis of high-rise structures comprising coupled walls and shear walls[J]. Building and environment,18:91-96.
    [24]Stephen P. Timoshenko, James M. Gere(1961). Theory of Elastic Stability, second edition[M]. New York:McGraw Hill Book Company, INC.
    [1]周坚,邓思华(1998).巨型框架超高层建筑结构分析[C].第九届建筑工程计算机应用学术会议论文集,1998.
    [2]周坚,王媛媛,陈峥(2005).巨型框架结构简化分析再探[J].北京建筑工程学院学报,21(2):29—32
    [3]包世华,龚耀清(2002).超高层建筑空间巨型框架的简化分析[J].工程力学增刊.
    [4]龚耀清,包世华(2004).超高层建筑空间巨型框架的稳定计算[J].工程力学,21(6):36—40
    [5]龚耀清,包世华,龙驭球(2000).地基上高层建筑结构对确定性动力作用的稳态反应[J].工程力学,17(2):1-9
    [6]龚耀清,马伏龙(2007).弹性地基上空间巨型框架结构的简化振动分析[J].工程力学,24(3):8—12
    [7]龚耀清,甄静水(2008).超高层建筑空间巨型框架与其基础地基共同工作的简化分析新方法[J].工程力学,25(10):110-115
    [8]龚耀清,包世华(2008).超高层建筑空间巨型框架自由振动计算的新方法[J].工程力学,25(10):133-140
    [9]周晓峰(2001).巨型钢框架结构的静力、抗震和抗风分析[D].杭州:浙江大学.
    [10]赵西安,徐培福(1992).高层建筑结构的选型构造及简化计算[M].北京:中国建筑工业出版社.
    [11]龙驭球(1981).弹性地基梁的计算[M].北京:人民教育出版社.
    [12]刘大海,杨翠如(1996).高层建筑结构方案选优[M]北京:中国建筑工业出版社.
    [13]包世华(2001).新编高层建筑结构[M].北京:中国水利水电出版社.
    [14]包世华,方鄂华(1990).高层建筑结构设计(第二版)[M].北京:清华大学出版社.
    [15]童根树(2005).钢结构的平面内稳定[M].北京:中国建筑工业出版社.
    [16]陈骥(2001).钢结构稳定理论与设计[M].北京:科学出版社.
    [1]刘郁馨,吕志涛(1997).悬挂建筑框架结构弹性稳定性估算方法[J].工程力学,14(4):29-37.
    [2]邓志恒(2002).预应力巨型框筒悬挂阻尼控制结构体系若干问题研究[D].南宁:广西大学.
    [3]涂永明(2005).CFRP索悬挂建筑结构静力和动力分析及研究[D].南京:东南大学.
    [4]王学庆(2009).考虑土-结构动力相互作用的巨型框架隔震悬挂结构动力响应分析[D].辽宁:辽宁工程技术大学.
    [5]周坚,伍孝波,刘娜(2003).高层建筑悬挂结构体系动力分析[J].北京建筑工程学院学报,11(4):1-8.
    [6]王肇民,邓洪洲,董军(1999).高层巨型框架悬挂结构体系抗震性能研究[J].建筑结构学报,20(1):23—30.
    [7]杨允表(1998).核心单筒式悬挂结构中四面开洞核心筒体的屈曲荷载与振动频率[J],工业建筑,28(4):20-23
    [8]王春林,吕志涛(2007).核筒悬挂结构的动力特性及参数优化[J].东南大学学报,37(2):181-185.
    [9]曹万林,卢智成,张建伟,常卫华,赵长军(2007).核心筒部分悬挂结构振动台试验及分析[J].土木工程学报,40(3):4044.
    [10]吴景祥(1981).高层建筑设计[M].北京:中国建筑工业出版社,200-201.
    [11]余影(1980).慕尼黑BMW公司办公楼联邦德国[J],世界建筑,1:32—35.
    [12]王春林(2009).高层建筑悬挂结构减震理论及其试验研究[D].南京:东南大学.
    [13]张耀华(1999).巨型框架悬挂体系动力学及结构控制[D].广州:华南理工大学.
    [14]童根树(2005).钢结构的平面内稳定[M].北京:中国建筑工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700