用户名: 密码: 验证码:
弦支叉筒网壳结构的理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叉筒网壳结构是由若干组柱面网壳相贯而成的具有独特建筑造型的结构体系。传统的叉筒网壳结构变形和应力较为集中,对支座的水平推力较大,这些问题极大地限制了其工程应用。为了改善叉筒网壳结构的受力性能,发挥叉筒网壳结构体系的造型特点,本文首次提出了弦支叉筒网壳结构体系的概念,从理论和试验两个方面对这种新型结构体系进行了系统研究,并结合新兴的向量式有限元法进行了弦支叉筒网壳结构断索失效全过程分析。
     第一章回顾了空间结构的发展历史、分类及其在国内的应用和发展,总结了弦支穹顶结构的研究现状,概括了结构分析的主要方法及其发展历史,介绍了本文的研究背景,明确了本文的研究内容。
     第二章归纳和总结了弦支叉筒网壳结构体系的结构形式,根据网格划分、叉筒形体、网壳层数、平面形状和布索形式提出了五种不同的分类方法,并进一步讨论了叉筒网壳施加预应力的布索方式。提出预应力叉筒网壳结构作为空间结构单元进行组合扩展,建成大面积屋盖结构的构思和设想,尤其适用于现代火车站的大跨度无站台柱雨棚结构和多波多跨连续的工业厂房。
     第三章以十二边形谷线式和脊线式弦支叉筒网壳为例,利用传统有限元软件ANSYS进行了结构静动力性能分析;并对谷线式弦支叉筒网壳的预应力水平、杆件截面、竖杆长度、矢跨比和倾角等主要参数进行了分析;比较了谷线式、脊线式弦支叉筒网壳和弦支穹顶等三种弦支网壳结构的静力性能。
     第四章分别对谷线式和脊线式弦支叉筒网壳结构进行了稳定性能分析;并对谷线式弦支叉筒网壳的预应力水平、杆件截面、竖杆长度、矢跨比、倾角等主要参数进行了分析;讨论了材料非线性、缺陷分布及大小对弦支叉筒网壳稳定性能的影响;比较了谷线式、脊线式弦支叉筒网壳及弦支穹顶等三种弦支网壳结构的稳定性能。
     第五章介绍了向量式有限元法的基本原理及其计算流程,给出了杆单元的内力计算公式,并通过瞬铰的数值算例验证其准确性;推导了预应力作为初始内力直接参与计算的预应力两点直线索单元及两点抛物线索单元的内力计算公式,通过数值算例验证了其正确性;论文将向量式有限元法推广应用于同时含有索、杆、梁单元的复杂空间结构的计算中,通过基于MATLAB的自编向量式有限元程序分析了谷线式弦支叉筒网壳结构的静力性能,并与ANSYS结果进行对比,验证了向量式有限元法在弦支叉筒网壳结构分析中的有效性。
     第六章介绍了向量式有限元弹塑性材料模型及断裂模态的建立,并通过具体的数值算例验证了其可行性;利用向量式有限元在大变形、大位移等几何非线性分析中的优势,本文将其引入到弦支叉筒网壳的断索分析中得到了一些有用的结论。
     第七章为了验证理论分析的正确性并进一步了解弦支叉筒网壳结构的静力性能,本文设计并制作了一个八边形谷线式弦支叉筒网壳结构模型,针对该模型进行了施工张拉模拟,全跨、半跨静力加载试验及断索(杆)试验,并对试验实测数据与理论分析结果进行了比较和分析。
     第八章对本文研究内容进行了总结,并指出弦支叉筒网壳及向量式有限元法今后的研究方向。
The Latticed Intersected Cylindrical Shell(LICS) is made by some groups of cylindrical shell through intersection, which has unique architectural modeling. Some deficiencies may restrict its engineering application, such as the concentration of distortion and stress, the huge reaction of bearing. This thesis puts forward the concept of Suspended LICS(SLICS) to improve the mechanics properties of LICS, and carries out the theoretical and experimental research. At last, the cable rupture of SLICS is analyzed by the Vector Intrinsic Finite Element method which is a new approach to structural analysis.
     The first chapter reviews the development, classification of spatial structure, as well as its application and development in China. The theory status of suspendome is summarized systematically. Furthermore the means of structural analysis and their history are generalized. The background and main contents of the thesis are introduced.
     Chapter2summarizes the new SLICS structure, and gives five ways to classify. The methods to introduce prestress are studied. It proposes the composition and expansion of prestressed LICS which is regarded as the basic component. By this way. the structure can cover greater area, and adapt to railway station canopy or industrial building that is multi-wave and multi-span.
     In chapter3, the static and dynamic properties of dodecagon valley style and ridge style SLICS are studied by ANSYS respectively. Besides, the effects of prestress level, shell member section, length of bar, rise-span ratio, and obliquity on static behaviors of SLICS are studied. The static properties of valley style SLICS, ridge style SLICS and suspendome are compared.
     Chapter4conducts the nonlinear buckling analysis of the two style SLICS, as well as the parameter study including prestress level, shell member section, length of bar, rise-span ratio, obliquity. The effects of material nonlinearity and initial imperfection on the stability are studied also. At last, the stability properties of valley style SLICS, ridge style SLICS and suspendome are compared.
     In chapter5, fundamentals and solution procedures of the Vector Form Intrinsic Finite Element(VFIFE) method is summarized systematically. The formulas of rod element are introduced afterwards. Example of instantaneous hinge is given to prove the efficiency. The tensioned linear cable element and parabolic cable element are proposed and verified. The VFIFE is introduced to the analysis of complicated spatial structure with cable, bar and beam. The static behavior of valley style SLICS is studied by MATLAB program based on the VFIFE. And the results are compared with the ANSYS to prove the efficiency.
     Chapter6introduces the foundation of elastoplastic material model and fracture mode. It is proved to be feasible through a specific numerical example. Because of the advantage of the VFIFE in nonlinear analysis just like large deformation and large displacement analysis, it is useful to cable rupture analysis. And some valuable conclusions are obtained at last.
     In chapter7a SLICS model is designed for the validation of the mechanical behavior of the new structure. Experiments on prestress tensioning, loading in full-span and half-span, cable rupture are carried out. The results of theoretical and experimental research are compared.
     The last chapter gives the summary and some future research topics.
引文
[1]董石麟.中国空间结构的发展与展望[J].建筑结构学报,2010,31(6):38-51.
    [2]董石麟,罗尧治,赵阳.新型空间结构分析,设计与施工[M].北京:人民交通出版社,2009.
    [3]董石麟,邢栋,赵阳.现代大跨空间结构在中国应用与发展[J].空间结构,2012,18(1):3-16.
    [4]R.B.Fuller. Tesile-Integrity Structure, US. Patent, No.3063521,1962.
    [5]Geiger D H. Room Structure, US. Patent, No.4736553,1988.
    [6]M.P.Levy. The Georgia Dome and Beyond Achieving Light Weigh-Long Span Structures[A]. Proceedings of international Association of Space Structures-American Society of Civil Engineering[C],1994:560-562.
    [7]GEIGER D H. The design and construction of two cable domes for the Korean Olympics[A]. Shells, Membranes and Space Frames, Proceedings IASS Symposium[C],1986:265-272.
    [8]詹伟东.葵花型索穹顶结构的理论分析和试验研究[D].杭州:浙江大学,2004.
    [9]包红泽.鸟巢型索穹顶结构的理论分析与试验研究.杭州:浙江大学,2007.
    [10]周家伟.具有外环桁架的索穹顶结构的理论分析与试验研究[D].杭州:浙江大学,2009.
    [11]郑君华.矩形平面索穹顶结构的理论分析与试验研究[D].杭州:浙江大学,2006.
    [12]王振华.索穹顶与单层网壳组合的新型空间结构理论分析与试验研究[D].杭州:浙江大学,2009.
    [13]M. saitoh. Role of string-aesthetics and technology of the beam string structures[A]. Proceeding of the LSA98 Conference'Light structures in Architecture Engineering and Construction'[C],1998,692-701.
    [14]汪大绥.上海浦东国际机场(一期工程)航站楼钢结构研究与设计[J].建筑结构学报.1999,20(2): 2-8.
    [15]陈荣毅,董石麟.广州国际会议展览中心展览大厅钢屋盖设计,空间结构,2002,8(3):29-34.
    [16]Mamoru Kawaguchi, Masaru Abe, Tatsuo Hatato, et al. ON A STRUCTURAL SYSTEM "SUSPEN-DOME" SYSTEM, Proc. of IASS Symposium Istanbul,1993:523-530.
    [17]范立础,杨澄宇.空间结构在桥梁工程中的应用[J].空间结构,2009,15(3):44-51.
    [18]傅学怡.空间结构理念在高层建筑中的应用与发展[J].空间结构,2009,15(3):85-96.
    [19]郑健.空间结构在大型铁路客站中的应用[J].空间结构,2009,15(3):52-65.
    [20]董石麟,赵阳.论空间结构的形式和分类[J].土木工程学报,2004,37(1):7-12.
    [21]董石麟.空间结构的发展历史、创新、形式分类与实践应用[J].空间结构,2009,15(3):22-43.
    [22]陈荣毅.2010年广州亚运会新建场馆综述[J].空间结构,2012,18(1):25-35.
    [23]范重,刘先明,范学伟,等.国家体育场大跨度钢结构设计与研究[J].建筑结构学报,2007,28(2): 1-16.
    [24]傅学怡,顾磊,赵阳.国家游泳中心水立方结构设计[M].北京:中国建筑工业出版社,2009.
    [25]覃阳,许硕,曾丽荣,等.国家体育馆复杂空间结构设计[A].第十一届高层建筑抗震技术交流会[C],2007.
    [26]汪大绥,方卫,张伟育,等.世博轴阳光谷钢结构设计与研究[J].建筑结构学报,2010,31(5):20-26.
    [27]刘琼祥,张建军,郭满良,等.深圳大运中心主体育场钢屋盖结构设计[J].施工技术,2010,39(8):58-60.
    [28]朱忠义,柯长华,束伟农,等.首都机场T3航站楼钢结构设计介绍[A],第十一届空间结构学术会议论文集[C],南京,2005.
    [29]张志宏,傅学怡,董石麟.济南奥体中心体育馆弦支穹顶结构设计[J],空间结构,2008,14(4):8-13.
    [30]董石麟,庞礴,袁行飞.一种矩形平面弦支柱面网壳的形体及受力特性研究[J].空间结构,2011,17(3):3-7.
    [31]陈志华,秦亚丽,史杰.弦支穹顶结构体系的分类及结构特性分析[J].建筑结构,2006,36(增刊):81-84.
    [32]陈志华,李阳,康文江.联方型弦支穹顶研究[J].土木工程学报,2005,38(5):34-40.
    [33]崔晓强,郭彦林Kiewitt型弦支穹顶结构的弹性极限承载力研究[J].建筑结构学报,2003,24(1):74-79.
    [34]姚姝,范峰.K6型弦支穹顶结构的静力性能分析[J].建筑结构,2008,38(2):43-46.
    [35]张明山.弦支穹顶结构的理论研究[D].杭州:浙江大学,2004.
    [36]郭佳民.弦支穹顶结构的理论分析与试验研究[D].杭州:浙江大学,2008.
    [37]KAWAGUCHI M., ABE M. HATATO T.,et al. Design, Tests and Realization of suspen-dome' system[A]. J. IASS[C],1999,40(131):179-192
    [38]KAWAGUCHI M., ABE M. TATEMICHI I., et al. Structural Tests on the 'suspen-dome' System[A]. IASS-ASCE symposium[C],1994:383-392.
    [39]陈志华,刘红波,王小盾,等.弦支穹顶结构研究综述[J].建筑结构学报,2010年,增刊1:210-215.
    [40]陈志华.弦支穹顶结构体系及其结构特性分析[J].建筑结构,2004,34(5):38-41.
    [41]郭佳民,董石麟,袁行飞,等.布索方式对弦支穹顶结构稳定性能的影响研究[J].土木工程学报,2010,43,增刊,9-14.
    [42]张国发.弦支穹顶结构施工控制理论分析与试验研究[D].杭州:浙江大学,2009.
    [43]陈志华,冯振昌,秦亚丽,等.弦支穹顶静力性能的理论分析及实物加载试验[J].天津大 学学报,2006,39(8):944-950.
    [44]陈志华,张立平,李阳,等.弦支穹顶结构实物动力特性研究[J].工程力学,2007,3(24):131-137.
    [45]张爱玲,刘学春,王冬梅,等.2008奥运会羽毛球馆新型弦支穹顶结构模型静力试验研究[J].建筑结构学报,2007,28(6):58-67.
    [46]叶垚.大跨度弦支穹顶结构施工关键技术与模型试验研究[D].哈尔滨:哈尔滨工业大学,2010.
    [47]王永泉.大跨度弦支穹顶结构施工关键技术与试验研究[D].南京:东南大学,2009.
    [48]ZIENKIEWICZ O.C., TAYLOR R. L.. The finite element method (Fourth edition), McGraw-Hill, New York,1987.
    [49]CRISFLELDS M. A. An arc-length method including line searches and accelerations[J]. International Journal of Numerical Methods in Engineering,1983,19: 1269-1289.
    [50]COURANT R. Variational method for solutions of problems of equilibrium and vibrations. Bull. Am. Math. Soc.,1943,49:1-23
    [51]TURNER M. J., CLOUGH R. W., MARTIN H. C., et al. Stiffness and deflection analysis of complex structures. J. Aero. Sci.,1956,23:805-823.
    [52JCLOUGH R. W. The Finite Element Method in plane stress analysis[A]. Proceedings of 2nd ASCE Conference on Electronic Computation. Pittsburgh, PA.[C],1960, Sept.345-378.
    [53]ODEN J. T.. Finite element of non-linear Continua[M]. New York:McGraw-Hill,1972.
    [54]COOK R. D.. Concepts and applications of finite element analysis[M]. Wiley,1974.
    [55]BATHE K. J., WILSON E. L.. Numerical methods in finite element analysis. Partice-Hall. 1976.
    [56]HUEBUER K.H., The finite element method for engineers[M]. Wiley,1975.
    [57]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988.
    [58]李元齐,沈祖炎.弧长控制类方法使用中的若干问题的探讨与改进[J].计算力学学报,1998,15(4)
    [59]BELLINI P.X., CHULYA A.. An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations[J]. Computers & Structures,1987,26(1/2)
    [60]丁承先,王仲宇.向量式固体力学[R],台湾:中央大学土木工程学系,2008
    [61]丁承先,王仲宇,吴东岳,等.运动解析与向量式有限元[R],台湾:中央大学工学院桥梁工程研究中心,2007
    [62]DING Cheng-xian, WANG Zhong-yu, WU Dong-yue, et al. Motion analysis and vector form intrinsic finite element[R]. Taiwan:Bridge Engineering Research Center of Central University, 2007.
    [63]TING E. C., SHIH C., WANG Y. K.. Fundamentals of a vector form intrinsic finite element: Part Ⅰ. Basic procedure and a plane frame element [J]. Journal of Mechanics,2004,20(2): 113-122.
    [64]TING E. C., SHIH C., WANG Y. K. Fundamentals of a vector form intrinsic finite element: part Ⅱ. plane solid elements. Journal of Mechanics,2004,20(2),123-132.
    [65]SHIH C., WANG Y. K., TING E. C. Fundamentals of a vector form intrinsic finite element: part Ⅲ. Convected material frame and examples. Journal of Mechanics,2004,20(2),133-143.
    [66]WU T. Y., TING E. C. Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element[J]. Thin-walled Structures,2008(46):261-275.
    [67]WANG R.Z., CHUANG C.C., WU T.Y., et al. Vector form analysis of space truss structure in large elastic-plastic deformation. Journal of the Chinese Institute of Civil Hydraulic Engineering 17(4),633-646(2005)
    [68]喻莹.基于有限质点法的空间钢结构连续倒塌破坏研究[D].杭州:浙江大学,2010.
    [69]向新岸.张拉索膜结构的理论研究及其在上海世博轴中的应用[D].杭州:浙江大学,2010.
    [70]顾磊.叉筒网壳的结构形式、受力特性及预应力技术应用的研究[D].杭州:浙江大学,2000.
    [71]顾磊,董石麟.叉筒网壳的建筑造型、结构形式与支承方式[J].空间结构,1999,5(3):3-11.
    [72]顾磊,董石麟.单层叉筒网壳结构的网格形式与受力特性[J].空间结构,2006,12(1):24-31.
    [73]陈联盟,赵阳,董石麟.单层脊线式叉筒网壳结构性能研究[J].浙江大学学报(工学版),2004,38(8):97]-977.
    [74]贺拥军,周绪红,董石麟.单层叉筒网壳静力与稳定性研究[J].湖南大学学报(自然科学版),2004,,31(4):45-50.
    [75]贺拥军,周绪红,董石麟.叉筒网壳子结构圆柱面交叉立体桁架系巨型网格结构的稳定性研兖[J].建筑结构学报,2003,24(2):54-63.
    [76]赵淑丽,孙建恒,孙超.点支承两向叉简单层网壳结构非线性动力稳定分析[J].空间结构,2006,13(2):11-16.
    [77]林郁.拱支叉筒网壳稳定性分析与风压数值模拟[D].杭州:浙江大学,2004.
    [78]林郁,卓新.开敞式叉筒网壳风场数值模拟与受力分析[J].浙江大学学报(工学版)2004,38(9):1170-1174.
    [79]吴卫中.复杂体型的大跨度单层叉筒网壳风振分析[D].上海:上海交通大学,2006.
    [80]吴卫中,周岱,赵尧军,等.复杂形体大跨叉筒网壳结构的风场风载模拟[J].振动与冲击,2007.26(10):45-50.
    [81]阚远,叶继红.索穹顶结构在静力荷载作用下的失效分析[J].特种结构,2007,24(3):85-88
    [82]陈联盟,董石麟,袁行飞.Kiewitt型索穹顶结构拉索退出工作机理分析[J].空间结构,2010,16(4).
    [83]郑君华,袁行飞,董石麟.两种体系索穹顶结构的破坏形式及其受力性能研究[J].工程力学,2007,24(1):44-50.
    [84]PEARSON C., DELATTE N.. Ronan point apartment tower collapse and its effect on building codes [J]. Journal of Performance of Constructed Facilities ASCE,2005,19(2): 172-177.
    [85]BREEN J. E.. Research workshop on progressive collapse of building structures:Summary report [R]. Department of Housing and Urban Development,1976.
    [86]VAN LAETHAM M.. Stability of a double-layer-grid space structure [C]. Proc 2nd Int Conf on Space Structure Guildford U.K.:Billing and Sons,1975,745-754.
    [87]COLLINS I. M.. An investigation into the collapse behaviour of double-layer grids [C]. Proceedings of 3rd International Conference on Space Structure, London:Elsevier Applied Science,1984,400-405.
    [88]庞礴.弦支柱面网壳的理论分析与试验研究[D].杭州:浙江大学,2010.PANG Bo. Theoretical and experimental research on the suspended cylindrical lattice shell[D]. Hangzhou:Zhejiang University,2010.
    [89]刘学春.预应力弦支穹顶结构稳定性分析及优化设计[D].北京:北京工业大学,2006.
    [90]王伯惠.斜拉桥结构发展和中国经验[M].北京:交通出版社.2004.
    [91]杨俊,盛君.一种确定斜拉桥合理成桥索力的综合方法探讨[J].交通与计算机.2007,25(3):101-105.
    [92]R.克拉夫,J.彭津.结构动力学,第二版(修订版)[M].北京:高等教育出版社,2006.
    [93]RIKS E.. An incremental approach to the solution of snapping and buckling problems[J]. International Journal of Solid Structures,1979,15:529-551.
    [94]陈昕,沈世钊.单层穹顶网壳的荷载-位移全过程及缺陷分析[J].建筑结构学报,1992(3):11-18.
    [95]沈世钊,陈听,林有军,等.单层球面网壳的稳定性.空间结构,1997(3):3-12.
    [96]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [97]关富玲,高博青,李黎.单层网壳的稳定性分析[J].工程力学,1996,13(3):93-104.
    [98]沈世钊,陈昕,张峰,等.单层柱面网壳的稳定性(上).空间结构,1998,4(2):17-28.
    [99]刘峰,李丽娟.空间网壳结构的稳定性分析[J].华南理工大学学报(自然科学版),2003,31(增刊):26-29.
    [100]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2003.
    [101]马军.板片空间结构体系的缺陷稳定分析研究[D].南京:东南大学,1999.
    [102]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [103]张峰,沈世钊,魏昕.初始缺陷对单层柱面网壳稳定性的影响[J].哈尔滨建筑大学学报,1997,30(6):36-42.
    [104]张爱林,张晓峰,葛家琪.2008奥运会羽毛球馆张弦网壳结构整体稳定分析中初始缺陷的 影响研究[J].空间结构,2006,12(4):8-12.
    [105]JGJ61-2003.网壳结构技术规程[S].北京:中国建筑工业出版社,2003.
    [106]王仁佐,吴俊霖,林柏州,等.地震作用下钢筋混凝土结构崩塌分析[A].第四届海峡两岸结构与岩土工程学术研讨会论文集[C],杭州,2007.
    [107]王仲宇,王仁佐,陈彦桦,等.移动荷载与质量作用下之平面刚架非线性动力分析[A].第四届海峡两岸结构与岩土工程学术研讨会论文集[C],杭州,2007.
    [108]WU Tung-Yueh, TSAI Wen-chang, LEE Jyh-jone. Dynamic elastic-plastic and large deflection analyses of frame structures using motion analysis of structures[J]. Thin-walled Structures,2009,47:1177-1190.
    [109]CHANG Po-yen, LEE Hsien-hua, TSENG Guo-wei. et al. VFIFE method applied for offshore template structures upgraded with damper system[J]. Journal of Marine Science and Technology,2010,18(4):473-483.
    [110]LIEN K. H., CHIOU Y. J., WANG R. Z., et al. Vector Form Intrinsic Finite Element analysis of nonlinear behavior of steel structures exposed to fire[J]. Engineering Structures.2010, 32:80-92.
    [111]FLEMING J. F., et al. Dynamic Behavior of a Cable-Stayed Bridge[J]. Earthquake Engineering and Structure Dynamics,1980,8:1-16.
    [112]KNUDSON W. C.. Static and dynamic analysis of cable net structures[D]. Doctoral disseration. University of California, Berkely, California,1971.
    [113]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-46.
    [114]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [115]任伟新,黄锰钢.一种两节点抛物线索单元及其试验验证[J].土木工程学报,2009,42(6):42-48.
    [116]张其林.预应力结构非线性分析的索单元理论[J].工程力学1993,10(4):93-101.
    [117]MICHALOS J, BIRNSTIEL C. Movement of a cable due to changes in loadings[J]. Journal of Structural Engineering, ASCE,1960,86(ST12):23-38.
    [118]TANG Jian-min, SHEN Zu-yan, QIAN Ruojun. A nonlinear finite element method with five-node curved element for analysis of cable structures[J]. Proceedings of IASS International Symposium,1995,2:929-935.
    [119]唐建民.索穹顶结构的理论研究[D].上海:同济大学,1997.
    [120]唐建民,沈祖炎,钱若军.索穹顶结构非线性分析的曲线索单元有限元法[J].同济大学学报,1996,24(1):6-10.
    [121]武建华,苏文章.四节点索单元的悬索结构非线性有限元分析[J].重庆建筑大学学报,2005,27(6):55-58.
    [122]聂建国,陈必磊,肖建春.悬链线索单元算法的改进[J].力学与实践,2003,25:28-32.
    [123]胡建华,王连华,赵跃宇.索结构几何非线性分析的悬链线索单元法[J].湖南大学学报(自然科学版),2007,34(11):29-32.
    [124]沈祖炎,汤荣伟,赵宪忠.基于悬链线元的索穹顶形状精确确定方法[J].同济大学学报,2006,34(1):1-6.
    [125]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68.
    [126]杨孟刚,陈政清.自锚式悬索桥施工过程模拟分析[J].湖南大学学报:自然科学版,2006,33(2):26-30.
    [127]毋英俊.连续折线索单元及其应用研究[D].天津:天津大学,2007.
    [128]LYNN K. M.,ISOBE D.. Structural collapse analysis of framed structures under impact loads using ASI-Gauss finite element method[J]. International Journal of Impact Engineering, 2007,34:1500-1516.
    [129]陈俊岭,马人乐,何敏娟.防止建筑物连续倒塌的措施.特种结构,2005,22(4):13-15
    [130]REDFIELD R. K., TOBIASSON W. N.. Colbeck S. C.. Estimated Snow, Ice, and Rain Load Prior to the Collapse of the Hartford Civic Center Arena Roof[R].1979.
    [131]SOARE V.M.. Investigation of the Collapse of Large Span Braced Dome, Analysis, Design and Construction of Braced Domes[R]. Guildford Courses organized by SSR Center,1979.
    [132]BEN K. N., MOUSSA B.. Effect of a cable rupture on tensegrity systems. International Journal of Space Structures,2002,17(1):51-65.
    [133]于刚,孙利民.断索导致的斜拉桥结构易损性分析[J].同济大学学报(自然科学版),2010,38(3):324-328.
    [134]于天来,王今朝.斜拉桥断索危险性分析[J].东北林业大学学报,2010,38(12):95-98.
    [135]郑君华,袁行飞,董石麟.两种体系索穹顶结构的破坏形式及其受力性能研究[J].工程力学,2007,24(1).
    [136]陈联盟,董石麟,袁行飞.Kiewitt型索穹顶结构拉索退出工作机理分析[J].空间结构,2010,16(4).
    [137]何健,袁行飞,金波.索穹顶结构局部断索分析[J].振动与冲击,2010,29(11):13-16.
    [138]张志宏,傅学怡,董石麟,等.济南奥体中心体育馆弦支穹顶结构设计[J].空间结构,2008,]4(4):8-13.
    [139]王化杰,范峰,钱宏亮,等.巨型网格弦支穹顶预应力施工模拟分析与断索研究.建筑结构学报(增刊1)
    [140]张志宏,傅学怡,董石麟,等.济南奥体中心体育馆弦支穹顶结构设计[J].空间结构,2008,14(4):8-13.
    [141]赵晓旭.弦支穹顶结构设计与施工中的若干问题研究[D].杭州:浙江大学,2008.
    [142]孙炳楠,洪滔,杨骊先.工程弹塑性力学[M].杭州:浙江大学出版社,1998.
    [143]LYNN K. M., ISOBE D.. Finite element code for impact collapse problems[J]. International Journal for Numerical Methods in Engineering,2007,69:2538-2563.
    [144]王柏生.结构试验与检测[M].杭州:浙江大学出版社,2007.
    [145]SANAYEI M, IMBARO G R. Structural model updating using experimental static measurements[J]. Journal of Structural Engineering, ASCE,1997,123(6):792-798.
    [146]邓苗毅,任伟新,王复明.基于静力响应面的结构有限元模型修正方法[J].实验力学,2008,23(2):103-109.
    [147]郭佳民,袁行飞,董石麟,等.基于实测数据的弦支穹顶计算模型修正[J].工程设计学报,2009,16(4):297-302.
    [148]陈俊岭.建筑结构二次防御能力评估方法研究[D].上海:同济大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700