用户名: 密码: 验证码:
软土地基桩基受力性状和沉降特性试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础是一种常见的基础型式,已被广泛应用于高层建筑、高速铁路、高速公路、桥梁、港口码头、大型构筑物等工程中。已有研究表明,钻孔灌注桩使用过程中存在着桩端沉渣、桩端持力层扰动、桩身质量、桩侧泥皮及钻孔应力松弛等而导致同一场地钻孔灌注桩承载力离散的问题。钻孔灌注桩的受力性状有待深入研究。本文通过现场试验和理论分析对软土地基竖向荷载作用下单桩和群桩的受力性状展开研究。本文主要工作及创新成果如下:
     1.对温州鹿城广场钻孔施工时穿越约40m巨厚卵石层的超长嵌岩桩的施工方法和软土地基大吨位静载试验方案的设计展开了研究,并对超长桩的荷载-沉降性状、桩身压缩规律、桩侧阻力和桩端阻力的发挥特性、桩端沉渣对端阻的影响等进行了深入研究。研究表明,在最大加载条件下,超长桩表现为端承摩擦桩性状。在使用荷载下,桩顶沉降的90%以上来自桩身压缩,在进行超长桩设计时,要充分考虑桩身质量对试桩沉降的影响。同时,桩底沉渣清除的干净与否,也直接影响超长桩的沉降。超长桩桩侧上部土层摩阻力具有不同程度的软化现象,而中下部土层侧摩阻力具有微弱的强化效应。
     2.利用破坏和非破坏试桩的现场对比试验揭示了试桩未加载至破坏和试桩破坏时受力性状的异同。研究发现,最大试验荷载下非破坏性试桩浅层土侧阻完全发挥并出现侧阻软化趋势,而破坏性试桩全桩长范围侧阻均表现为软化性状。非破坏性试桩实测得到的桩端位移-桩端力曲线表现为硬化特性,而试桩破坏性试验中实测得到的桩端位移-桩端力曲线表现为软化特性。
     3.通过现场试验研究了桩端下沉渣厚度不同以及桩端持力层不同时超长桩实测侧阻,阐述了桩端强度提高对侧阻的强化作用。研究发现,端阻和侧阻不是相互独立的,桩端土强度的提高对侧阻有强化作用,尤其是桩端附近的侧阻。桩端土成拱作用和桩端附近桩身压缩的侧胀作用引起的桩侧附近法向应力和桩端附近桩侧土黏聚力及桩-土界面摩擦角的增加是造成桩端土强度提高对侧阻强化作用的主要原因。
     4.通过采用桩土共同作用设计方法的某工程实测数据,分析了基础底板下不同位置处桩顶反力、基础底板中钢筋内力及桩、土荷载分担比等。现场实测结果表明,大楼竣工时桩顶反力超过单桩极限承载力的50%,这和传统设计方法是不同的。随建筑层数的增加,土分担荷载的比例逐渐减少,装修完成时土承担了上部荷载的20%。大楼结顶时基础底板内钢筋实测应力很小,远低于钢筋所能承受的最大抗压值或抗拉值。
     5.提出了三种单桩沉降简化计算方法。单桩沉降简化计算方法一中单桩桩顶沉降由桩端力引起的沉降,桩身压缩和桩侧阻力引起的沉降组成。单桩沉降简化计算方法二中采用双曲线模型模拟桩侧阻力与桩土相对位移间的关系,采用双折线模型模拟桩端位移与桩端阻力间的关系,运用迭代的方法得到了单桩受力性状。单桩沉降简化计算方法三采用侧阻软化荷载传递模型,同时假定桩端位移-荷载关系曲线符合双折线模型,运用二分法得到了单桩沉降。本文提出的单桩沉降简化计算方法可考虑地基土的成层性和非线性特性。
     6.在单桩沉降简化计算方法的基础上,提出了3种群桩沉降计算方法。第一种群桩沉降计算等代墩法的关键是获得合理的单桩沉降值,并选择恰当的群桩与单桩沉降关系系数值ω。笔者根据粉土和软土中单桩和群桩模型桩的试验结果反算得到单桩与群桩沉降关系系数ω值约为0.25~0.45。第二种群桩沉降计算方法在桩-桩之间的相互作用假定为弹性的基础上,考虑群桩中的“加筋和遮帘效应”对两桩相互作用系数的影响,并区分桩身位移和桩端位移的相互影响,得到了一种两桩相互作用系数的计算方法,并将其应用到群桩沉降简化计算方法中。第三种群桩沉降计算方法中利用双曲线模型模拟桩侧阻力和桩土相对位移间的关系以及桩端位移-荷载关系。考虑群桩中各基桩的相互作用,得到了群桩中基桩侧阻和端阻双曲线荷载传递函数中各参数的确定方法,并将荷载传递法扩展到群桩受力性状的分析中,提出了一种可快速估算群桩中任一基桩受力性状的简化算法。
     7.利用荷载传递法并结合剪切位移法分析了成层土中锚桩法静载试验时锚桩对试桩桩顶刚度的影响,并考虑了“加筋和遮帘效应”对试桩桩顶刚度的影响。算例分析表明,实际工程中需对锚桩法静载试验数据进行修正,否则会在一定程度上高估试桩的安全度,从而使得锚桩法静载试验中的试桩极限承载力偏于危险。
     8.假定桩与桩相互作用为弹性,利用荷载传递法并结合剪切位移法分析了层状土中不同桩间的相互作用,并考虑了“加筋和遮帘效应”对群桩受力性状的影响。参数分析结果表明,两桩相互作用系数随桩间距和非受荷桩与受荷桩桩长的比值以及短桩直径的增大而减小,随桩土弹性模量比的增大而增加。
Piles have been worldwidely used as the foundations of high-rise building, high-speed railway, highway, bridge, dock, harbor and other heavy-load structures. However, the construction effects especially thickness of residues at the pile base, disturbance of pile tip soil, mudcake around pile shaft, stress relaxation of borehole, and integrity of pile were primarily responsible for the discrepancy in pile capacity for a given soil profile. The responses of a single pile and pile groups need further study using field test and numerical analysis. The observations have provided some key findings summarized as below.
     1. The construction technology of the over100-meter-long rock-socketed bored piles crossing about40-meter-deep huge thick gravel layer and the test scheme for large tonnage static load test in Wenzhou Lucheng Square were presented. Static load tests were conducted on the piles instrumented with strain gauges to capture the pile load-settlement response, the behavior of pile shaft compression, the mobilization of skin friction and end resistance, and the influence of the residues at the pile base on the end resistance. The measured results show that the super-long pile works as end-bearing friction pile at the maximum loading level. Under the working load, the percentage of the settlement at the super-long pile head due to the compression of pile shaft is over90%. Therefore, for practical purposes, the influence of pile quality on the settlement of pile top must be taken into account. Moreover, the settlement of super-long piles is observed to be closely associated with the compressibility of the sediment at pile end. It also can be concluded that the shaft resistance of piles has slight weakened and enhanced effect in the upper and lower soils, respectively.
     2. The differences in the destructive and non-destructive pile responses were analyzed using a series of field tests. It is observed that at shallow depth the skin friction of the non-destructive pile decreases from the ultimate skin resistance with increasing load as the test pile is loaded to the maximum value, whereas for the destructive pile the shaft resistance along the pile depth approaches to the limiting state and decreases from a peak value with further increase of the pile head load. In addition, the load transmission curve of the soils around the pile base corresponds to a softening model in the field tests on the destructive pile, whereas the relationship between displacement and mobilized base load developed at the pile tip can be described using a hardening model.
     3. Based on static load tests of super-long piles in conditions of different thicknesses of residues and different soil strengths at the pile end, the enhancement effect of the soil strength at the pile tip on the shaft resistance was analyzed. The observations have provided some key findings that the skin friction and the base resistance are not respectively independent, and the total skin friction will be increased by improving the soil or rock strength at the pile base, especially for the skin friction near the pile end. It can be concluded that for the pile with a stiff soil layer at the pile base, the arching effect of the stiff bearing stratum, the enlarged pile shaft area near the pile tip, and the density of the compacted soil near the pile tip can be enhanced by improving the soil or rock strength at the pile tip. These are the causes of the strengthening effect of the soil strength at the pile tip on the shaft resistance.
     4. This paper reported a well-instrumented case study on the field performance of pile-soil interaction in the design of pile groups. The reaction force of the pile at different locations of pile groups, the steel stress of base plate, and the percentage of the total load shared by the piles and the soils were analyzed. The measured data indicate that during decoration period, the measured average reaction force at pile top is more than50%of the ultimate bearing capacity of a single pile, differing from a single pile in the traditional design situation. Moreover, the percentage of the total load shared by the soils gradually decreases with increasing load and reaches about20%at the completion of decoration period. The measured average steel stress is observed to be small and far lower than the ultimate stress of the steel bar.
     5. Three simplified approaches for the analysis of a single pile response were presented in this paper. In the first method, the pile settlement was assumed to consist of three aspects:(i) the pile tip settlement induced by the mobilized base load;(ii) the pile shaft compression; and (iii) the settlement due to the skin friction. Assuming that the load-displacement relationship developed along the pile-soil interface and at the pile base followed a hyperbolic model and a bilinear model, respectively, a highly effective iterative computer program was developed for the nonlinear analysis of the load-settlement behavior of a single pile in the second method. Two models were adopted in the third approach. One model used a softening nonlinear relationship to simulate the degradation behavior between unit skin friction and displacement developed along the pile-soil interface, and the other model adopted a bilinear model to capture the pile end response. Based on the proposed two models and a bisection method, a computer program was proposed to analyze a single pile response. The proposed three simplified approaches can be commonly used to analyze the nonlinear response of a single pile embedded into layered soils.
     6. Based on the proposed simple analytical approaches for the analysis of a single pile response and the Equivalent Pier Method, the first simplified calculation approach for predicting an average settlement of pile group was proposed. The key of the first method was the adoption of a fair value of ω related to the relationship between a single pile settlement and pile groups displacement. The back-analysis of field tests on single pile and pile groups shows that the values of ω are found to be in the range0.25to0.45in silt and soft soils. In the second method, a new and simple approach was presented to analyze the interaction between piles including pile shaft and base interaction in layered soils. In this method, the interaction between piles was assumed to be in a linear elastic state, and the sheltering effect on the interaction factor between two piles was taken into account. Furthermore, in the third method, a hyperbolic model was used to capture the relationship between unit skin friction and pile-soil relative displacement developed along the pile-soil interface and the load-displacement relationship developed at the pile end. Determinations of the parameters presented in the hyperbolic model of skin friction and end resistance of an individual pile in pile groups were obtained considering interactions between piles. Based on the determinations of the parameters presented in the hyperbolic model of an individual pile in pile groups and the proposed iterative computer program developed for the analysis of a single pile response, the load-settlement response of an arbitrary pile in pile groups could be obtained.
     7. For static load tests with the use of reaction piles, the load transfer method and the shear displacement approach were adopted to analyze the influence of the reaction piles on the test pile behavior. The analysis shows that the settlement of an influenced test pile is smaller than that of an individual pile at the same loading level. In practical applications, the measured results of static load test conducted using reaction piles should be modified, and the safety degree of an influenced test pile will be overestimated in some degree without modification of test results.
     8. This paper, under the assumption that the pile-pile interaction showed elasticity, analyzed the pile-pile interaction between two dissimilar piles in layered soils using the load transfer method and the shear displacement approach, and taking the sheltering effect into account to modify the conventional interaction factor between two dissimilar piles. Parametric study shows that the interaction factor between two dissimilar piles decreases with increasing of distance between longer pile and shorter pile, ratio of length of load-free pile to loaded pile length, and shorter pile diameter, and increases with an increase in elasticity modulus ratio of pile to soil.
引文
Ai Z Y, Han J. Boundary element analysis of axially loaded piles embedded in a multi-layered soil [J]. Computer and Geotechnics,2009,36(3):427-434.
    Alawneh A S, Nusier O K, Sharo A A. Poisson's ratio effect on compressive and tensile shaft capacity of driven piles in sand:Theoretical formulation [J]. Computers and Geotechnics,2007,34(3):151-163.
    Barmpopoulos I H, Ho T Y K, Jardine R J, Anh-Minh N. The large displacement shear characteristics of granular media against concrete and steel interface[C].//Proceedings of Research Symposium on Characterization and Behavior of Interfaces, Atlanta, Georgia, USA,2008, p.16-23.
    Berezantzev V G, Khristoforov V, Golubkov V. Load bearing capacity and deformation of piled foundations [C] Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), Paris,1961.
    Briaud J L, Tucker L M, NG E. Axially loaded 5 pile group and single pile in sand. Proc.12th Int Conf on SMFE, Rio de Janeiro,1989,2:1121-1124.
    Butterfied R, Banerjee P K The elastic analysis of compressible pile and pile groups [J]. Geotechnique,1971, 21(1):43-60.
    Cairo R, Conte E. Settlement analysis of pile groups in layered soils [J]. Canadian Geotechnical Journal,2006, 43:788-801.
    Caputo V, Viggiani C. Pile foundation analysis:a simple approach to nonlinearity effects [J]. Rivista Italiana di Geotecnica,1984,18(1):32-51.
    Castelli F, Maugeri M. Simplified nonlinear analysis for settlement prediction of pile groups [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(1):76-84.
    Cheung Y K, Tham L G, Guo D J. Analysis of pile group by infinite layer method [J]. Geotechnique,1988, 38(3):415-431.
    Chow Y K. Analysis of vertically loaded pile groups [J]. International Journal of Numerical and Analytical Methods in Geomechanics,1986,10(1):59-72.
    Chow Y K, Teh C I. Pile-cap-pile-group interaction in nonhomogeneous soil [J]. Journal of Geotechnical Engineering,1991,117(11):1655-1668.
    Chow Y K, Tham L G, Guo D J. Axial loaded piles and pile groups embedded in a cross-anisotropic soil [J]. Geotechnique,1989,39(2):203-212.
    Clancy P, Randolph M F. Simple design tools for piled raft foundations [J]. Geotechnique,1996,46(2): 313-328.
    Clough W, Duncan J M. Finite element analysis of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division,1971,97(SM12):1657-1673.
    Cooke R W. The settlement of friction pile foundation [J]. Foundation and Soil Technology, Building Research, Series3,1974.
    Comodromos E M, Anagnostopoulos C T, Georgiadis M K. Numerical assessment of axial pile group response based on load test [J]. Computers and Geotechnics,2003,30(6):505-515.
    Comodromos E M, Papadopoulou M C, Rentzeperis I K. Pile foundation analysis and design using experimental data and 3-D numerical analysis [J]. Computer and Geotechnics,2009,36(5):819-836.
    Conte G, Mandolini A, Randolph M F. Centrifuge modeling to investigate the performance of piled rafts [C]. Proceedings of the 4th International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Belgium,2003.
    Coye HM, Reese LC. Load transfer for axially loaded piles in clay. Journal of the Soil Mechanics and Foundations Division,1966; 92(2):1-26.
    Dai B B, Ai Z Y, Zhao X H, Fan Q G, Deng W L. Field experimental studies on super-tall buildings, super-long piles & super-thick raft in Shanghai [J]. Chinese Journal of Geotechnical Engineering,2008, 30(3):406-413.
    Desai C S. Numerical design analysis for piles in sands [J]. Journal of the Geotechnical Engineering Division, 1974,100(6):613-635.
    D'Appolonia, Thurman A G. Computed movement of friction and end-bearing piles embedded in uniform and stratified soils [C]. Proceeding of 6th International Conference on Soil Mechanics and Foundation Engineering, Montereal,1963.
    Fleming W G K, Weltman A J, Randolph M F, Elson W K. Piling Engineering [M]. Blackie:Halstead Press, 1992.
    Franke E, Lutz B, and El-Mossallamy Y. Measurements and numerical modeling of high rise building foundations on Frankfurt clay [C]. Proceedings of the Conference on Vertical and Horizontal Deformations of Foundations and Embankments. ASCE Geotechnical Special Publication,1994,40(2): 1325-1336.
    Guo W D, Randolph M F. An efficient approach for settlement prediction of pile groups [J]. Geotechnique, 1999,49(2):161-179.
    Guo W D. Pile capacity in nonhomogeneous softening soil [J]. Soils and Foundations,2001,41(2):111-120.
    Hain S J, and Lee I K. The analysis of flexible raft pile system [J]. Geotechnique,1978,28(1):65-83.)
    Hewitt C M. Cyclic response of offshore pile groups [D]. Australia:University of Sydney,1988.
    Horikoshi K, Randolph M F. Centrifuge modeling of piled raft foundation on clay [J]. Geotechnique,1996, 46(4):741-752.
    Horikoshi K, Randolph M F. Estimation of overall settlement of piled rafts [J]. Soils and Foundations,1999, 32(2):59-68.
    Jardine R, Chow F, Overy R, Standing J. ICP design methods for driven piles in sands and clays. London: Thomas Telford,2005, p.42-45.
    Kezdi A. The bearing capacity of piles and pile group[C]. Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, London,1957,46-51.
    Kim K N, Lee S H, Kim K S, Chung C K, Kim M M, Lee H S. Optimal pile arrangement for minimizing differential settlements in piled raft foundation [J]. Computers and Geotechnics,2001,28(2):235-53.
    Koizumi Y, Ito K. Field tests with regard to pile driving and bearing capacity of piled foundations [J]. Soils and Foundations,1967,7(3):30-53.
    Kraft L M, Ray R P, Kagawa T. Theoretical t-z curves [J]. Journal of the Geotechnical Engineering Division, 1981,107(11):1543-1561.
    Kulhawy F H. Limiting tip and side resistance:fact or fallacy [C]. Proceedings of Symposium on Analysis and Design of Pile Foundations, San Francisco,1984, pp.80-98.
    Latotzke J, Konig D, Jessberger H L. Effects of reaction piles in axial pile tests [C]. Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany,1997,2: 1097-1101.
    Lee C Y. Discrete layer analysis of axially loaded piles and pile groups [J]. Computers and Geotechnics,1991, 11:295-313.
    Lee C Y. Settlement of pile group-practical approach [J]. Journal of Geotechnical Engineering,1993,119(9): 1449-1461.
    Lee KM, Xiao ZR. A simplified nonlinear approach for pile group settlement analysis in multilayered soils [J]. Canadian Geotechnical Journal,2001; 38(5):1063-1080.
    Liang F Y, Chen L Z, Shi X G. Numerical analysis of composite piled raft with cushion subjected to vertical load [J]. Computers and Geotechnics,2003,30(6):443-453.
    Liew S S, Gue S S, Tan Y C. Design and instrumentation results of a reinforcement concrete piled raft supporting 2500-ton oil storage tank on very soft alluvium deposits [C]. In:The ninth international conference on piling and deep foundations, Nice (France),2002, pp:263-269.
    Mandolini A, Viggiani C. Settlement of piled foundations [J]. Geotechnique,1997,47(4):791-816.
    Mayne P W, Harris D E. Axial load-displacement behavior of drilled shaft foundation in Piedmont residuum. Federal Highway Administration, Washington, D.C.,1993, Technical Report No.41-30-2175.
    Mendonca A V, De Paiva J B. Boundary Element Method for the static analysis of raft foundations on piles [J]. Engineering Analysis with Boundary Elements,2000,24(3):237-247.
    Meyerhof G G. Bearing capacity and settlement of pile foundations [J]. Journal of Geotechnical Engineering Division,1976,102(3):195-228.
    Miller G A, Lutenegger A J. Influence of pile plugging on skin friction in overconsolidated clay [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(6):525-533.
    Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil [J]. Geotechnique,1998,48(1):55-72.
    Nicola A D, Randolph M F. Tensile and compressive shaft capacity of piles in sand [J]. Journal of Geotechnical Engineering,1993,119 (12):1952-1973.
    O'Neill M W, Hawkins R A, Mahar L J. Load transfer mechanisms in piles and pile groups [J]. Journal of Geotechnical Engineering,1982,108(12):1605-1623.
    O'Neill M W, Raines R D. Load transfer for pipe piles in highly pressured dense sand [J]. Journal of Geotechnical Engineering,1991,117(8):1208-1226.
    Ottaviani M. Three dimensional finite element analysis of vertically loaded pile groups [J]. Geotechnique, 1975,25(2):159-174.
    Paik K H, Salgado R, Lee J, Kin B. Behavior of open and closed ended piles driven into sands. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(4):296-306.
    Pastsakorn Kitiyodom, Tatsunori Matsumoto, Nao Kanefusa. Influence of reaction piles on the behavior of a test pile in static load testing [J]. Canadian Geotechnical Journal,2004,41(3):408-420.
    Poulos H G. Approximate numerical analysis of pile-raft interaction [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,18(2):73-92.
    Poulos H G, Davis E H. Pile foundation analysis and design [M]. New York:John Wiley and Sons,1980.
    Poulos H G, Davis E H. The settlement behavior of axially-loaded incompressible piles and piers [J]. Geotechnique,1968,18(3):365-415.
    Poulos H G. Influence of shaft length on pile load capacity in clays [J]. Geotechnique,1982,32(2):145-148.
    Poulos H G. Pile raft foundations:design and applications [J]. Geotechnique,2001,51(2):95-113.
    Poulos H G. Settlement prediction for bored pile groups [C]. Proceedings of the 2nd International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent,1993:103-117.
    Randolph M F. Design methods for pile groups and piled rafts [C]. Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi,1994,61-82.
    Randolph M F. Science and empiricism in pile foundation design [J]. Geotechnique,2003,53(10):847-875.
    Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles [J]. Journal of the Geotechnical Engineering Division,1978,104(12):1465-1488.
    Randolph M F, Wroth C P. An analysis of the vertical deformation of pile groups [J]. Geotechnique,1979, 29(4):423-439.
    Said I, De G V, Frank R. Axisymmetric finite element analysis of pile loading tests [J]. Computer and Geotechnics,2009,36(1-2):6-19.
    Seed H B, Reese L G. The action of soft clay along friction piles [J]. Transaction, ASCE,1957,731-754.
    Shen W Y, Chow Y K, Yong K Y. A variational solution for vertically loaded pile groups in an elastic half-space [J]. Geotechnique,1999,49(2):99-213.
    Shen W Y, Chow Y K, Yong K Y. A variational approach for the analysis of pile group-pile cap interaction [J]. Geotechnique,2000; 50(4):349-357.
    Sinha J. Piled raft foundations subjected to swelling and shrinking soils [D]. Australia:University of Sydney, 1996.
    Ta L D. A finite layer method for analysis of pile groups, rafts and piled raft foundations in layered soils [D]. Ph.D thesis, School of Civil and Mining Engineering, University of Sydney, Australia,1996.
    Ta L D, Small J C. Analysis of piled raft systems in layered soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(1):57-72.
    Trochanis A M, Bielak J, Christiano P. Three-dimension nonlinear study of piles [J]. Journal of geotechnical engineering,1991,117(3):429-447
    Vesic A S. Design of pile foundations [C]. National Cooperative Highway Research Program Synthesis of Practice, Washington,1977.
    Vesic A S. Experiments with instrumented pile groups in sand [C]. Proceedings of the International Conference on Performance of deep foundations, American,1969,177-222.
    Vijayvergiya V N. Load-movement characteristics of piles [J]. Coastal and Ocean Division, American Society Civil Engineering,1977, (2):269-284.
    Wong C S, Poulos H G. Approximate pile-to-pile interaction factors between two dissimilar piles [J]. Computers and Geotechnics,2005,32(8):613-618.
    Yang J, Tham L G, Lee P K K, Chan S T, Yu F. Behaviour of jacked and driven piles in sandy soil [J]. Geotechnique,2006,56(4):245-259.
    Zhang H H. Finite layer method for analysis of piled raft foundations [D]. Ph.D thesis, Department of Civil Engineering, University of Sydney, Australia,2000.
    Zhang L M, Xu Y, Tang W H. Calibration of models for pile settlement analysis using 64 field load tests [J]. Canadian Geotechnical Journal,2008,45(1):59-73.
    Zhang Q Q, Zhang Z M. A simplified approach for single pile settlement analysis [J]. Canadian Geotechnical Journal,2012a (Published on line)
    Zhang Q Q, Zhang Z M. A simplified calculation approach for settlement of single pile and pile groups [J]. Journal of Computing in Civil Engineering,2012b (Published on line)
    Zhang Q Q, Zhang Z M. Complete load transfer behavior of base-grouted bored piles [J]. Journal of Central South University of Technology,2012c (Published on line)
    Zhang Q Q, Zhang Z M. Influence of reaction piles on load-displacement behavior of test pile in static load test [J]. Journal of Zhejiang University-SCIENCE A,2012d (Published on line)
    Zhang Q Q, Zhang Z M. Investigation into the shaft friction of bored pile including the influence of soil stiffness at the pile base [J]. Marine Georesources & Geotechnology,2012e (Published on line)
    Zhang Q Q, Zhang Z M. Study on interaction between dissimilar piles in layered soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics,201 la,35(1):67-81.
    Zhang Q Q, Zhang Z M, Yu F, Liu J W. Field Performance of Long Bored Piles within Piled Rafts [J]. Proceedings of the Institution of Civil Engineers:Geotechnical Engineering,2010a,163(6):293-305.
    Zhang Q Q, Zhang Z M, He J Y. A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils [J]. Computer and Geotechnics, 2010b,37(7-8):969-976.
    Zhang Z M, Zhang Q Q, Yu F. A destructive field study on the behavior of piles under tension and compression [J]. Journal of Zhejiang University-SCIENCE A,2011b,12(4):291-300.
    Zhao M H, Zhang L, Yang M H. Settlement calculation for long-short composite piled raft foundation [J]. Journal of Central South University of Technology,2006,13(6):749-754.
    Zhong W H, Zhang K G, Liu S Y. Case analysis of piled raft socketed in weak rock [J]. Journal of Southeast University (English Edition),2003,19(4):373-377.
    艾智勇,成志勇.层状地基中轴向受荷单桩的边界元法分析[J].岩土力学,2009,30(5):1522-1526.
    毕桂平,苏洪雯,龚维明.泥浆护壁桩端后压浆技术在东海大桥工程中的应用[M]//刘金砺.高层建筑桩基工程技术.北京:中国建筑工业出版社,2003:575-581.
    曹志远.解析与数值结合法及其应用[J].计算结构力学及其应用,1992(2):16-21.
    陈光敬.各向异性地基中单桩的弹性理论法分析[J].江苏建筑,1999,3:30-33,13.
    程晔,龚维明,张喜刚,等.超长大直径钻孔灌注桩桩端后压浆试验研究[J].岩石力学工程学报,2010,29(S2):3885-3892.
    陈龙珠,梁国钱.桩轴向荷载-沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30-38.
    陈明中.群桩沉降计算理论及桩筏基础优化设计研究[D].杭州:浙江大学,2000.
    陈张锋.黄土地区摩擦型静载试验中锚桩对试桩承载力影响研究[D].西安:西安建筑科技大学,2005.
    程晔,龚维明,戴国亮,等.超长大直径钻孔灌注桩桩端承载力研究[J].南京航天航空大学学报,2007,39(3):407411.
    池跃君,顾晓鲁,周四思,等.大直径超长灌注桩承载性状的试验研究[J].工业建筑,2000,30(8):26-29.
    邓友生,龚维明,苏骏.基于Mindlin应力解的超大群桩基础沉降计算[J].铁道学报,2009,31(1):121-125.
    董光辉,杨敏,卢俊义.基于静荷载试验的群桩沉降简化分析[J].水利学报,2009,40(8):983-988.
    董建国,赵锡宏.高层建筑桩筏和桩箱基础沉降计算的简易理论法[M].上海:同济大学出版社,1989.
    董金荣.灌注桩侧阻力强化弱化效应研究[J].岩土工程学报,2009,31(5),658-662.
    付佰勇,黄茂松,梁发云,等.层状弹性半空间中群桩竖向沉降简化分析[J].岩土工程学报,2010,32(2):198-204.
    高盟,高广运,杨成斌,等.层状地基群桩沉降计算的剪切位移解析算法[J].岩土力学,2010,31(4):1072-1077.
    龚维明,于清泉,戴国亮.越南大翁桥桩基承载性能试验研究[J].岩土力学,2009,30(2):558-562.
    龚晓南.复合地基发展概况及其在高层建筑中的应用[J].土木工程学报,1999,32(6):3-10.
    韩煊,张乃瑞.北京地区群桩基础荷载传递特性的现场测试研究[J].岩土工程学报,2005,27(1):74-80.
    贺武斌,贾军刚,白晓红,等.承台-群桩-土共同作用的试验研究[J].岩土工程学报,2002,24(6):710-715.
    何颐华,金宝森.高层建筑箱型基础加摩擦群桩的桩土共同作用[J].岩土工程学报,1990,12(3):53-65.
    洪鑫.单桩静载荷试验的理论模拟及影响因素分析[J].岩土工程学报,2012,34(1):176-183.
    黄茂松,江杰,梁发云,等.层状地基中桩基础的竖向荷载位移关系非线性分析方法[J].岩土工程学报,2008,30(10):1423-1429.
    蒋建平,高广运,章杨松.桩端岩土强度提高对超长桩桩身总侧阻力的强化效应研究[J].岩土力学,2009,30(9):2609-2615.
    蒋镇华.有限里兹单元法及其在桩基和复合地基中的应用[D].杭州:浙江大学,1996.
    建筑地基基础设计规范(GB 5007-2002)[S].北京:中国建筑工业出版社,2002.
    建筑基桩检测技术规范(JGJ 106-2003)[S].北京:中国建筑工业出版社,2003.
    吉林,冯兆祥.江阴长江公路大桥嵌岩桩试桩与分析[M]//刘金砺.高层建筑桩基工程技术.北京:中国建筑工业出版社,1998:416420.
    金波,李志飙.层状地基中的单桩沉降分析[J].岩土工程学报,1997,19(5):3542.
    梁发云,陈龙珠,李镜培.加筋效应对群桩相互作用系数的影响[J].岩土力学,2005,26(11):1757-1760.
    刘福天,赵春风,吴杰,等.常州地区大直径钻孔灌注桩承载性状及尺寸效应试验研究[J].岩石力学与工程学报,2010,29(4):858-864.
    刘金砺.高层建筑桩基工程技术[M].北京:中国建筑工业出版社,2003.
    刘金砺,黄强,李华,等.竖向荷载下群桩变形性状及沉降计算[J].岩土工程学报,1995,17(6):1-13.
    刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题[J].土木工程学报,2004,37(1):78-83.
    刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1990.
    刘金砺.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,22(2):151-157.
    刘俊龙.桩底沉渣对超长大直径钻孔灌注桩承载力影响的试验研究[J].工程勘察,2000,(3):8-11.
    刘利民.桩基承载性状研究的新进展[J].岩土工程界,2000,(1):19-21.
    刘学增,朱合华.上海典型土层与混凝土接触特性的试验研究[J].同济大学学报(自然科学版),2004,32(5):601-605.
    李武.超长桩荷载-沉降关系非线性迭代计算方法[J].安徽理工大学学报(自然科学版),2008,28(3):22-26.
    芦坤林,杨扬.锚桩对静载荷试验成果的影响分析[J].合肥工业大学学报(自然科学版),2007,30(7):892-895.
    吕凡任.倾斜荷载作用下斜桩基础工作性状研究[D].杭州:浙江大学,2004.
    美国桥梁设计规范:荷载与抗力系数设计法[S].李济平,等译.北京:人民交通出版社,1998.
    穆保岗,龚维明,黄思勇.天津滨海新区超长钻孔灌注桩原位试验研究[J].岩土工程学报,2008,30(2):268-271.
    钱力航.高层建筑箱形与筏形基础的设计计算[M].北京:中国建筑工业出版社,2003.
    石明磊.大直径钻孔灌注桩的承载力与沉降研究[D].南京:东南大学,2002.
    石名磊,邓学钧,刘松玉.群桩间“加筋与遮帘”相互作用[J].东南大学学报,2003,33(2):343-347.
    石名磊,战高峰.群桩荷载位移特性研究[J].岩土力学,2005,26(10):1607-1611.
    王东红,谢星,张炜.黄土地区超长钻孔灌注桩荷载传递性状试验研究[J].工程地质学报,2005,13(1):117-123.
    王建华.神经网络法预估水泥搅拌桩单桩沉降[J].土木工程学报,1996,29(1):55-61.
    王俊林,马艳,苟利娟.大直径超长混凝土灌注桩受力特性试验研究[J].河海大学学报(自然科学版),2008,36(1):82-87.
    王陶,马晔.超长钻孔桩竖向承载性状的试验研究[J].岩土力学,2005,26(7):1 053-1057.
    王涛.桩-土相互作用影响的模型试验研究[J].岩土力学,2008a,29(6):1589-1592.
    王涛,刘金砺.桩-土-桩相互作用影响的试验研究[J].岩土工程学报,2008b,30(1):100-105.
    王浩,周健,邓志辉.桩-土-承台共同作用的模型试验研究[J].岩土工程学报,2006,28(10):1253-1258.
    王玉杰,严宗达,刘作春,等.有限棱柱法在群桩与土相互作用分析中的应用[J].天津大学学报,1997,30(2):170-174.
    吴鹏,龚维明,梁书亭.桩基自平衡测试的可靠性分析[J].岩土工程学报,2005,27(5):545-548.
    吴鹏,龚维明,任伟新.刚性承台群桩沉降简化计算方法[J].中南大学学报:自然科学版,2008,39(6):1319-1324.
    吴永红,王成华.工作荷载作用下群桩沉降比的估算方法[J].岩土工程学报,1993,24(1):86-90.
    辛公锋.大直径超长桩侧阻软化试验与理论研究[D].杭州:浙江大学,2006.
    席宁中.试论桩端土强度对桩侧阻力的影响[J].建筑科学,2000,16(6):51-54.
    姚金彦,余昆,马远刚.哈尔滨松花江大桥基桩承载力自平衡测试[J].桥梁建设,2007(增1):135-137.
    袁从华,章光.大吨位堆载法对单桩承载力试验的影响[J].岩土力学,1997,18(1):78-83.
    叶真华,周健,唐世栋.粘土中不同桩端条件下桩承载性状的模型试验[J].同济大学学报(自然科学版),2009,37(6):733-737.
    余闯,刘松玉.考虑桩侧土软化的单桩性状计算分析[J].岩土力学,2005,26(增刊):133-136.
    喻君.改进的荷载传递法在桩基沉降计算中的应用研究[D].杭州:浙江大学,2007.
    宰金珉,蒋刚,王旭东,等.极限荷载下桩筏基础共同作用性状的室内模型试验研究[J].岩土工程学报,2007,29(11):1597-1603.
    宰金珉,杨嵘昌.桩周土非线性位移的广义剪切位移法[J].南京建筑工程学院院报,1993,1:1-16.
    宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版社,1993.
    张崇文.有限层有限元混合法研究桩土相互作用[J].天津大学学报,1995(6):165-172.
    张建新,吴东云.桩端阻力与桩侧阻力相互作用研究[J].岩土力学,2008,29(2):541-544.
    张乾青,张忠苗.群桩沉降简化计算方法[J].岩土力学,2012,33(2):382-388,432.
    张乾青.桩-土共同作用的研究[J].岩土工程技术,2008,22(4):167-172,193.
    张问清,赵锡宏,宰金珉.任意力系作用下的层状弹性半空间无限体的有限层法[J].岩土工程学报,1982(3):135-142.
    张忠苗,辛公锋,夏唐代.深厚软土非嵌岩超长桩受力性状试验研究[J].土木工程学报,2004,37(4):64-69.
    张忠苗,张广兴,吴庆勇,等.钻孔桩泥皮土与桩间土性状试验研究[J].岩土工程学报,2006,28(6):695-699.
    张忠苗.灌注桩后注浆技术及工程应用[M].北京:中国建筑工业出版社,2009.
    张忠苗,贺静漪,张乾青,曾亮春.温州323m超高层超长单桩与群桩基础实测沉降分析[J].岩土工程学报,2010,32(3):330-337.
    张忠苗.软土地基大直径桩受力性状与桩端注浆新技术[M].浙江大学出版社,1997.
    张忠苗.软土地基超长嵌岩桩的受力性状[J].岩土工程学报,2001,23(5):552-556.
    张忠苗,张乾青,李建华.采用桩土共同作用的浙江省第一医院医技楼现场实测分析[J].岩石力学与工程学报,2010a,29(4):833-841.
    张忠苗,张乾青,骆嘉成,等.穿越巨厚卵石层超长嵌岩桩施工技术与成桩质量分析[J].岩石力学与工程学报,20106,29(S2):40164026.
    张忠苗,张乾青.后注浆抗压桩受力性状的试验研究[J].岩石力学与工程学报,2009,28(3):475482.
    张忠苗,张乾青.破坏性和非破坏性抗压试桩受力性状现场试验研究[J].岩土工程学报,2011a,33(10):1600-1608.
    张忠苗,张乾青,张广兴,施茂飞.软土地区大吨位超长试桩试验设计与分析[J].岩土工程学报,20116,33(4):535-543.
    张忠苗,张乾青.桩端土强度对桩侧阻的影响研究[J].岩土工程学报,2010,32(S2):59-63.
    张忠苗.桩基工程[M].北京:中国建筑工业出版社,2007.
    赵春风,鲁嘉,孙其超,等.大直径深长钻孔灌注桩分层荷载传递特性试验研究[J].岩石力学与岩土工程学报,2009,28(5):1020-1026.
    赵明华,邹丹,邹新军.群桩沉降计算的荷载传递法[J].工程力学,2006,23(7):119-123.
    赵明华,邹新军,刘齐建.洞庭湖软土地区大直径超长灌注桩竖向承载力试验研究[J].土木工程学报,2004,37(10):63-67.
    郑俊杰,彭小荣.桩土共同作用设计理论研究[J].岩土力学,2003,24(2):242-245.
    建筑桩基技术规范(JGJ94-2008)[S].北京:中国建筑工业出版社,2008.
    周国林.单桩极限承载力的灰色预测[J].岩土力学,1991,12(1):37-43.
    周红波.桩侧泥皮和桩底沉渣对钻孔桩承载力影响的数值模拟[J].岩土力学,2007,28(5):956-960.
    周洪波,黄胜生.锚桩法单桩静载试验中群桩相互作用及误差分析[J].岩土力学,2004,25(10):1613-1616.
    朱金颖,陈龙珠,葛伟.层状地基中桩静载试验数据的拟合分析[J].岩土工程学报,1998,20(3):34-39.
    朱向荣,方鹏飞,黄洪勉.深厚软基超长桩工程性状试验研究[J].岩土工程学报,2003,25(1):76-79.
    邹健,张忠苗,刘俊伟,贺静漪.一种考虑桩侧土应变软化的荷载传递函数[J].岩土工程学报,2010,32(7):1009-1113.
    佐藤悟.基桩承载力机理[J].土木技术,1965,20(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700