用户名: 密码: 验证码:
旋转制导炮弹飞行弹道及控制系统设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争要求制导炮弹达到“远射程、大落角、高精度”的战术技术指标要求,且实际的制导炮弹飞行过程是一个非线性耦合的、时变的、有约束的和受外界随机干扰影响的控制过程,因而需要对其飞行弹道和控制系统进行良好地设计。本文主要围绕鸭式布局的制导炮弹飞行弹道、控制系统设计理论与技术问题展开分析和研究。
     1)根据鸭式布局制导炮弹的气动特性和运动特点,建立了其六自由度飞行动力学模型;根据刚体坐标系关系,建立了滚转炮弹的姿态控制系统模型;基于“瞬时平衡”假设,建立了纵向平面内炮弹飞行的质点运动方程。为对制导炮弹的方案弹道设计、弹体动态特性分析、控制系统设计作提供基础。
     2)采用“方案弹道+末制导”导引方法作为远程大落角精确命中目标的手段,研究了制导炮弹的弹道设计问题。基于纵向平面内的制导炮弹质点弹道模型、飞行状态约束条件与最大射程目标函数,建立了增程弹道优化模型。将变尺度的非均匀参数化方法和序列二次规划(SQP)方法相结合,对制导炮弹的增程方案弹道进行优化。以三维质点弹道模型为基础,利用微分几何理论设计了满足落角约束的三维非线性制导律。分析了炮弹在末段弹道时的攻击性能,给出了攻击目标的最短距离计算方法。相比传统方法,设计的方案弹道具有更强的弹道性能优势,末制导律使得制导炮弹在攻击不同目标时表现出较强的适应能力。
     31分别利用了具有测量值修正形式的卡尔曼滤波器、平滑器和龙伯格观测器作为重构工具,研究了关于制导炮弹阻力系数、攻角和侧滑角的弹道重构问题。对于从含有噪声的飞行试验数据中提取阻力系数的问题,提出了基于无迹平滑器(URTSS)的阻力系数事后重构算法,获得了阻力系数关于马赫数的函数,并且大大提高了对其他弹道参数的测量精度。探讨了受实际条件限制,难以获得攻角、侧滑角等精确测量值的情况时,在降阶观测系统模型的基础上,提出了一种基于坐标变换的攻角、侧滑角龙伯格观测器,实现了对攻角、侧滑角的高动态估计。研究结果对实际中难以获得的这些弹道参数提供了参考处理方法。
     4)研究了制导炮弹的非线性控制方法。基于反馈线性化理论,提出了适用于滚转炮弹的质心和姿态非线性滑模控制器。理论分析和仿真结果均表明,非线性滑模控制能保证制导炮弹模型存在误差时的鲁棒飞行控制性能。当制导炮弹动力学参数含有较人未知误差时,纯滑模控制需要保守地设置较大的切换增益,表现为产生更大的舵面控制量,同时在控制过程中会引发较强抖振或显著跟踪误差。为更有效地处理动力学参数的不确定性问题,通过分析滚转炮弹的气动对称特性,引入了考虑边界层的参数自适应方法,基于李雅普诺夫稳定性原理设计了一种适用于制导炮弹的非线性自适应滑模控制器。仿真表明,在取得较好跟踪性能的前提下,自适应滑模控制系统消除了较大参数误差引发的强烈抖振现象。
     5)研究了制导炮弹非线性离散滑模控制方法。介绍了非线性连续系统的精确离散化,利用反馈线性化方法将复杂的非线性系统等效地转化为两个标准的子系统,然后对子系统作离散化处理,并结合滑模控制原理设计了制导炮弹的离散控制器。分析得到离散趋近律参数和系统不确定性是离散滑模控制系统的产生抖振的主要原因。在切换增益、趋近律系数确定的情况下,较大的控制采样时间和制导炮弹气动参数不确定性将造成离散控制系统的跟踪误差,并引发较强的抖振现象。为了降低参数不确定性带来的抖振现象,引入了离散的参数自适应算法,设计了适用于制导炮弹的非线性离散自适应滑模控制器。仿真表明,离散自适应滑模控制能有效处理制导炮弹气动参数的不确性问题,改善了控制性能。
     6)分析了各种扰动因素对制导炮弹飞行弹道的影响,研究了制导炮弹外弹道飞行控制系统的性能。为了降低启控点偏差造成弹道跟踪控制段的舵面饱和现象,设计了过渡参考弹道,并给出了光滑的控制指令信息,使制导炮弹能够沿过渡参考弹道飞行至增程方案弹道上。由于自适应滑模控制的强鲁棒性,制导炮弹可适应各种干扰情况,具有较好的弹道性能,能够在远程发射并以大落角姿态精确命中目标。
The guided projectiles are demanded to satisfy the tactical and technical index of "large range, big tenninal angle, high accuracy" in modern wars. As the actual flight process is a nonlinear, coupling, time-varying, constrained and effected by random outside disturbance control process, the flight trajectory and control system need to be designed well. Some theoretical and technical problems regarding the flight trajectory and control system design for canard guided projectiles are analyzed and studied in this paper.
     1) According to the aerodynamic, motion characteistics and rigid coordinate systems relationship of the canard configuration guided projectiles, the six degree of feedom flight dynamic model and attiude control system model are established. Based on instantaneous balance assumption, the longtitudinal particle trajectory equation of projectiles is proposed.
     2) A guidance scheme consisting of programmed guidance and terminal guidance is applied to achieve the tactical guideline of "large range, big hitting angle, high accuracy" effectively, the flight trajectory design is researched. Base on the guided projectile longitudinal partile trajectory equation, constraint conditions and the maximal range objective function, the extend range trajectory optimal model is established. The guided projectile optimal trajectory is obtained by parametric method combined with sequadratic programming. Based on3-DOF mass trajectory equation, the3-DOF nonlinear terminal guidance law with angle constraint is designed via differential geometry theory. The ballistic performance of guided projectiles in the terminal trajectory is analysed, the condition of minimum distance to hit the target is provided. Compared with traditional methods, the project trajectory has more advantages of ballistic performance, and the terminal guidance make the guided projectiles show some adaptability to different objects.
     3) Problems of trajectory reconstruction about drag coefficients, angle-of-attack and sideslip angle of guided projectiles are investigated using Kalman filter, smoother and Luenberger observer. Aiming at extracting drag coefficients from flight test data containing large measurement noise, a post reconstruction algorithm based on URTSS is proposed. Then the drag coefficients function of mach number is obtained, and the precision of other ballistic parameters is improved. A nonlinear Luenberger observer based on coordinate transformation for guided projectiles has also been designed for estimating the angle-of-attack and slideslip angle. The results provide some reference methods for these ballistic paramters that can not be acquired easily.
     4) The nonlinear control method for guided projectiles is studied. Based on feedback linearization, the mass point and attitude nonlinear sliding mode controllers for rolling projectiles are proposed. Theoretical analysis and simulations indicate that the nonlinear sliding mode control is robust with respect to guided projectiles model error. However, lack of unkown dynamic parameters demand that the pure sliding mode control need to set big switching gain conservatively, which induce large control authority requirement, chattering or significant tracking error. In order to deal with dynamic parameters error, the symmetry property of rolling projectiles is analysed, parameter adaptive method considering boundary layer is introduced. Then an adaptive sliding mode controller (ASMC) applied to projectiles is proposed via Lyapunov stability principle. Simulation demonstrates that ASMC has good performance, and eliminates chattering caused by large paramter uncertainty.
     5) The discrete nonlinear control method for guided projectiles is studied. The accurate discretization method for nonlinear continuous system is introduced, the complex nonlinear systerm is converted to two standard subsystems equivalently via feedback linearization, then the subsystems are transformed into discrete-time systems, and a nonlinear discrete-time controller for guided projectiles is designed based on sliding mode control principle. Analysis shows, parameters of discrete reaching law and system uncertainties are the main source of chattering. In the case of other parameters certain, large contol sampling time or dynamic parameter uncertainties induce the tracking error and strong chattering. To reduce chattering caused by dynamic parameters uncertainties, the desceret parameter adaptive algorithm is introduced, then a discrete adaptive sliding mode controller (DASMC) applied to projectiles is proposed. Simulation demonstrates that DASMC can deal with large dynamic paramter uncertainties of guided projectiles, and improve control performance.
     6) The influence of various disturbance resources during the flight of projectiles is analyzed, and the performance of flight control is investigated. To reduce the rudder saturation caused by initial point deviation during the trajectory tracking segment, a transitional reference trajectory is designed. The smooth command information is derived by programming trajectory that guided projectiles fly along. Because of strong robustness of adaptive sliding mode control, guided projectiles are adapt to various situation with disturbance, also have good ballistic performance, and can hit the target with long-distance launching, big impact angle and high precision.
引文
[1]祁载康.制导弹药技术[M].北京:北京理工大学出版社,2002.
    [2]牟宇,程振轩,王江.制导炮弹技术现状与发展方向[J].飞航导弹.2008,(7):33-37.
    [3]陈罗婧,刘莉,于剑桥.双通道控制旋转导弹自动驾驶仪解耦控制研究[J].北京理工大学学报,2008,28(1):11-14.
    [4]高庆丰,夏群力,方蜀州.一种单通道旋转导弹自动驾驶仪设计方法[J].北京理工大学学报,2011,31(6):670-674.
    [5]王狂飙.旋转导弹制导技术及应用[J].弹箭与制导学报,2002,22(3):29-31.
    [6]佘浩平,杨树兴,倪慧GPS/INS组合制导弹药空中对准的初始滚转角估计新算法[J].兵工学报,2011,32(10):1265-1270.
    [7]Paul C T. Optimizing terminal conditions using geometric guidance for low-control authority munitions[D]. paper for master degree at MIT,2008.
    [8]张友安,胡云安.导弹控制和制导的非线性设计方法[M].北京:国防工业出版社,2003.
    [9]Devand E, Harcaut J P, Siguerdidjane H. Three-axes missile autopilot design:from linear to nonlinear control strategies[J]. Journal of Guidance, Control, and Dynamics, 2001,24(1):61-74
    [10]Steinberg M L. Comparison of intelligent, adaptive, and nonlinear flight control laws[J]. Journal of Guidance, Control, and Dynamics,2001,24(4):693-699.
    [11]刘智平,周凤岐,周军.战术导弹现代自动驾驶仪设计方法综述[J].航天控制,2006,24(5):91-96.
    [12]宋闯,魏毅寅.非线性系统理论在导弹控制中的应用研究进展与展望[J].战术导弹技术,2003,(6):48-53.
    [13]徐艳梅,孙序东.美国海军EX-171超远程精确制导炮弹发射装药系统[J].飞导弹,2003,(12):36-38.
    [14]中国兵工学会.兵器科学技术学科发展报告[M].北京:中国科学技术出版社,2011.
    [15]Jepps G. Linearised optimal control and application to a gliding projectile [C]. AIAA Atmospheric Flight Mechanics Conference,1985.
    [16]Fleck V. Increase of range for an artillery projectile by using the lifting force [C].19th International Symposium on Ballistics,1996.
    [17]Costello M F. Range extension and accuracy improvement of an advanced projectile using canard control[C]. AIAA Atmospheric Flight Mechanics Conference in Baltimore, Maryland,1995.
    [18]符蓓蓓,吴甲生,雷娟棉.超远程制导炮弹船尾和尾翼剖面形状对阻力影响的数值模拟[J].北京理工大学学报,2008,28(2):104-107.
    [19]符蓓蓓,雷娟棉,吴甲生.超远程制导炮弹滚转控制特性数值模拟[J].弹箭与制导学报,2007,27(5):157-159.
    [20]雷娟棉,吴甲生.增程制导炮弹气动外形设计[J].航空学报,2005,26(3):294-297.
    [21]符蓓蓓,雷娟棉,王冬梅.超远程制导炮弹滑翔增程弹道仿真研究[J].兵工学报,2010,31(增刊2):13-16.
    [22]阮春荣.大气中飞行的最优轨迹[M].茅振东,译.北京:宇航出版社,1987.
    [23]丁松滨,王中原.弹丸滑翔弹道的能量法研究[J].兵工学报,2002,23(1):10-13.
    [24]丁松滨.滑翔增程炮弹的外弹道理论与应用[D].南京理工大学博士论文,2002.
    [25]史金光,王中原,易文俊等.滑翔增程弹弹道特性分析[J].兵工学报,2006,27(2):210-214.
    [26]史金光,王中原,易文俊.滑翔增程弹方案弹道特性的研究[J].弹道学报,2003,15(1):51-54.
    [27]史金光,王中原,许厚谦.滑翔增程弹鸭式舵的气动设计与分析[J].弹道学报,2006,18(4):33-37.
    [28]史金光,王中原,曹小兵.滑翔增程弹箭滑控段弹体运动模式对增程效率的影响[J].兵工学报,2007,28(6):651-655.
    [29]史金光.炮弹滑翔弹道设计与控制弹道特性研究[D].南京理工大学博士论文,2008.
    [30]Betts J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics,1998,21(2):193-207.
    [31]张军娜,王军波.滑翔增程炮弹弹道仿真与优化设计[J].军械工程学院学报,2003,15(2):42-45
    [32]Michael R I, Fariba F. A perspective on methods for trajectory optimization[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,5-8 August 2002, Monterey, California. American Institute of Aeronautics and Astronautles. AIAA-2002-4727.
    [33]Huang Guo-qiang, Lu Yu-ping, Nan Ying. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Science China Technological Sciences, 201255(9):2538-2560.
    [34]Hitoshi M., Jason C.H. Chuang. Minimum-fuel trajectory along entire flight profile for a hypersonic vehicle with constraint [R]. AIAA-98-4122.
    [35]周浩,陈万春,殷兴良.高超声速飞行器滑行航迹优化[J].北京航空航天大学学报,2006,32(5):513-517.
    [36]周浩,周韬,陈万春,殷兴良.高超声速滑翔飞行器引入段弹道优化[J].宇航学报,2006,27(5):970-973.
    [37]雍恩米,唐国金,陈磊.助推—滑翔式导弹中段弹道方案的初步分析[J].国防科技大学学报,2006,28(6):6-10.
    [38]李瑜,杨志红,崔乃刚.助推—滑翔导弹弹道优化研究[J].宇航学报,2008,29(1),66-71.
    [39]Chen Gang, Hu Ying, Wang Zi-ming, et al. Optimization design on RLV reentry trajectory based on genetic algorithm [J]. Journal of Solid Rocket Technology,2006, 29(4):235-238.
    [40]Chen Gang, Xu Min, Wang Ziming, et al. RLV reentry trajectory multi-objective optimization design based on NSGA-II algorithm [R]. AIAA-2005-6131.
    [41]孙勇,段广仁,张卯瑞.基于拟能量的高超声速飞行器再入轨迹优化[J].上海交通大学学报,2011,45(2):262-266.
    [42]Christopher D K, Paul V T, Robert C B. Hyper-X post-flight trajectory reconstruction [J]. Journal of Spacecraft and Rockets,2006,43(1):105-115.
    [43]Julier S, Unlmann J K, Durrant W H F. A new approach for filtering nonlinear system[C]. Proceeding of the American Control Conference, Washington,1995, 1628-1632.
    [44]Julier S, Uhlmann J K, Durrant W H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans.on Automatic Control,2000,45(3):477-482.
    [45]Simon J.J, Uhlmann J.K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE,2004,92(3):401-421.
    [46]李新国,曾颖超,陈红英.弹道重构与仿真模型验证[J].战术导弹技术,2002,(3):9-12.
    [47]李新国,曾颖超,刘金.弹道重构在导弹仿真模型验证中的应用[J].飞行力学,1998,16(4):82-86.
    [48]史金光,徐明友,王中原.卡尔曼滤波在弹道修正弹落点推算中的应用[J].弹道学报,2008,20(3):41-43.
    [49]丁传炳,王良明,常思江.卡尔曼滤波在GPS制导火箭弹中的应用[J].南京理工大学学报,2010,34(2):157-160.
    [50]Gracfa V J, Walker B K. Aerodynamic parameter estimation for high performance aircraft using extended filters[R]. AIAA-95-3500-CP,1995.
    [51]Girish C, Sven L. Control of a VTOL UAV via online parameter estimation[C]. AIAA Guidance,Navigation,and Control Conference and Exhibit, San Francisco, California, AIAA 2005-6409,2005.
    [52]Simon D. Optimal State Estimation[M]. John Wiley & Sons, Inc. Publications, New Jersey,2006.
    [53]Sarkka S. Unscented Rauch-Tung-Striebel smoother[J]. IEEE Transactions on Automatic Control,2008,53(3):845-849.
    [54]Sarkka S. Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoother[J]. Signal Processing,2010, (90):225-235.
    [55]刘豹.现代控制理论[M].第2版.北京:机械工业出版社,2000.
    [56]Busawon K, Farza M, Hammouri H. A simple observer for a class of nonlinear systems[J]. Applied Mathematics Letters,1998:11(3):27-31.
    [57]Dalla M M, Germani A, Manes C. A state observer for nonlinear dynamical systems[J]. Nonlinear Analysis, Theory, Methods and Applications,1997:30(7):4485-4496.
    [58]Deutscher Joachim. Asymptotically exact input-output linearization using carleman linearization[C]. Proc. European Control Conference ECC 2003, Cambridge, England, September 2003.
    [59]Sundarapandian V. General observers for nonlinear systems. Mathematical and Computer Modelling,2004,39(2):97-105.
    [60]Jo N H, Seo J H. Input output linearization approach to state observer design for nonlinear system[J]. IEEE Transactions on Automatic Control,2000, 45(12):2388-2393.
    [61]Solsona J, Valla M I, Muravchik C. A nonlinear reduced order observer for permanent magnet synchronous motors[J]. IEEE Transaction on Industrial Electronics,1996, 43(4):492-497.
    [62]Farza M, Saad M M, Rossignoln L. Observer design for a class of mimo nonlinear systems[J]. Automatica,2004,40(1):135-143.
    [63]Lee S, Yee Y, Park M. An observer design for MIMO systems[J]. Transactions on control, automation and system engineering,2002,4(3):189-194.
    [64]Das A, Das R. Nonlinear autopilot and observer design for a surface-to-surface, skid-to-turn missile[C]. Proceedings of the IEEE INDICON. Chennai, India, IEEE, 2005:304-308.
    [65]Chwa D, Choi J Y. Observer-based control for tail-controlled skid-to-turn missiles using a parametric affine model[J]. IEEE Transactions Control Systems Technology, 2004,12(1):167-175.
    [66]刘强,于达仁,王仲奇.高超声速飞行器的滑模观测器设计[J].航空学报,2004,25(6):588-592.
    [67]Tahk M, Briggs M M. An autopilot design technique based on feedback linearization and wind angles estimation for bank-to-turn missile systems[C]. AIAA Missile Science Conference, Monterey, CA, Nov.1988.
    [68]Song C, Kim Y S. Implementation of a neural network state estimator-based autopilot for skid-to-Turn missiles[C]. AIAA Guidance, Navigation and Control Conference, San Diego, CA, Jul 29-31,1996. AIAA 96-3916.
    [69]Song Y, Koh G, Hwang S. Implementation of a neural network state estimator-based autopilot for skid-to-turnmissiles[C]. AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, Aug 11-13,1997. AIAA 97-3768.
    [70]Howze J W. Necessary and sufficient condition for decoupling using output feedback[J]. IEEE Transactions on Automatic Control,1973,18:44-46.
    [71]Narendra K S. Identification and control of dynamic systems using neural network[J]. IEEE Transactions on Neural Network,1990, (1):14-27.
    [72]George M S. Missile guidance and control systems[M]. New York:Springer-Verlag New York, Inc.,2004.
    [73]林德福,王辉,王江.战术导弹自动驾驶仪设计与制导律分析[M].北京:北京理工大学出版社,2012.
    [74]Kim B S, Lee J G, Han H S. Biased PNG lawfor impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288.
    [75]Ryoo C K, Cho H J, Tahk M J. Time-to-go weighted optimal guidance laws angle constraints[J]. IEEE Transaction on Control Systems Technology,2006,14(3): 483-492.
    [76]Lee Y, Ryoo C, KimE. Optimal guidancewith constraintson impact angle and terminal acceleration[C]. AIAA Guidance, Navigation, Control Conference, Austin, USA, 2003.
    [77]SongT L, Shin S J. Time-optimal impact angle control for vertical plane engagements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35(2):738-742.
    [78]Ryoo C K, Cho H J, Tahk M J. Closed-form solutions of optimal guidance with terminal impact angle constraint[C]. Proceedings of the 2003 IEEE International Conference on Control Application, Istanbul, Turkey,2003.
    [79]顾文锦,赵红超,杨智勇.变结构控制在导弹制导中的应用综述[J].飞行力学,2005,23(1):1-4.
    [80]蔡洪,胡正东,曹渊.具有终端角度约束的导引律综述[J].宇航学报,2010,31(2):315-323.
    [81]贾庆忠,刘永善,刘藻珍.电视制导侵彻炸弹落角约束变结构反演制导律设计[J].宇航学报,2008,29(1):208-214.
    [82]黄玲玲,吴庆宪,姜长生.基于GA的带终端约束的变结构末制导律设计[J].电光与控制,2007,14(4):30-35.
    [83]胡正东,张皓之,蔡洪.带落角约束的再入机动弹头的变结构导引律[J].系统工程与电子技术,2009,31(2):393-398.
    [84]孙胜.有限时间收敛寻的导引律[D].哈尔滨工业大学博士论文,2010.
    [85]周荻.寻的导弹新型导引规律.国防工业出版社,北京,2002.
    [86]周荻,邹听光,孙德波.导弹机动突防滑模制导律.宇航学报,2006,27(2):213-216.
    [87]Alder F P. Missile Guidance by Three-dimensional Proportional [J]. Navigation.Journal of Applied hysics,1956,27(5):500-507
    [88]Zhang Li, Sun Wei-meng, Zhang Zhi-qiang. Control of terminal engagement geometry using variable structure guidance law with impact angular constraint[C]. Systems and Control Aerospace and Astronauties, Shenzhen, China,2008:1711-1716.
    [89]糜玉林,施建洪,张友安.带有攻击角度控制的三维制导[J].海军航空工程学院学报,2008,23(3):293-296.
    [90]Sun W M, Zheng Z Q.3D variable structure guidance law based on adaptive model-following control with impact angular constraint[C]. Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China,2007.
    [91]Ha I J, Chong S. Design of a CLOS guidance law via feedback linearization[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):51-62
    [92]Srivastava R, Sarkar A K, Ghose C. Nonlinear Three Dimensional Composite Guidance Law Based on Feedback Linearization[C]. AIAA Guidance Navigation and Control Conference and Exhibit. Providence, Rhode Island August 16-19, AIAA 2004-4903:1-11.
    [93]袁丽英,李杰,李士勇.拦截机动目标自适应反馈线性化末制导律[J].北京理工大学学报,2009,29(5):386-389.
    [94]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2000.
    [95]闫晓勇,张成,杨树兴.一类滚转弹的补偿解耦方法[J].弹道学报,2009,21(4):17-20.
    [96]Harald B. Full Envelope Missile Autopilot Design Using Gain Scheduled Robust Control[J]. Journal of Guidance, Control, and Dynamics.1999,22(1):115-122.
    [97]Nichols R A, Reichert R T, Rugh W L. Gain Scheduling for H-Infinity Controllers:A Flight Control Example[J]. IEEE Trans. on Control Systems Technology,1993, (2): 69-79
    [98]Steinberg M L. Comparison of intelligent, adaptive, and nonlinear flight control laws[J]. Journal of Guidance, Control, and Dynamics,2001,24(4):693-699.
    [99]Devaud E, Harcaut J P, Siguerdidjane H. Three-axes missile autopilot design:from linear to nonlinear control strategies[J]. Journal of Guidance, Control, and Dynamics, 2001,24(1):64-71.
    [100]尚安利,梁勇,顾文锦.导弹非线性控制系统设计方法研究[J].飞行力学,2004,24(4):41-44.
    [101]连葆华,崔平远,崔祜涛.高速再入飞行器的制导与控制系统设计[J].航空学报,2002,23(2):115-119.
    [102]连葆华,崔平远,崔祜涛.高速再入飞行器的变结构控制及其六自由度仿真研究[J].航天控制,2002,(4):39-45.
    [103]连葆华,崔平远,崔祜涛.再入飞行器自动驾驶仪的 自适应退步控制设计[J].中国空间科学技术,2003,(1):7-13.
    [104]闫晓勇,李克勇,杨树兴.基于动态逆理论的自旋弹控制方法[J].弹箭与制导学报,2009,29(5):83-86.
    [105]韩晶,王华.基于反馈线性化的二维弹道修正控制系统设计[J].弹道学报,2010,22(2):27-31.
    [106]雷延花,陈士橹.导弹气动耦合分析与解耦算法研究[J].弹道学报,2003,15(1):11-16.
    [107]雷延花,陈士橹.基于微分几何方法的大迎角导弹解耦控制[J].飞行力学,2003,24(1):39-41.
    [108]雷延花,陈士橹.非线性动态逆在大攻角导弹控制系统设计中的应用[J].弹箭与制导学报,2003,23(1):109-112.
    [109]董长虹,周国杰,徐世杰.反演法在导弹非线性控制系统设计中的应用[J].航天控制,2010,28(1):3-6.
    [110]唐治理,雷虎民.高机动导弹非线性自动驾驶仪动态面控制[J].系统工程与电子技术,2008,30(8):1523-1525.
    [111]张科.时变滑态变结构控制理论及应用研究[D].西北工业大学博士论文,1998.
    [112]周军.不确定性系统的变结构自适应控制理论及应用[D].西北工业大学博士论文,1993.
    [113]郭建国,周凤岐,周军.飞行器模型参考变结构姿态控制系统设计[J].弹箭与制导学报,2005,25(4):3-5.
    [114]王志,周军,周凤岐.低速滚转弹道导弹运动模型及变结构姿态控制系统设计[J].兵工学报,2007,28(7):849-853.
    [115]韩艳烨,周凤岐,周军.基于反馈线性化和变结构控制的飞行器姿态控制系统设计[J].宇航学报,2004,25(6):637-641.
    [116]周凤岐,韩艳铧,周军.空间飞行器姿态控制设计和鲁棒性分析[J].中国空间科学技术,2007,(2):36-41.
    [117]何素娟,周凤岐.空空导弹大攻角俯仰自动驾驶仪设计[J].计算机仿真,28(9):98-101.
    [118]王延,周凤岐,周军.高超声速飞行器非线性H∞姿态控制设计[J].哈尔滨工业大学学报,2011,43(9):128-133.
    [119]修观.非线性模型预测控制方法在滑翔弹道中的应用研究[D].南京理工大学博士论文,2011.
    [120]Fu L C, Chang W D, Yang J H. Adaptive robust bank-to-turn missile autopilot design using neural networks[J]. Journal of Guidance, Control, and Dynamics,1997,20(3): 346-354.
    [121]张友安,胡云安,苏身榜.BTT导弹控制系统鲁棒动态逆设计[J].宇航学报,2002,23(2):89-91.
    [122]张友安,胡云安.导弹控制和制导的非线性设计方法.北京:国防工业出版社2003.
    [123]胡云安,晋玉强.BTT导神经网络自适应控制器设计[J],航天控制.2003(1):37-41.
    [124]晋玉强,胡云安.导弹纵向神经网络自动驾驶仪设计[J].自动驾驶仪与红外技,2003(2):1-6.
    [125]张源,许江宁,卞鸿巍.GPS姿态测量系统对惯性导航系统误差修正能力分析[J].情报指挥控制系统与仿真技术,2005,27(5):96-100.
    [126]冯绍军,胡国辉,袁信.低成本IMU/GPS组合导航系统研究[J].南京航空航天大学学报,1998,30(6):641-645.
    [127]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [128]韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社,2008.
    [129]Loxton R C, Teoa K L, Rehbocka V. Optimal control problems with a continuous inequality constraint on the state and the control[J]. Automatica,2009), (45): 2250-2257.
    [130]Loxton R C, Teoa K L, Rehbocka V. Optimal control problems with multiple characteristic time points in theobjective and constraints[J]. Automatica,2008, (44): 2923-2929.
    [131]雷阳,李树荣,张强.一种求解最优控制问题的非均匀控制向量参数化方法[J].中国石油大学学报(自然科学版),2011,35(5):180-184.
    [132]Brian C, Fabien. Some tools for the direct solution of optimal control problems[J]. Advances in Engineering Software,1998,29(1):45-61
    [133]徐平,王伟,林德福.随机风对比例导引制导精度影响研究[J].兵1学报,2011,32(12):1481-1485.
    [134]包一鸣,姜智超,彭琛.一种实现大角度打击的制导律设计[J].北京航空航天大学学报,2008,34(12):1375-1378.
    [135]吴森堂.飞航导弹制导控制系统随机鲁棒分析与设计[M].国防工业出版社,2010.
    [136]徐明友.高等外弹道学[M].北京:高等教育出版社,2003.
    [137]吴晓燕,李彦彬,赵敏荣.基于MATLAB的控制系统优化设计[J].空军工程大学学报,2001,2(2):37-40.
    [138]胡跃明.非线性控制系统理论与应用[M].国防工业出版社,2005.
    [139]王明海,李邦态,刘新学.弹道导弹线性制导方案改进方法研究[J].飞行力学,2003,21(2):38-40.
    [140]夏群力,郭涛,祁载康.空地导弹对应不同驾驶仪下的中制导高度控制回路设计[J].系统仿真学报,2008,20(24):6763-6766.
    [141]Azinheira J R, Paiva E C, Ramos J R. Mission path following for an autonomous unmanned airship[C]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation. San Francisco:IEEE,2000:1269-1275.
    [142]刘根旺,许化龙.数字式导弹姿态控制系统的变结构控制[J].导弹与航天运载技术,2006,(2):43-45.
    [143]Menon P K, Sweriduk G D, Vaddi S S. Nonlinear discrete-time design methods for missile flight control systems(AIAA-2004-5326)[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Rhode Island, USA:American Institute of Aeronautics and Astronautics,2004:1-16.
    [144]高道祥,孙增圻,杜天容.高超声速飞行器基于Back-stepping的离散控制器设计[J].控制与决策,2009,24(3):459-467.
    [145]Xu R. Optimal sliding mode control and stabilization of underactuated systems[D]. Columbus:The Ohio State University,2007.
    [146]Sarpturk S Z, Istefanopulos Y, Kaynak O. On the stability of discrete-time sliding mode control system[J]. IEEE Transactions on Automatic Control,1987,32(10): 930-932.
    [147]Gao W B, Wang Y F, Homaifa A. Discrecte-time variable structure control systems[J]. IEEE Transaction on Industrial Electronics,1995,42(2):117-122.
    [148]Bartolini G, Ferrara A, Utkin V I. Adaptive sliding mode control in discrete-time systems[J]. Automatica,1995,31(5):769-773.
    [149]Chan C Y. Discrete a daptive sliding mode tracking controller[J]. Automatica,1997, 33:999-1002.
    [150]黄凤芝,井元伟.一类离散不确定系统自适应滑模输出反馈控制[J].东北大学学报(自然科学版),2012,33(1):13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700