用户名: 密码: 验证码:
弹道环境下的陀螺/GPS组合姿态测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展低成本的有控弹箭是提高常规火炮武器系统射击精度的重要途径之一。为提高制导炮弹外弹道姿态测量精度,从而对其实施精准的弹道控制,本文围绕低成本MEMS陀螺姿态测量以及姿态非线性滤波技术中遇到的一些基础理论和问题,结合弹道学理论展开分析和研究。
     首先建立了制导炮弹的刚体运动模型。通过对模型进行数值计算,解算出一条理论弹道,该弹道一方面为后面模拟弹载传感器测量值提供依据,另一方面也作为考虑测量误差的姿态标定值与估计值的对比基准,以评定标定与滤波算法精度。
     针对低速旋转尾翼弹的弹道特性,分别提出基于忽略攻角和动力平衡角近似攻角假设条件下的飞行姿态空中标定方法。根据建立的弹道模型,研究低旋尾翼弹攻角运动特性,充分利用地面弹道试验数据和飞行测量数据,提出了由动力平衡角近似攻角来求解弹丸飞行姿态,推导出近似攻角假设下的姿态标定数学模型。同样基于忽略攻角假设,建立了弹箭简易飞行姿态标定模型,并通过仿真对比两种模型精度。在弹道滑翔段考虑平衡攻角的影响,研究了稳态飞行条件下的姿态角标定方法。本文简要分析研究了适用于全弹道的陀螺积分算法,并提出了利用姿态标定抑制陀螺积分产生的累积误差的方法。
     建立了炮弹攻角、侧滑角与滚转角的非线性姿态滤波模型。以炮弹飞行时的攻角、侧滑角与滚转角为状态变量,结合弹道飞行参数与MEMS陀螺/GPS测量数据,建立了非线性姿态滤波估计状态方程与量测方程。模型充分考虑了弹道参数的可变性和随机测量噪声,通过多种滤波估计方法对模型进行数值仿真,对比仿真结果得到了适用于姿态估计模型的最优算法。
     研究了MEMS角速率陀螺的一般工作原理与测量误差形成的原因,利用时间序列方法对陀螺随机误差进行建模补偿,去除噪声中的周期项、趋势项等,获得了正态分布的随机噪声序列,以便利用滤波方法进行补偿。提出了利用小波神经网络方法对陀螺输出数据进行建模分析的思路,通过仿真建模得到了陀螺输出预测值。利用小波滤波与多分辨率分解理论,对陀螺输出噪声进行滤波补偿,进行仿真试验获取了最优小波基函数和尺度函数。
     在有限条件下开展了半实物仿真试验研究。利用三轴飞行姿态仿真转台和MEMS角速率陀螺,设计仿真试验方法。以弹道模型理论计算数据作为转台控制参数,对陀螺输出数据进行采样和预处理,并将结果代入姿态标定数学模型和非线性滤波估计模型,得到了令人满意的姿态标定与滤波估计结果,在半实物仿真环境下验证了姿态标定模型和滤波估计模型的有效性及精度。
The development of low-cost controlled missile is one important way to improve firing accuracy of conventional gun weapon systems. In order to improve the guided projectile flight attitude measurement precision then to achieve accurately trajectory control, this paper focuses on some of the basic theory and problems encountered in the low-cost MEMS gyroscope attitude measurement and attitude nonlinear filtering techniques, combined with ballistics theory to analyze and research.
     This paper firstly established a model of rigid body motion of the guided projectile. By the numerical calculation of the model to obtain a theoretical trajectory, the theoretical trajectory on the one hand provide the basis for the simulation of the onboard sensor measurements, on the other hand, also as an attitude comparison benchmark of estimated and calibration values considering measurement error, to assess the precision of the calibration and filter.
     Aiming at the low-speed rotary projectile ballistic characteristics, this paper presents an inflight calibration method based on the assumptions of the approximate attack angle with dynamic balance angle and zero. According to the established trajectory model, motion characteristics of low-spin tail projectile angle of attack were studied. Make full use of the ground ballistic test data and flight measurement data, the approximate angle of attack by the dynamic balance angle was used to solve the bullet attitude, and then attitude calibration mathematical model is derived under the assumption. Also based on the assumption of zero angle of attack, establish the missile simple flight attitude of the calibration model, and contrast the precision of the models through simulation. In the trajectory of gliding, the initial calibration method of attitude angles has been proposed by consider the impact of the balanced angle of attack. The article also analyzed the gyro integration algorithm for the whole trajectory and a method to suppress gyro integral accumulated error with attitude calibration.
     The nonlinear attitude filter model has been built with the angle of attack, sideslip angle and roll angle. With the angle of attack, the sideslip angle and roll angle as the state variables, the nonlinear attitude filter estimated state equations and measurement equations were established combined with ballistic parameters and the MEMS gyroscope and GPS measurement data. The models take full account of the variability of the trajectory parameters and gyro random measurement noise. Optimal algorithm for attitude estimation model has been obtained by comparing a variety of numerical simulation results.
     Researched on MEMS angular rate gyro general principle and measurement error causes, using the time series method for gyro random error modeling and compensation, removed the periodic terms and the trend term in the noise, this article has received a normal distribution random noise sequence in order to take advantage of filtering methods to compensate. Putting forward the idea of using wavelet neural network modeling and analysis of the gyro output data, a high-precision of predictive value for gyro output has been given through simulation modeling. Using of wavelet filtering and multi-resolution decomposition theory for the gyro output noise filter compensation, simulation experiments have been made to obtain the optimal wavelet basis function and scaling function.
     Semi physical simulation research has been conducted under laboratory conditions. Using three axis flight attitude simulation platform and MEMS angular rate gyro designed simulation test method. According to the theory of ballistic data as control parameters, the gyro output data was sampled and pretreated. The results were brought into the attitude calibration model and nonlinear filtering estimation model, and it obtained the satisfactory attitude calibration and estimation results. The semi-physical simulation test verified the validity and accuracy of the attitude calibration model and filtering the estimated model.
引文
[1]张晓玲,华菊仙.新型制导炮弹:射程更远、射后不管[J].现代军事,2006,(8):56-58.
    [2]周义,崔东杰,卢晓军.漫话信息化战场上的精确制导炮弹[J].国外坦克,2007,(12):20-22.
    [3]王扬,张学辉,张光才.美军的精确制导炮弹[J].环球军事,2006,(12):46-47.
    [4]牟宇,程振轩,王江.制导炮弹技术现状与发展方向[J].飞航导弹,2008,(7):33-37.
    [5]曾国强.舰炮制导炮弹发展趋势研究[J].机械管理开发,2009,(6):44-46.
    [6]王伟,马志赛.制导炮弹的优势特点及发展趋势[J].飞航导弹,2011,(7):10-14.
    [7]Gander T J. Mortar ammunition update.[J]. Armada International,2003,27(2):18-20.
    [8]Zarchan P. Tactical and Strategic Missile Guidance[M]. Reston, VA:AIAA,2007.
    [9]常思江.某鸭式布局防空制导炮弹的飞行弹道特性与控制方案研究[D].南京:南京理工大学,2011.
    [10]祁载康.制导弹药技术[M].北京:北京理工大学出版社,2002.
    [11]Scribner D A, Kruer M R, Killiany J M. Infrared focal plane array technology [J]. Proceedings of the IEEE,1991,79(1):66-85.
    [12]Srinivasan R. Designing distributed detection systems[J]. Radar and Signal Processing, IEE Proceedings F,1993,140(3):191-197.
    [13]Hainz L, Costello M. In Flight Projectile Impact Point Prediction[C]. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Reston, VA,2004.
    [14]郑友胜.远程制导炮弹弹道优化设计与姿态控制方法研究[D].南京:南京理工大学,2008.
    [15]曲国文,吴杰,吴福初.舰炮制导炮弹军事需求分析[J].兵工自动化,2009,(12):7-8.
    [16]方艳艳,柴金华.美俄激光末制导炮弹的对比分析[J].制导与引信,2004,(3):14-20.
    [17]吴艳.多传感器数据融合算法研究[D].西安:西安电子科技大学,2003.
    [18]邱荣剑,陶杰武,王明亮.弹道修正弹综述[J].国防技术基础,2009,(8):45-48.
    [19]史金光,王中原,曹小兵,等.滑翔增程弹滑翔弹道设计[J].南京理工大学学报(自然科学版),2007,(2):147-150.
    [20]陈帅.精确制导炸弹低成本惯导/卫星组合导航方法研究[D].南京:南京理工大学,2008.
    [21]Titterton Davidh., Weston Johnl捷联惯性导航技术[M].北京:国防工业出版社,2007.
    [22]韩艳.制导炮弹飞行姿态的陀螺/磁阻传感器组合测量方法研究[D].南京:南京理工大学,2010.
    [23]Pridgen J H, Boyd W W, Choate W C, et al. Terminal Homing Applications of Solid-State Imaging Devices (THASSID) composite tracking concepts[J]. Digital processing of aerial images,1979:73-87.
    [24]陈祥国.我国舰炮制导炮弹的发展思路及关键技术分析[J].国防技术基础,2005,(3):16-18.
    [25]蔚微.一维弹道修正弹关键技术研究及其实现[D].成都:电子科技大学,2010.
    [26]许文白,魏丽萍,王巍.GPS辅助MEMS惯性系统与常规炮弹的制导化[J].导航与控制,2005,(2):69-74.
    [27]Baker P, Kahn A, Kamgar-Parsi B, et al. Optical Guidance for UAV Following of Shorelines[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina,2007.
    [28]Sitomer J L, Kourepenis A, Connelly J H. Micromechanical inertial guidance navigation and control systems in gun launched projectiles[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Portland,1999.
    [29]张春慧,吴简彤,谢林,等.捷联姿态解算的旋转矢量法[C].船舶仪器仪表学术年会,中国北海,2004.
    [30]程源.激光陀螺捷联惯性组合的标定方法研究[D].哈尔滨:哈尔滨工业大学,2010.
    [31]许国珍,吴美平.低成本MIMU/GPS组合导航研究[J].计算机仿真,2008,(10):69-72.
    [32]Grandvallet B, Zemouche A, Boutayeb M, et al. A real-time sliding window filter for projectile attitude estimation[C]. AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada,2010.
    [33]Landry R, Lavoie P. Low-cost MEMS sensor-based attitude determination system by integration of magnetometers and GPS:A real-data test and performance evaluation[C]. Position, Location and Navigation Symposium,2008 IEEE/ION, Monterey, California, 2008.
    [34]Zhao Y, Liman Y, Qi Z, et al. Attitude measurement of driver's head based on accelerometer and magnetoresistive sensor[C]. Fluid Power and Mechatronics (FPM), 2011 International Conference on, Beijing, China,2011.
    [35]张萌.旋转弹用惯性测量系统研究[D].太原:中北大学,2008.
    [36]宋迎春,刘希贤,李琼GPS/SINS组合导航系统的多传感器最优融合算法[J].湖南人文科技学院学报,2006,(3):1-4.
    [37]丁明理,王祁,洪亮.GPS与无陀螺微惯性测量单元组合导航系统设计[J].南京理工大学学报(自然科学版),2005,,(1):98-101.
    [38]苏中,付国栋.滚转弹的姿态解算研究[J].北京信息科技大学学报(自然科学版),2009,(2):9-13.
    [39]李奕恒.高速旋转弹姿态参数测试技术研究[D].太原:中北大学,2008.
    [40]钱伟行,刘建业,李荣冰,等.高速、高动态下的捷联惯导空中粗对准方法[J].中国惯性技术学报,2009,(4):388-392.
    [41]de La Parra S, Angel J. Low cost navigation system for UAV's[J]. Aerospace science and technology,2005,9(6):504-516.
    [42]Chang M I J. Rapid Inflight/Transfer Alignment Filter for GPS/INS/DVS Navigation System[R]. Santa Monica:Proceedings of the 1997 National Technical Meeting of The Institute of Navigation,1997.
    [43]Sasiadek J Z, Wang Q, Zeremba M B. Fuzzy adaptive Kalman filtering for INS/GPS data fusion[C]. Intelligent Control, San Francisco, CA,2000.
    [44]Albert W, Albert K. Low cost, high G, micro electro-mechanical systems (MEMS), inertial measurements unit (IMU) program[J], IEEE PLANS, Position Location and Navigation Sympasium,2002:299-305.
    [45]廖国军.GPS三维姿态测量技术的研究[D].成都:西华大学,2011.
    [46]El-Rabbany A. Introduction to GPS[M]. London:Artech House Publishers,2002.
    [47]王菊.GPS定位定姿系统研究[D].南京:南京理工大学,2006.
    [48]雷芳.地磁陀螺组合的姿态敏感技术[D].太原:中北大学,2009.
    [49]鲍亚琪,陈国光,吴坤,等.基于磁强计和MEMS陀螺的弹箭全姿态探测[J].兵工学报,2008,(10):1227-1231.
    [50]陈清文.基于磁阻传感器的载体姿态测量系统的设计[D].南京:南京理工大学,2004.
    [51]刘晓娜.地磁传感器及其在姿态角测试中的应用研究[D].太原:中北大学,2008.
    [52]Silvestro M, Iivedson C, Diprizito F, et al. A cloesd loop simulation environment for GPS/INS guidance systems[C]. AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, California,2007.
    [53]Abdel-Hamid W, Abdelazim T, E1-Sheimy N, et al. Improvement of MEMS-IMU/GPS performance using fuzzy modeling[J]. GPS Solutions,2006,10(1):1.
    [54]Nassar S, El-Sheimy N. A combined algorithm of improving INS error modeling and sensor measurements for accurate INS/GPS navigation[J]. GPS Solutions,2006,10(1): 29.
    [55]邹颖MIMU空中标定对准研究[D].长沙:国防科学技术大学,2009.
    [56]Hong H S, Lee J G, Park C G. Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error [J]. IEE Proceedings-Radar Sonar Navig,2004,151(1):57-62.
    [57]Johnson C, Ohlmeyer E J, Pepitone T R. Attitude dilution of precision-a new metric for observability of inflight alignment errors[R]. Denver :AIAA Guidane, Navigation, and Control Conferene and Exhibit,2000.
    [58]钱华明,夏全喜,阙兴涛,等.基于Kalman滤波的MEMS陀螺仪滤波算法[J].哈尔滨工程大学学报,2010,(9):1217-1221.
    [59]李栋,贾润,刘剑锋.基于UKF的GPS/MIMU组合导航滤波算法研究[C].船舶通信导航学术年会,陕西宝鸡,2008.
    [60]谈振藩,张勤拓MEMS陀螺误差辨识与补偿[J].传感器与微系统,2010,(3):39-41.
    [61]陆芳MIMU中陀螺随机漂移建模及Kalman滤波技术研究[D].太原:中北大学,2007.
    [62]Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS[J], Journal of Geodesy,1999,73(4):193-203.
    [63]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422.
    [64]刘星.UKF和EKF在卫星姿态确定中的应用研究[D].北京:中国科学院研究生院(空间科学与应用研究中心),2007.
    [65]张卫明,张继惟,范子杰,等.UKF方法在惯性导航系统初始对准中的应用研究[J].系统工程与电子技术,2007,(4):589-592.
    [66]李兰飞.基于DSP的MEMS陀螺信号采集与处理系统设计[D].哈尔滨:哈尔滨工程大学,2009.
    [67]吴鸿宾.基于MEMS技术的弹道修正微陀螺集成设计[D].西安:西北工业大学,2005.
    [68]刘宇.固态振动陀螺与导航技术[M].北京:中国宇航出版社,2010.
    [69]刘俊,石云波,李杰.微惯性技术[M].北京:电子工业出版社,2005.
    [70]R W J. Smart munitions development relies heavily on MEMS technology [J]. Military & Aerospace Electronices,2003,14(1):12-18.
    [71]李新刚.微机电陀螺误差建模及其在飞行器组合导航中的应用[D].西安:西北工 业大学,2004.
    [72]李辕,段凤阳,周维杰,等.微机械陀螺随机误差补偿研究[J].舰船电子工程,2011,(9):54-56.
    [73]Marselli C, Amann H P, Pellandini F, et al. Error Modelling of a Silicon Angular Rate Sensor[C]. Symposium Gyro Technology, Stuttgart, Germany,1997.
    [74]李沁雪.GPS动态导航系统滤波算法应用研究[D].镇江:江苏大学,2008.
    [75]Braasch M S, Van Dierendonck A J. GPS receiver architectures and measurements[J]. Proceedings of the IEEE,1999,87(1):48-64.
    [76]徐淑春.浅析GPS测量与误差分析[J].科技创新导报,2011,(3):89.
    [77]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [78]韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社,2008.
    [79]孙化东,王敏毅,王思丽.火箭弹6D弹道模型的Simulink仿真[J].四川兵工学报,2007,(3):40-41.
    [80]Li X R, Jilkov V P. A survey of maneuvering target tracking-Part Ⅱ:Ballistic target models[C]. Proc.2001 SPIE Conf. on Signal and Data Processing of Small Targets, San Diego, CA,2001.
    [81]王中原,史金光.一维弹道修正弹气动布局与修正能力研究[J].南京理工大学学报(自然科学版),2008,(3):333-336.
    [82]于涛.二维弹道修正弹的弹道特性研究[D].南京:南京理工大学,2010.
    [83]徐劲祥.弹道修正弹六自由度弹道仿真研究[J].兵工学报,2007,(4):411-413.
    [84]裔萍.一维弹道修正弹的气动力特性研究[D].南京:南京理工大学,2006.
    [85]史金光,王中原,常思江,等.二维弹道修正弹修正方法[J].海军工程大学学报,2010,(4):87-92.
    [86]王中原,周卫平.外弹道设计理论与方法[M].北京:科学出版社,2004.
    [87]徐明友.高等外弹道学[M].高等教育出版社,2003.
    [88]宋丕极.枪炮与火箭外弹道学[M].北京:兵器工业出版社,1993.
    [89]臧国才,李树常.弹箭空气动力学[M].北京:兵器工业出版社,1989.
    [90]Nebelecky C K. Attitude Data Fusion Using a Modified Rodrigues Parametrization[C]. AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada,2010.
    [91]王全生.滑翔增程弹弹体姿态传感器应用原理研究[D].南京:南京理工大学,2004.
    [92]马春艳,刘莉,杜小菁,等.末制导炮弹初始滚转角的确定[J].弹箭与制导学报,2005,25(2):356-358.
    [93]谢海波.地磁探测与GPS复合滚转姿态检测技术研究[D].南京:南京理工大学, 2008.
    [94]陈哲.全姿态飞机捷联式系统姿态角的计算[J].航空学报,1983,(3):76-85.
    [95]Scorse W T, Crassidis A L. Robust Longitudinal and Transverse Rate Gyro Bias Estimation for Precise Pitch and Roll Attitude Estimation in Highly Dynamic Operating Environments Utilizing a Two Dimensional Accelerometer Array[C]. AIAA Atmospheric Flight Mechanics Conference, Portland, Oregon,2011.
    [96]Khosravian A, Namvar M. Rigid Body Attitude Control Using a Single Vector Measurement and Gyro[J]. Automatic Control, IEEE Transactions on,2012,57(5): 1273-1279.
    [97]马利兵,林都.基于MATLAB的外弹道模型仿真研究[J].中北大学学报(自然科学版),2006,(5):412-415.
    [98]何海波,杨元喜,孙中苗,等.GPS多普勒频移测量速度模型与误差分析[J].测绘学院学报,2003,(2):79-82.
    [99]Deutschmann J, Harman R, Bar-Itzhack I. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data[R]. NASA,2001.
    [100]Bulusu N, Heidemann J, Estrin D. GPS-less low-cost outdoor localization for very small devices[J]. Personal Communications, IEEE,2000,7(5):28-34.
    [101]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2006.
    [102]Namvar M, Khosravian A. Rigid Body Attitude Control Using a Single Vector Measurement and Gyro[J]. IEEE Transactions on Automatic Control,2012,(99):1-6.
    [103]于翔川.基于非线性滤波的目标跟踪算法研究[D].西安:西安电子科技大学,2009.
    [104]武元新.对偶四元数导航算法与非线性高斯滤波研究[D].长沙:国防科学技术大学,2005.
    [105]Hossaini-Asl E, Shahbazian M. Nonlinear dynamic system control using wavelet neural network based on sampling theory:Systems, Man and Cybernetics,2009. SMC 2009. IEEE International Conference on20094502-4507.
    [106]Zarchan P, Musoff H. Fundamentals of Kalman filtering:a practical approach[M]. Virginia:AIAA,2005.
    [107]Changey S, Fleck V, Beauvois D. Projectile attitude and position determination using magnetometer sensor only[C]. SPIE, Bellingham,2005.
    [108]杨小军,施坤林,汪仪林.基于磁传感器/GPS组合制导飞行弹体的姿态和位置估计[J].兵工学报,2008,(2):169-173.
    [109]李光春,何昆鹏,曾建辉,等MEMS惯性器件误差建模和补偿方法综述[J].导航 与控制,2009,08(1):72-78.
    [110]Schadow K. MEMS Military Applications-RTO Task Group Summary[C]. CANEUS 2004 Conference on Micro-Nano-Technologies, Monterey, California,2004.
    [111]Markley F L, Sedlak J E. Kalman filter for spinning spacecraft attitude estimation[J]. Journal of Guidance, Control, and Dynamics,2008,31(6):1750-1760.
    [112]Thome R L. Asynchronous data fusion for AUV navigation using extended Kalman filtering[R]. DTIC Document,1997.
    [113]Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation[C]. Adaptive Systems for Signal Processing, Communications and Control Symposium, Lake Louise, Alta,2000.
    [114]刘健,刘忠.UKF算法在纯方位目标运动分析中的应用[J].南京理工大学学报(自然科学版),2008,(2):222-226.
    [115]沈忠,俞文伯,房建成.基于UKF的低成本SINS/GPS组合导航系统滤波算法[J].系统工程与电子技术,2007(3):408-411.
    [116]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,,(7):970-973.
    [117]谢阳光,伊国兴,王常虹,等.高斯-厄米特滤波器在捷联惯导系统初始对准中的应用[J].航空学报,2011:1-7.
    [118]Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. Automatic Control, IEEE Transactions on,2000,45(5):910-927.
    [119]穆静,蔡远利.平方根容积卡尔曼滤波算法及其应用[J].兵工自动化,2011,(6):11-13.
    [120]Arasaratnam I, Haykin S. Cubature Kalman Filters[J]. Automatic Control, IEEE Transactions on,2009,54(6):1254-1269.
    [121]Keymeulen D, Fink W, Ferguson M I, et al. Evolutionary computation applied to the tuning of MEMS gyroscopes[C]. Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington, DC,2005.
    [122]毛奔,林玉荣.惯性器件测试与建模[M].哈尔滨:哈尔滨工程大学出版社,2008.
    [123]Cristea P, Tuduce R, Cristea A. Time series prediction with wavelet neural networks[C]. 5th Seminar on Neural Network Applications in Electrical Engineering, Yugoslavia, 2000.
    [124]Willcocks G. UK Housing Market:Time Series Processes with Independent and Identically Distributed Residuals[J]. The Journal of Real Estate Finance and Economics,2009,39(4):403.
    [125]Bashir Z, El-Hawary M E. Short term load forecasting by using wavelet neural networks:Electrical and Computer Engineering,2000 Canadian Conference on2000:1, 163-166.
    [126]Banakar A, Azeem M F. A New Artificial Neural Network and its Application in Wavelet Neural Network and Wavelet Neuro-Fuzzy Case study:Time Series Prediction:Intelligent Systems,2006 3rd International IEEE Conference on2006621-625.
    [127]Domider T, Tkacz E J, Kostka P, et al. A new approach to the P-wave detection and classification based upon application of wavelet neural network[C]. Proceedings of the 23rd Annual International Conference of the IEEE, Istanbul, Turkey,2001.
    [128]Sahoo D, Dulikravich G S. Evolutionary wavelet neural network for large scale function estimation in optimization[C].1 lth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia,2006.
    [129]Pany P K, Ghoshal S P. Forecasting the hourly Ontario energy price by local linear wavelet neural network and ARMA models[C]. Proceedings of the International Conference on Advances in Computing and Artificial Intelligence, Rajpura, India, 2011.
    [130]Lind R, Brenner M, Freudinger L C. Wavelet Applications for Flight Flutter Testing[C]. NASA CONFERENCE PUBLICATION, Huntsville, US,1999.
    [131]温佰仟.微小型MEMS陀螺的误差特性研究[D].南京:南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700