用户名: 密码: 验证码:
抽芯式斜流泵装置水力与振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜流泵是叶片角度全调节的混流泵,其对运行工况的适应性和宽广的高效性,使其得到越来越广泛的应用。进入21世纪以来,在国内大型泵站中,引进了抽芯式斜流泵这种具有优良水力设计的大型混流泵,其最大优点是转子为全抽芯,安装检修十分方便。进水方式采用喇叭口吸水,相应的泵房形式为“湿室型”泵房,可以减小工程投资,但与传统的大型水泵进口采用肘形、钟形或簸箕形进水流道相比,泵吸入口直接从进水池取水,没有条件通过进水流道作流态的进一步调整,同时泵体与水工建筑物之间难以形成固定的结构支撑,因此,泵内流动稳定性很难得到保证,尤其是运行中会产生较强烈的机组振动而导致供水安全隐患。本文针对实际工程中出现的机组异常振动现象,采用数值模拟方法和现场测试手段,对水泵机组振动的原因做了较为全面的分析。
     在水力学计算中,使用几种常用的k-ε模型对泵站进水流道进行数值仿真,通过与模型试验数据的对比,得出Realizablek-ω模型最适用于泵站进水池流态的模拟;对不同开机组合条件下泵站进水流态进行的数值仿真,验证了该泵站现有整流装置的有效性,讨论了不同开机组合对进水流态及对水泵机组振动的影响。
     分别使用标准k-ε、RNG k-ε、Realizable k-ε及SST k-ω等4种常用湍流模型对斜流泵内部流场进行定常数值模拟,使用RNG k-ε模型和大涡模拟方法进行非定常数值模拟,并将计算得到的结果与水泵实测性能曲线进行对比。分析了不同湍流模型及计算方法对斜流泵内部流场模拟的适用性,结果表明,使用RNG k-ε模型对斜流泵内部流场进行非定常计算所得到的结果精度最高。以此为基础,对斜流泵内部流动特性进行了分析。
     分析了不同流量下斜流泵内压力脉动的特性。结果表明,斜流泵内最大压力脉动发生在叶轮出口处,且该处压力脉动幅值沿径向向外侧逐渐增大,指出对叶轮出口位置和叶轮轮缘处的结构设计进行优化是减轻斜流泵内压力脉动强度的有效方法;偏工况运行会导致斜流泵内压力脉动的加剧,且偏离设计工况越远,脉动幅值越大,在偏离设计工况的条件下,斜流泵特别要避免在小流量区内运行;斜流泵内压力脉动的主要频率与其转轮的通过频率相等,故设计时应对斜流泵的转轮等这些主要部件进行模态分析,以避免出现共振产生的条件。通过对转轮的模态进行分析,结果表明水力性能优良的斜流泵内压力脉动不会引发其转轮发生共振或低倍谐共振。
     斜流泵机组的振动测试。结果表明,机组振动随其叶片角度的增大而增强,随开机台数的增多而降低,机组对称运行可减弱其振动;机组开机时的冲击力使水泵主轴出现的偏移,导致了机组的异常振动,建议尽量减少机组的启停次数,并采用软启动技术减小机组启动时的冲击力,进而减轻机组运行时的振动。
The all-adjusted mixed-flow pump is more widely used in engineering, which is due to its wide operating-mode adaptability and high efficiency. In the21st century, the core-pulling diagonal-flow pump has been applied to some large domestic pump stations. The greatest advantage of this kind of pump is that it has a fully out-core rotor with excellent hydraulic design facilitate installation and maintenance procedure. The investment is small because of the bell mouth suction and the wet-pit pump house. However, compared with large pump, which have elbow, bell or dustpan-inlet conduits, this kind of pump suction directly pump water from pump sump so that it can not make further adjustment in flow pattern, meanwhile; there is no stable structure support between the pump and hydraulic buildings. Therefore, the flow stability in pump is difficult to be guaranteed, especially that severe-vibration in operation, which induces safety risk in water supply. In this thesis, numerical simulation and field tests are used to overall analyze abnormal vibration of pumps.
     In hydraulic calculation, several commonly used k-ε models are used to simulate the inlet flow patterns. Through comparison of simulation data and model experimental data, it is found that Realizable model is more suitable for inlet flow patterns simulation. The effectiveness of rectifying device of the pumping station is validated by the simulation results of inlet flow patterns for different start-up mode of pumping station. The influence of start-up mode on inlet flow pattern and vibration of pump are discussed.
     Standard k-ε, RNG k-ε, Realizable k-ε and SST k-ω for the steady numerical simulation are used to simulate the internal flow of the diagonal-flow pump, then RNG k-ε model and large eddy simulation method for the unsteady numerical simulation are used. The simulation results are compared with the measured performance curve of the pump. The applicability of different turbulence models and methods of Numerical calculation is analyzed, the accuracy of the obtained results show that RNG k-ε model is more suitable for this issue, and its internal flow characteristics are analyzed based on that.
     The characteristics of pressure pulsation of the diagonal-flow pump are analyzed for different flow volume. The results show that the maximum pressure pulsation occurs at impeller outlet, and the value increases along radial direction. The results show that the structural design optimization of the impeller outlet and rim is an effective method to reduce pressure pulsation strength; the diagonal-flow pump operated on off-design condition leads to internal pressure pulsation intensifies, and the strength of pressure pulsation increases with the increase of deviation. Therefore the diagonal-flow pump should be avoided operating in low flow rate; the frequency of pressure pulsation is equal to the impeller passage frequency, so modal analysis of the main parts, like the impeller wheel, must be conducted to avoid resonance or low power harmonic resonance. The results of modal analysis show that the internal pressure pulsation would not induce the impeller resonance or low power harmonic resonance.
     The results of diagonal-flow pump vibration tests show that the vibration amplitude of pumps enhance with the increase of its blade angle, and decrease with the increase of the operation units, and the symmetrical layout of operation pumps can reduce the vibration amplitude. The impact force which is due to the start of pump makes the spindle deviate, and leads to the abnormal vibration of pumps. In order to reduce the vibration of pumps, the frequency of starting and stopping should be reduced as far as possible, and the soft start technology should be used to decrease the impact force.
引文
[1]陈坚,李琪,许建中,李端明,储训.中国泵站工程现状及“十一五”期间泵站更新改造任务[J].水利水电科技进展,2008,28(2):84-88.
    [2]潘中永,倪永燕,袁寿其,曹英杰.斜流泵研究进展[J].流体机械,2009,37(9):37-41.
    [3]何希杰,李艳辉,高瑛,李金生,王丽梅.混流泵的现状和发展趋势[J].通用机械,2003,(9):21-23.
    [4]关醒凡.轴流泵和斜流泵[M].北京:中国宇航出版社,2009.
    [5]黄义刚,朱荣生,陈松,袁寿其.泵振动的原因及其消除措施[J].排灌机械,2007,25(6):56-59.
    [6]朱华明,周诗海.中小型立式泵机组运行振动问题的探讨[J].排灌机械,2002,20(4):11-14.
    [7]刘竹溪.水泵及水泵站[M].北京:水利电力出版社,1986.
    [8]何耘.水泵进水池漩涡研究的主要进展[J].水力发电学报,2004,23(5):92-96.
    [9]张德胜,施卫东,王川,等.斜流泵叶轮和导叶叶片数对压力脉动的影响[J].排灌机械工程学报,2012,30(2):167-170.
    [10]施卫东,邹萍萍,张德胜,等.高比转速斜流泵内部非定常压力脉动特性[J].农业工程学报,2011,27(4):147-152.
    [11]刘琦,袁寿其.高比转速斜流泵内部三维湍流场数值模拟的研究[J].农机化研究,2007,(7):75-79.
    [12]Sweeney Charles E, Elder Rex A, Duncan. Pump sump design experience:summary [J]. ASCE J Hydraul Div,1982,108(3):361-377.
    [13]徐辉,张林.侧向进水泵站前池整流技术研究综述[J].水利水电科技进展,2008,28(6):84-88.
    [14]Tullis James Paul. Modeling in design of pumping pits [J]. ASCE J Hydraul Div,1979, 105(9):1053-1063.
    [15]Arboleda G, El-Fadel M. Effects of approach flow conditions on pump sump design [J]. Journal of Hydraulic Engineering,1996,122(9):489-494.
    [16]Ansar M, Nakato T. Experimental study of 3D pump-intake flows with and without cross flow [J]. Journal of Hydraulic Engineering,2001,127(10):825-834.
    [17]Japan Association of Agricultural Engineering Enterprises. Pump station engineering handbook [M]. Tokyo,1991.
    [18]Deeny D.F. An experimental study of air-entraining vortices at pump sumps [J]. Proceedings of the institution of mechanical engingeers, London, England,1956, 170(2):106-116.
    [19]Y.R. Reddy, J.A. Pickford. Vortices at intakes in conventional sumps [J]. Water power, 1972:108-109.
    [20]Tagomori M, Gotoh M. Flow patterns and vortices in pump sumps [J], Proc, Int. Symp. On Large Hydr. Machinery, China press,1989:13-22.
    [21]Knauss J, ed. Swirling flow problems at intakes [M]. IAHR hydraulic structures design manual,1987.
    [22]Jain Akalank K, Ranga Raju, Kittur G, Garde Ramachandra J. Vortex Formation at Vertical pipe intakes. ASCE J Hydraul Div,1978,104(10):1429-1445.
    [23]Anwar H. Prevention of vortices at intake [J], Water power,1968(10):112-120.
    [24]Anwar Habib O, Weller James A, Amphlett Michael B. Similarity of free-vortex at horizontal intake [J]. Journal of Hydraulic Research,1978,16(2):95-105.
    [25]Fraser W H, Harrison N J. Hydraulic problems encountered in intake structures of vertical wet-pit pumps and methods leading to their solution [J]. The American Society,1953 (75): 645-652.
    [26]钱义达,严登峰.泵站开敞式进水流道试验研究[J].江苏农学院学报,1989,10(2):47-52.
    [27]朱红耕,奚斌.水泵进水池模型试验新方法研究[J].农业机械学报,2003,34(5):72-75.
    [28]朱红耕.水泵进水池模型试验设计与验收标准的探讨[J].水利技术监督,2004,3:15-17.
    [29]田家山,仲付维.排、灌泵站前池流态及其改善措施的研究[J].华东水利学院学报,1983,(2):38-50.
    [30]何耘,刘成.污水泵站前池设置压水板的改进措施研究[J].水泵技术,2000,(2):21-24.
    [31]周济人,刘超,袁家博.改善王山泵站前池水流流态的模型试验研究[J].排灌机械,1995,(2):12-17.
    [32]冯旭松.泵站前池底坎整流及坎后流动分析[D].扬州,扬州大学,1996.
    [33]Rajendran V P, Patel V C. Measurement of subsurface vortices in a model pump sump [A]. Proceeding of Congress of the International Association of Hydraulic Research [C], New York, ASCE,1997,555-560.
    [34]Rajendran V P, Patel V C. Measurement of vortices in model pump-intake bay by PIV [J]. Journal of Hydraulic Engineering,2000,126(5):322-334.
    [35]Constantinescu S G, Patel V C. Numerical model for simulation of pump-intake flow and vortices [J]. Journal of Hydraulic Engineering,1998,124(2):123-134.
    [36]Fan Y, Liu S, Wu Y, Li y, Zhao F X. Experimental research on a pump suction sump with improved structure [A]. Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting [C], New York, ASME,2005,1544-1549.
    [37]李永,李小明,吴玉林.水泵吸水池的改进和PIV试验验证[J].水力发电学报,2002,(1):76-82.
    [38]李永,李小明,张波涛.水泵吸水池内部流动PIV试验的深入分析[J].工程热物理学报,2002,23(2):190-192.
    [39]李小明,张波涛,李永.水泵吸水池流场PIV分析[J].农业机械学报,2002,33(6):48-50.
    [40]李连超,常进时.大型供水泵站吸水池模型流场PIV测量[J].中国农业大学学报,2002,7(4):100-103.
    [41]史小军.利用PIV测试水槽流场的实验研究[J].安徽工业大学学报,2008,25(2):151-163.
    [42]李大亮,刘超,汤方平.开敞式进水池内部流动的3DPIV实验研究[J].中国农村水利水电,2012,(4):102-106.
    [43]Rajendran V P, Constantinescu S G, Patel V C. Experimental validation of numerical model of flow in pump-intake bays [J]. Journal of Hydraulic Engineering, ASCE,1999, 125(11):1119-1125.
    [44]Constantinescu S G, Patel V C. Role of turbulence model in prediction of pump-bay vortices [J]. Journal of Hydraulic Engineering, ASCE,2000,126(5):387-391.
    [45]Jose Matos Silva, Songheng Li. Numerical simulation of flow in practical water-pump intakes [A]. Proceedings of the XXIX IAHR Congress [C], Beijing, CHINA,2001.
    [46]Songheng Li, Lai Y G, Patel V C, etl. Water-intake pump bays:three-dimensional flow modeling, validation, and application [A]. Proceedings of the 4th International Conference on Hydro informatics [C], Cedar Rapids, USA,2000.
    [47]Hwang Young-Kyu, Heo Joong-Sik, etl. Numerical and experimental investigations of channel flows in a disk-type drag pump [J]. AIP Conference Proceedings,2001,585(1): 903-911.
    [48]陆林广,曹志高,周济人,等.开敞式进水池三维紊流流动模拟及水力优化计算目标函数[J].排灌机械,1996,(4):18-21.
    [49]陆林广,曹志高,周济人,等.开敞式进水池优化水力设计[J].排灌机械,1997,(4):15-19.
    [50]徐宇,吴玉林,王琳.水泵进水池内紊流及漩涡的数值模拟[J].工程热物理学报,2002, 33(6):53-55.
    [51]刘超,成立,汤方平,等.水泵站开敞进水池三维紊流数值模拟[J].农业机械学报,2002,33(6):53-55.
    [52]朱红耕.双泵共用进水池三维紊流数值模拟和试验研究[J].灌溉排水学报,2004,23(1):66-69.
    [53]焦建廷.灰埠泵站前池和进水池流态的数值模拟[J].中国农村水利水电,2007,(8):123-125.
    [54]张明.日本大型斜流泵和轴流泵的发展[J].东方电机,2000,(2):129-134.
    [55]A.T罗特斯克兰斯基.叶片泵计算与结构[M].北京:机械工业出版社,1981.
    [56]Goto A. Study of internal flows in a mixed-flow pump impeller at various tip clearances using three-dimensional flow computations [J]. Journal of Turbomachinery,1992,114(2): 373-382.
    [57]Sankar L.Saha, Junichi Kurokawa, Jun Matsui, Hiroshi Imamura. Passive Control of Rotating stall in a Parallel-Wall Vaned Diffuser by J-Grooves [J]. Journal of Fluids Engineering,2001,123(3):507-515.
    [58]Wu Chung-Hua. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, and mixed-flow types [J]. Trans of ASME,1952,74(1):363-380.
    [59]张新.混流泵转轮叶片理论和计算[J].水泵技术,1975,(8):123-125.
    [60]孙建平,张克危,贾宗谟.混流泵几何参数及过流通道的优化设计[J].水泵技术,1994,(5):26-29.
    [61]张克危.混流泵叶片形状的优化[J].农业机械学报,1996,26(2):75-79.
    [62]吴建廉.可调斜流泵叶片的设计和研究[J].华中工学院学报,1986,14(2):245-250.
    [63]吴建廉.可调斜流泵叶片若干参数的设计分析[J].华中理工大学学报,1992,(4):161-164.
    [64]何希杰.混流泵叶片理论和设计方法[J].通用机械,2003,(5):21-23.
    [65]席光,卢金玲,祈大同.混流泵三元叶片优化设计方法研究[J].工程热物理学报,2004,25(6):952-955.
    [66]卢金玲,席光,祈大同.反问题与神经网络相结合的混流泵叶片优化设计[J].西安交通大学学报,2004,38(3):308-312.
    [67]蔡佑林,王立祥,张新.喷水推进混流泵叶轮三元可控速度矩设计[J].船舶,2006,2(1):24-26.
    [68]曹树良,梁莉,祝宝山,陆力.高比转速混流泵叶轮设计方法[J].江苏大学学报(自然科学版),2005,26(3):185-188.
    [69]张勤昭,曹树良,陆力.高比转速混流泵导叶设计计算[J].农业机械学报,2008,39(2): 73-76.
    [70]Funakoshi Hiroshi, Tsukamoto Hiroshi, Miyazaki Koji, Miyagawa Kazuyoshi. Experimental Study on Unstable Characteristics of Mixed-Flow Pump at Low Flow-Rates [A]. Proceedings of the ASME/JSME Joint Fluids Engineering Conference [C], Honolulu, ASME,2003,609-614.
    [71]Miyabe Masahiro, Maeda Hideaki, Umeki Isamu, Jittani Yoshinori. Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump [J]. Journal of Thermal Science,2006,15(2):115-120+144.
    [72]关醒凡,杨敬江,袁建平,等.高比速斜流泵水力模型试验研究[J].水泵技术,2002,(4):3-8.
    [73]关醒凡,袁寿其,刘厚林,黄道见.高比转速斜流泵模型的试验研究[J].中国农村水力水电,2003,(5):59-61.
    [74]长沙水泵厂,蒋训教.可调叶片斜流泵的性能研究[J].流体机械,1999,27(5):3-5.
    [75]杨敏官,贾卫东,王春林,石玉红.混流泵内部流动的实验研究[J].水泵技术,2004,(3):8-14.
    [76]李志鹏,谢静波,易中强,等.中低比转速混流泵设计与试验[J].农业机械学报,2001,(3):48-50.
    [77]王乐勤,吴大转,郑水英,胡征宇.混流泵开机瞬态水力特性的试验与数值计算[J].浙江大学学报(工学版),2004,38(6):751-755.
    [78]王乐勤,吴大转,郑水英.混流泵开机过程瞬态水力特性的数值计算[J].流体机械,2004,32(1):10-13.
    [79]Kato Chisachi, Mukai Hiroshi, Manabe Akira. Les of internal flows in a mixed-flow pump with performance instability [A]. Proceedings of ASME Fluids Engineering Division Summer Meeting [C], Montreal, Quebec, Canada,2002,955-962.
    [80]Fernandez J., Blanco E., Santolaria C., Scanlon T.J., Stickland, M.T.. A Numerical Analysis of a Mixed Flow Pump [A]. Proceedings of ASME Fluids Engineering Division Summer Meeting [C], Montreal, Quebec, Canada,2002,791-798.
    [81]Muggli Felix A., Holbein Peter, Dupont Philippe. CFD calculation of a mixed flow pump characteristic from shut off to maximum flow [A]. Proceedings of the ASME Fluids Engineering Division Summer Meeting [C], New Orleans, LA, USA,2001,249-254.
    [82]吴治将,赵万勇.混流泵内流场的数值模拟[J].流体机械,2005,33(10):15-19.
    [83]张晓英,王国玉,余志毅,韩占忠.基于数值计算的斜流泵级性能改进[J].工程热物理学报,2006,27(5):772-774.
    [84]王春林,郑海霞,张浩,司艳雷.可调叶片高比转速混流泵内部流场数值模拟[J].排 灌机械,2009,27(1):30-34.
    [85]潘中永,李俊杰,李晓俊,袁寿其.斜流泵不稳定特性及旋转失速研究[J].农业机械学报,2012,43(5):64-68.
    [86]施卫东,邹萍萍,张德胜,周岭.高比转速斜流泵内部非定常压力脉动特性[J].农业工程学报,2011,27(4):147-152.
    [87]邹萍萍.高比转速斜流泵内部压力脉动特性研究[D].扬州,扬州大学,2011.
    [88]李文广.水力机械流动理论[M].北京:中国石化出版社,2000.
    [89]John D. Anderson著,吴颂平,刘赵淼 译.计算流体力学基础及其应用[M].北京:机械工业出版社,2007.
    [90]B.E. Launder, D.B.Spalding. Lectures in Mathematical Models of Turbulence [M]. London: Academic Press,1972.
    [91]Wilcox D C. Multiscale model for turbulent flows [J]. AIAA Journal,1988,26 (11): 1311-1320.
    [92]Dazin A, Charley J, Bois G, Caignaert G. Pressure fluctuations in the suction and delivery pipes and in the volute of a radial flow pump in non-cavitating and cavitating operating conditions [A]. Proceedings of the ASME Fluids Engineering Division Summer Meeting [C]. New York:ASME 2003,331-337.
    [93]Guo S, Maruta Y. Experimental investigations on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers [J]. JSME International Journal Series B:Fluids and Thermal Engineering,2005,48 (1):136-143.
    [94]Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications [J]. AIAA Journal,1994,32 (8):1598-1605.
    [95]张师帅.计算流体动力学及其应用[M].武汉:华中科技大学出版社,2011.
    [96]焦建廷.东深供水改造工程旗岭泵站引水渠、前池及进水流道模型试验研究[R].广州:广东省水利水电科学研究院,2003.
    [97]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003-1009.
    [98]Masahiro Miyabe, Patel V C. Investigation of internal flow and characteristic instability of a mixed flow pump [J]. Journal of Hydraulic Engineering, ASCE,2000,126(5):387-391.
    [99]Chu S, Dong R., Katz J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump-part B:effects of blade-tongue interactions [J]. Journal of Fluids Engineering, Transactions of the ASME,1995,117(1):30-35.
    [100]White J.D., Holloway A.G.L., Gerber A.G.. Predicting turbine performance of high specific speed pumps using CFA [A]. Proceedings of ASME Fluids Engineering Division Summer Meeting [C], Houston, USA,2005,1822-1828.
    [101]王少波.混流式水轮机转轮动力特性分析及综合优化设计[D].广州,机械科学研究院,2003.
    [102]陈长征,胡立新,等.设备振动分析与故障诊断技术[M].北京:科学出版社,2001.
    [103]陆鑫森.高等结构动力学[M].上海:上海交通大学出版社,1992.
    [104]庄表中,刘明杰.工程振动力学[M].北京:高等教育出版社,1986.
    [105]袁启铭.轴流泵叶片流固耦合振动特性分析[D].扬州,扬州大学,2009.
    [106]谢龙汉.ANSYS结构及动力学分析[M].北京:电子工业出版社,2012.
    [107]丁毓峰.ANSYS12.0有限元分析完全手册[M].北京:电子工业出版社,2011.
    [108]肖若富,韦彩新,等.混流式水轮机转轮的动力学研究[J].大电机技术,2001,(7):41-43.
    [109]杜建镔,何世江,王勖成.水轮机转轮叶片系统动力分析(Ⅱ)一实例分析[J].清华大学学报(自然科学版),1998,38(8):72-75.
    [110]程德林,冯维明.弹性体水下振动相似分析[J].山东工学院学报,1982,(2):41-50.
    [111]Rajasanker J, Iyer N.R.. A new 3-D finite element model to evaluate added mass for analysis of fluid-structure interaction problems [J]. International Journal for Numerical Methods in Engineering,1993,36(6):997-1012.
    [112]赵鹏.离心泵振动故障诊断方法研究及系统实现[D].北京,华北电力大学,2011.
    [113]杨志荣.基于多源信息融合的水电机组故障诊断与轴心轨迹识别技术研究[D].武汉,华中科技大学,2011.
    [114]李宁.旋转机械的测试信号分析及隐马尔科夫模型应用研究[D].重庆,重庆大学,2010.
    [115]Albraik, A. Diagnosis of centrifugal pump faults using vibration methods. Journal of Physics:Conference Series, v 364, n 1,2012,25th International Congress on Condition Monitoring and Diagnostic Engineering, COMADEM 2012
    [116]Henriquez, P. Fault diagnosis using audio and vibration signals in a circulating pump. Journal of Physics:Conference Series, v 364, n 1,2012,25th International Congress on Condition Monitoring and Diagnostic Engineering, COMADEM 2012
    [117]周云龙,刘永奇,薛广鑫,等.基于EMD和边际谱频带能量的离心泵汽蚀故障诊断[J].化工学报,2012,(2):545-550
    [118]沈路,李俊生,王鸿钧.改进Hilbert_Huang变换在齿轮故障诊断中的应用[J].航空动力学报.2009,24(8):1899-1903.
    [119]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [120]孙延奎.小波分析及其应用[M].北京:清华大学出版社,2005.
    [121]N.E.Huang, Z. Shen, et al. The empirical mode decomposition and the Hilbert spectrum for Nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society of London,1998,454(A):903-995.
    [122]Huang N.E., Chern C.C., et al. A new spectral representation of earthquake data:Hilbert spectral analysis of Station TCU129,Chi-Chi,Taiwan,21 September 1999 [J]. Bulletin of the Seismological Society of America,2001,91(5):1310-1338.
    [123]Huang N.E., Shih H.H., etal. The ages of large amplitude coastal seiches on the Caribbean Coast of Puerto Rico [J]. Journal of Physical Oceanography,2000,30(8):2001-2012.
    [124]Loh C.H., Wu T.C., Huang N.E.. Application of the empirical mode decomposition Hilbert spectrum method to identify near-fault round-motion characteristics and structural responses [J]. Bulletin of the Seismological Society of America,2001,91(8):1339-1357.
    [125]Echeverria J.C., Crowe J.A., Woolfson M.S., et al. Application of empirical mode decomposition to heart rate variability analysis [J]. Medical & Biological Engineering & Computing,2001,39(4):471-479.
    [126]Du Qiuhua, Yang Shunian. Application of the EMD method in the vibration analysis of ball bearings[J]. Mechanieal Systems and Signal proeessing,2007,21(6):2634-2644.
    [127]杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15.
    [128]Liu B., Riemenschneider S., Xu Y.. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum [J]. Mechanical Systems and Signal Processing,2006, 20(3):718-734.
    [129]GBT6075.5-2002.在非旋转部件上测量和评价机器的机械振动第5部分:水力发电厂和泵站机组[S].北京:2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700