用户名: 密码: 验证码:
自供能磁流变阻尼器的振动能量捕获技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变阻尼器是以智能材料磁流变液为工作液体的新型振动控制结构,相比于常规液压阻尼器,磁流变阻尼器具有结构简单、输出阻尼力连续可调、动态范围宽、响应速度快、方便与计算机控制相结合等优异特性。基于磁流变阻尼器的结构振动半主动控制系统同时兼备主动控制的系统参数可调性和被动控制的可靠性,已经开始广泛地应用于交通运输、工程建筑、航空宇航以及自动武器系统等振动控制领域,并取得了良好的控制效果。为了输出不同阻尼力,磁流变阻尼器工作过程中需要外部电源设备提供直流电激励磁流变液,同时根据不同的振动防护需求,还要有专用的传感器和电流控制设备根据结构的振动响应控制电流大小,以便获得预期的控制效果。然而,在大型桥梁等户外结构振动控制场合,不方便或无法保证持续可靠的供电,制约了磁流变阻尼器在这些领域的应用。同时外部电源设备和传感控制设备会增大系统的复杂程度,降低其工程应用可靠性。
     针对磁流变阻尼器对外部电源控制设备的需求问题,本文对两种振动能量捕获技术,即基于压电和电磁感应的振动能量捕获技术,进行了系统的研究和探讨,以期为磁流变阻尼器提供电能,构建自供能磁流变阻尼器系统。由于可以不需要外部电源控制设备,因此可以有效地推动磁流变振动控制技术在一些无法持续可靠供电领域里的应用,减小了磁流变振动控制系统的尺寸、重量、日常维修费用和成本,提高其可靠性。此外,自供能技术也是一种节能环保技术,符合世界发展潮流。
     论文首先对磁流变液的磁流变特性和磁流变阻尼器的力学特性进行了深入系统的研究,建立了磁流变阻尼器输出阻尼力与输入电流之间的数学模型。设计了一个单杆单筒磁流变阻尼器,并对其阻尼力特性进行了实验研究。根据理论分析和实验研究的结果,总结得出磁流变阻尼器工作时所需电能大小的范围在2W-10W之间,为下文振动能量捕获装置的研究提供了一个评估电能捕获能力的标准。
     随后对压电振动能量捕获技术开展了一系列理论和实验研究,根据磁流变阻尼器的结构特点,设计了适合磁流变阻尼器使用的压电堆振动能量捕获装置。首先从系统角度出发,基于压电堆发电装置的机械和电气两个部分之间的耦合关系,建立了一个从系统级别描述压电堆发电装置动态特性的机电耦合模型,深入研究其输出电能与外部振动、结构参数和外部负载阻抗之间的关系。然后对设计加工的压电堆振动能量捕获装置进行了系统的实验研究分析,结果表明:设计的压电堆发电装置可以在高频段振动条件下满足磁流变阻尼器的电能需求,在低频段振动条件下部分地满足磁流变阻尼器的使用要求。
     为了能够在低频段振动条件下收集足够多的电能,构建自供能磁流变振动控制系统。基于法拉第电磁感应定律,对一种新型的两相管式直线型电磁感应振动能量捕获装置进行了系统的理论和实验研究,以捕获结构振动能供磁流变阻尼器使用。设计了两相管式直线型电磁感应振动能量捕获装置的结构,建立了其磁路模型和电能输出理论模型,对影响电能输出效率的关键问题进行了深入系统的研究和分析。最后进行了样机的实验研究,实验结果表明:设计研究的两相管式直线型电磁感应振动能量捕获装置可以在低频段振动条件下,收集足够磁流变阻尼器使用的直流稳压电能,激励磁流变阻尼器达到磁饱和状态,输出最大阻尼力;同时电磁感应振动能量捕获装置收集的电能与外部振动强度成正比,振动越强,捕获的电能越大,磁流变阻尼器的输出阻尼力越大,对振动的控制力也就越大。从而表明设计的两相管式直线型电磁感应振动能量捕获装置可以在无需外部电源控制设备和传感设备的条件下,构建自供能磁流变振动控制系统,实现对结构振动的自适应控制。
     最后,对全文工作进行了总结,介绍了本论文研究的特色和创新之处,指出了今后工作有待深入研究的问题。
Comparing with normal hydraulic damper, magneto-rheological (MR) damper, which is a structural vibration control device and uses controllable magneto-rheological fluid as the working liquid, has a lot of merits, such as simple structure, adjustable damping force output, wide dynamic range, fast response, easily to combine with computer, etc. Because it combines the advantages of both active vibration control device, i.e. real-time adjustable damping force and passive vibration control device, i.e. the ability of fail-safe protection, MR damper system has been widely used in the vibration control areas, such as transportation, building, aerospace, automatic weapons, and has achieved good control results for mitigating the effect of undesired vibrations and protecting the structures from damage. To practically construct vibration and shock mitigation systems using MR dampers, either external power supply or current-control equipment is inevitably necessary for activating electromagnetic coils inside MR dampers for provision of magnetic field to the MR fluid. However, the external power supply and current control system will inevitably increase the complexity of the MR damper system and reduce the reliability of the vibration control system, in particular for some applications such as large-scale bridge and other outdoor structural vibration control applications, which inconvenience provide or cannot guarantee a reliable apply of electricity for MR dampers.
     This dissertation will study the state-of-the-art technology of harvesting electrical power from external vibrations, which exist in the working environment of the MR damper, and using the harvested electrical power to energize the magneto-rheological damper. Because of not requiring the external power and control equipments, great merits such as size and weight reduction, less maintenance and lower cost could be achieved for the current MR damper systems. And it's possible to improve its reliability and promote the use of MR dampers to control the vibration of outdoor structures. In addition, the self-powered (power generation) technology is energy saving and environmentally friendly, and in line with the world development trend.
     First of all, this paper systematically studied the magneto-rheological properties of MR fluids and the mechanical proterties of the MR damper in order to obtain the mathematical model of the output damping force and the external input current. An experimental prototype of the single-rod and single-cylinder MR damper was designed and manufactured with the aim of experimental study. Based on the theoretical and test research results, it can be seen that the normal electrical power for MR damper is about2W10W and this will be an evulation criteria for success of the vibration energy harvesting research.
     In order to convert vibration energy into electrical energy, a PZT disc-stack vibration harvester, which is fit for the MR damper use, was designed. The electromechanical model for the PZT harvester, considering the coupled relation between the mechanical and electrical part, was built to investigate the relationship between the output electrical and external vibration, structural parameters and external resistance. An experimental prototype of the PZT disc-stack harvester was manufactured in order to experimentally investigate the harvested electrical power. The test results show that the designed PZT harvester can generate enough electrical power for the MR damper under high-frequency vibration condition, and partially meet the electricity needs of the MR damper under low-frequency vibration conditions.
     Another vibration energy harvesting method, the electromagnetic vibration energy harvesting technology, is analyzed to harvest sufficient electrical power to power the MR damper. A novel two-phase tubular linear electromagnetic vibration energy harvester was designed and evaluated to harvest electrical power. The magnetic circuit model and the output power model of this novel electromagnetic harvester were investigated. Firstly, an experimental prototype of the electromagnetic harvester was designed and manufactured. A series of test were done to evaluate the ability of the electromagnetic vibration energy harvester. The results show that the electromagnetic harvester can generate enough electrical power for the MR damper under low-frequency vibration conditions and the output electrical power is proportional to the strength of the structural vibration. So, it indicates that the proposed two-phase tubular linear electromagnetic vibration energy harvester can be used to construct self-powering MR damper system and give an adaptive control to the environmental vibrations.
     Finally, the works of this dissertation was concluded. The innovations and contributions of this dissertation were evaluated. The potential research issues as the continuation of this research were pointed out.
引文
[1]Kim Y, Langari R, Hurlebaus S. Semiactive nonlinear control of a building with a magnetorheological damper system. Mechanical Systems and Signal Processing, 2009(2),300-315
    [2]Bica I. Electroconductive magnetorheological suspensions:production and physical processes. Journal of Industrial and Engineering Chemistry,2009(2):233-237
    [3]Georgios T, Charles W S, Emanuele G. Hybrid balance control of a magnetorheological truck suspension. Journal of Sound and Vibration,2008(317): 514-536
    [4]Zhu S, Wang P, Tian J. Experimental research on aircraft landing gear drop test based on MRF damper. Procedia Engineering,2011(15):4712-4717
    [5]Wang A, Nie H, Chen J. State jump semi active control of lunar lander soft landing. Acta Aeronautica et Astronautica Sinica,2009(30):2218-2223
    [6]Milecki A, Hauke M. Application of magnetorheological fluid in industrial shock absorbers. Mechanical Systems and Signal Processing,2012(28):528-541
    [7]Carlson J D, Spencer B F. Magneto-rheological fluid dampers for semi-active seismic control. Proceedings of the 3rd International Conference on Motion and Vibration Control,1996(3):35-40
    [8]Ali S F, Ananth R. Testing and modeling of MR damper and its application to SDOF systems using integral backstepping technique. Journal of Dynamic Systems, Measurement, and Control,2009(131):021009-1-11
    [9]Brigley M, Choi Y T, Wereley N M. Experimental and theoretical development of multiple fluid mode magnetorheological isolators. AIAA Journal of Guidance, Control, and Dynamics,2008(3):449-459
    [10]Dominguez A, Sedaghati R, Stiharu I. A new dynamic hysteresis model for magnetorheological dampers. Smart Materials and Structures,2006(15):1179-1189
    [11]阮锦程.超级悬挂:奥迪TT磁流变减震器(Audi Magnetic Ride)汽车杂志,2008(7):160-161
    [12]Carlson J D, Catanzarite D M, St. Clair K A. Commercial magneto-rheological fluid devices. Proceeding 5th International Conference on ER Fluids, MR Suspensions and Associated Technology,1996:759-786
    [13]Williams C B and Yates R B. Analysis of a micro-electric generator for Microsystems. The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Stockholm, Sweden,1995(7):369-372
    [14]Roundy S, Wright P K and Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications,2006(26):1131-1141
    [15]Erturk A. Electromechanical modeling of piezoelectric energy harvesters. Dissertation of Ph. D, Dept. of Engineering Mechanics, Virginia Polytechnic Institute and State University,2009.
    [16]Howells C A. Piezoelectric energy harvesting. Energy Conversion and Management, 2009(50):1847-1850
    [17]Johnson T J, Charnegie D, Clark W W, Buric M and Kusic G. Energy harvesting from mechanical vibration using piezoelectric cantilever beams. Proc. Smart Structures and Materials Conf.; Proc. SPIE,2006(6169):61690D
    [18]Platt S R, Farritor S and Haider H. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatronics,2006(10):240-52
    [19]Korla S, Leon R A, Tansel I N, Yenilmez A Y, Yapici A and Demetgul M. Design and testing of an efficient and compact piezoelectric energy harvester. Microelectronics Journal,2011 (42):265-270
    [20]Rome L C, Flynn L, Goldman E M and Yoo T D. Generating electricity while walking with loads. Science,2005(309):5741-1725-1728
    [21]Stalter S, Jeffery D, Taylor J. The architecture of nodding duck wave power generators. The Naval Architect,1976.
    [22]Evans D. Some theoretical aspects of three dimensional wave energy absorbers. In: Proceeding of the first symposium on wave energy utilization. Gothenburg, Sweden: Chalmers University of Technology,1979:77-106
    [23]Priya S, Inman D J. Energy harvesting technologies. New York:Springer,2009
    [24]Emilio S, Mauro S. An efficient electromagnetic power harvesting device for low-frequency applications. Sensors and Actuators A:Physical,2011(9):1-8
    [25]Rabinow J. The magnetic fluid clutch. AIEE Trans.,1948(67):1308-1315
    [26]Rabinow J. Magnetic fluid clutch. National Bureau of Standards Technical News Bulletin,1948(32):54-60
    [27]Rabinow J. Magnetic fluid torque and force transmitting device. US Patent, Nov.20, 1951:2,575,360
    [28]Carlson J D. The promise of controllable fluids. Actuator 94,4th Int. Conf. on New Actuators,1994:266-270
    [29]John C U, Charlene A H, Patrick M H, Deborah F E. Magnetorheological fluid durability test-organics analysis. Materials Science and Engineering:A,2077(464): 269-273
    [30]Lord Corporation, www.lord.com
    [31]Bednarek S. Non-linearity and hysteresis of hall effect in magnetorheological suspensions with conducting carrier. Journal of Magnetism and Magnetic Materials, 2003(264):251-257
    [32]Yeesock K, Reza L, Stefan H. Semiactive nonlinear control of a building with a magnetorheological damper system. Mechanical Systems and Signal Processing, 2009(23):300-315
    [33]Pettersson A, Davis S, Gray J O, Dodd T J, Ohlsson T. Design of a magnetorheological robot gripper for handing of delicate food products with varying shapes. Journal of Food Engineering,2010(98):332-338
    [34]Koo J H. Using magnetorheological dampers in semiactive tuned vibration absorbers to control structural vibrations. Ph. D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA,2003
    [35]Jihoon Jeon, Sangkyun K. Viscosity and dispersion state of magnetic suspensions. Journal of Magnetism and Magnetic Materials,2012(324):424-429
    [36]Georgios T, Charles W S, Emanuele G. Hybrid balance control of a magnetorheological truck suspension. Journal of Sound and Vibration,2008(317): 514-536
    [37]Gehm R. Delphi improves Cadillac's ride. Automotive Engineering International, 2001(109):32-33
    [38]Halverson H. Magnetic Ride-Star wars meets the 50th car. www.corvetteactioncenter.com,2003
    [39]Lord Corporation. Sears seating taps LORD Corporation to provide motion master seat suspension technology for Ag. Off-Highway vehicles. Press Release, September, 2003
    [40]Lord Corporation. School Transportation officials in six states adopt LORD Corporation's driver seat system for bus safety. Press Release, August,2001
    [41]Lee J H K, Su R K L, Lee P K K, Lam L C H. Semi-active damping device for vibration control of building using magnetorheological fluid. Advances in Building Technology,2002(2):969-976
    [42]Bahar A, Pozo F, Acho L, Rodellar J, Barbat A. Hierarchical semi-active control of base-isolated structures using a new inverse model of magnetorheological dampers. Computers & Structures,2010(88):483-496
    [43]Zhou Q, Nielsen S R K, Qu W L. Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. Journal of Sound and Vibration,2006(296):1-22
    [44]Yang G Q, Spencer J B F, Jung H J, Carlson J D. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. Journal of Engineering Mechanics,2004,130(9):1107-1114
    [45]Ni J M, Ni Y Q, Chen Z Q, Spencer J B F. Implementation of MR dampers to Dongting Lake Bridge for cable vibration mitigation. Proceedings of the 3th Word Conference on Structural Control, Como, Italy,2002(3):777-786
    [46]李惠,刘敏,欧进萍,关新春.山东滨州黄河公路大桥斜拉索磁流变智能减振系统分析与设计.中国公路学报,2005,18(4):37-41
    [47]Li H, Ou J P, Zhao X F, Zhou W S, et al. Structural health monitoring system for the Shandong Binzhou Yellow River highway bridge. Computer-Aided Civil and Infrastructure Engineering,2006,21:306-317
    [48]刘敏.斜拉桥拉索振动控制和索力监测集成系统.中国科技论文在线,http://www.paper.edu.cn,2011
    [49]Cristiano S, Fabio P, Sergio M S, Giuseppe F, Nicola G. Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics,2009(19):410-421
    [50]Herr H, Wilkenfeld A. User-adaptive control of a magnetorheological prosthetic knee. Industrial Robot:An International Journal,2003,30(1):42-55
    [51]Hu H S, Wang J, Qian S X, Jiang X Z. Test modeling and parameter identification of a gun magnetorheological recoil damper. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, Changchun, China, August 9-12,2009
    [52]Adnan H. Energy harvesting:state-of-the-art. Renewable Energy,2011(36): 2641-2654
    [53]Paul D M, Eric M Y, Rao G K, Andrew S H, Tim C G. Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 2008,96(9):1457-1486
    [54]Cook-Chennault K A, Thambi N, Sastry A M. Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct.,2008(17): 043001(33pp)
    [55]Williams C B, Yates R B. Analysis of a micro-electric generator for Microsystems. Sensors and Actuators A,1996(52):8-11
    [56]Yang J. An introduction to the theory of piezoelectricity (advances in mechanics and mathematics), 1nd ed. New York:Springer,2004
    [57]Murugavel R. Energy harvesting, white paper, Texas instruments,2008
    [58]Want R, Farkas K I, Narayanaswami C. Energy harvesting and conversion. IEEE Journal of Pervasive Computing,2005:14-17
    [59]Stamer T. Human-powered wearable computing. IBM Systems Journal,1996, 35(3&4):618-629
    [60]Kendall C J. Parasitic power collection in shoe-mounted devices, BS thesis, Dept. of Physics and MIT Laboratory, Massachusetts Institute of Technology, Cambridge, Mass,1998
    [61]Shenck N. A demonstration of useful electric energy generation from piezoceramics in a shoe, MS thesis, Dept. of Physics and MIT Laboratory, Massachusetts Institute of Technology, Cambridge, Mass,1999
    [62]Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro,2001,21(3):30-42
    [63]Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for Microsystems applications. Meas. Sci. Technol.,2006(17):175-195
    [64]Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting. Journal of Strain,2004(40):49-58.
    [65]Sodano H A, Park G, Inman D J. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures,2005(16):799-807
    [66]Platt S R, Farritor S, Haider H, et al. On low-frequency electric power generation with PZT ceramics. IEEE Transactions on Mechatronics,2005,10(2):240-252
    [67]Priya S, Chen C, Darren F, et al. Piezoelectric windmill:a novel solution to remote sensing. Japanese Journal of Applied Physics,2005(44):104-107
    [68]Keawboonchuay C, Engel T G. Design, modeling, and implementation of a 30-kW piezoelectric pulse generator, IEEE Trans. Plasma Science,2002,30(2):679-686
    [69]Keawboonchuay C, Engel T G. Maximum power generation in a piezoelectric pulse generator, IEEE Trans. Plasma Science,2003,31(1):123-128
    [70]Pearson S. Modeling and development of piezoceramic energy harvester for munitions applications. MS Thesis, Department of Electrical Engineering, Villanova University,2006
    [71]曾平,佟刚,程光明,杨志刚,唐可洪,阚君武.压电发电能量存储方法的初步研究.压电与声光,2008,30(2):230-235
    [72]程光明,庞建志,唐可洪,杨志刚,曾平,阚君武.压电陶瓷发电能力测试系统的研制.吉林大学学报(工学版),2007,37(2):367-371
    [73]唐可洪,阚君武,朱国仁,邵承会,杨志刚,程光明.遥控器用压电发电装置的供电特性.光学精密工程,2008,16(1):92-96
    [74]菅新乐.基于压电陶瓷的汽车轮胎压力检测系统无源化研究.吉林大学硕士学位论文,2006
    [75]魏双会.压电陶瓷发电特性及其应用研究[D].大连理工大学硕士学位论文,2007
    [76]Ching N H, Wong H Y, Li Wen J, et al. A laser-micromachined multi-model resonating power transducer for wireless sensing systems. Sensors and Actuators A, 2002(97-98):685-690
    [77]陈虹,贾晨,刘鸣,王志华.植入关节内压电陶瓷功能研究.压电与声光,2008,30(1):96-99
    [78]方华斌,刘景全,董璐,陈迪,蔡炳初MEMS微拾振器制备工艺研究.电子元件与材料,2006,25(7):69-71
    [79]潘家伟,黄卫清,周风拯,冒俊.基于压电效应的能量收集.压电与声光,2009,31(3):347-349
    [80]贺学锋,温志渝,温中泉.压电式振动发电机的建模及应用.光学精密工程,2009,17(6):1436-1441
    [81]李艳宁,李雯,任平,郭彤.压电微悬臂梁振动能量采集器谐振频率和功率的研究.天津大学学报,2009,42(4):373-37
    [82]Eilliot R S. Electromagnetics:history, theory, and applications. Piscataway:IEEE Press,1993
    [83]Williams C B, Pavic A, Crouch R S, Woods R C. Feasibility study of vibration-electric generator for bridge vibration sensors. Proc. SPIE, Proceedings of the 16th International Modal Analysis Conference,1998(3243):1111-1117
    [84]Williams C B, Shearwood C, Harradine M A, Mellor P H, Birch T S, Yates R B. Development of an electromagnetic micro-generator. IEE Proc. Circuits Devices Syst.,2001,148(6):337-342
    [85]Huang W S, Tzeng K E, Cheng M C, Huang R S. Design and fabrication of a vibrational micro-generator for wearable MEMS. Proceedings of Eurosensors XVII, Guimaraes, Portugal,2003:695-697
    [86]Saha C R, O'Donnell T, Wang N, McCloskey P. Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators A,2008(147):248-253
    [87]Morais R, Silva N M, Santos P M, Frias C M, et al. Double permanent magnet vibration power generator for smart hip prosthesis. Sensors and Actuators A:Phys. (2011), doi:10.1016/j. sna.2011.04.001
    [88]Wang D A, Chang K H. Electromagnetic energy harvesting from flow induced vibration. Microelectronics Journal,2010(41):356-364
    [89]Hadas Z, Kluge M, Singule V, Ondrusek C. Electromagnetic vibration power generator. IEEE Int. Symp. Diagnostics for Electric Machines, Power Electronics and Drives,2007:451-455
    [90]Fei F, Mai J D, Li W J. A wind-flutter energy converter for powering wireless sensors. Sensors and Actuators A:Phys. (2011), doi:10.1016/j.sna.2011.06.015
    [91]Sardini E, Serpelloni M. A efficient electromagnetic power harvesting device for low-frequency applications. Sensors and Actuators A:Phy. (2011), doi:10.1016/j.sna. 2011.09.013
    [92]Galchev T, Kim H, Najafi K. A parametric frequency increased power generator for scavenging low frequency ambient vibrations. Procedia Chemistry,2009(1): 1439-1142
    [93]Cepnik C, Radler O, Rosenbaum S, Strohla T, Wallrabe U. Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling. Sensors and Actuators A,2011(167):416-421
    [94]Lu W L, Hwang Y M. Modeling of electromagnetic power output in a vibration-induced micro-generator with a silicon-based helical micro-spring. Microelectronics Journal,2011(42):452-461
    [95]Owens B A M, Mann B P. Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. Journal of Sound and Vibration,2012(331): 922-937
    [96]Liu C, Lin C, Hwang C, Tu C. Compact model of a slotless tubular linear generator for renewable energy performance assessments. IEEE Transactions on Magnetics, 2010,46(6):1467-1470
    [97]McDonald A S, Crozier R, Caraher S, Mueller M A, Chick J P. Integrated design of direct-drive linear generators for wave energy converters. International Conference on Sustainable Power Generation and Supply,2009. SUPERGEN'09.,2009:1-7
    [98]Shek J K H, Macpherson D E, Mueller M A. Experimental verification of linear generator control for direct drive wave energy conversion. IET Renew. Power Gener., 2010,4(5):395-403
    [99]Ran L, Mueller M A, Ng C, Tavner P J, Zhao H, Baker N J, McDonald S, McKeever P. Power conversion and control for a linear direct drive permanent magnet generator for wave energy, IET Renew. Power Generation,2011(5):1-9
    [100]Rhinefrank K, Schacher A, Prudell J, et al. Peer-reviewed technical communication. IEEE Journal of Oceanic Engineering,2012,37(1):35-44
    [101]Brekken T K A, von Jouanne A, Han H Y. Ocean wave energy overview and research at Oregon State University (Invited Paper). IEEE,978-1-4244-4936-1,2009
    [102]Rhinefrank K, Agamloh E B, von Jouanne A, Wallace A K, Prudell J, Kimble K, Aills J, Schmidt E, Chan P, Sweeny B, Schacher A. Novel ocean energy permanent magnet linear generator buoy. Renewable Energy,2006(31):1279-1298
    [103]Prudell J. Novel design and implementation of a permanent magnet linear tubular generator for ocean wave energy conversion. M.S.E.E. Thesis, Oregon State University,2007
    [104]Prudell J, Stoddard M, Brekken T K A, von Jouanne A. A novel permanent magnet tubular generator for ocean wave energy. IEEE,2009:3641-3646
    [105]Prudell J, Stoddard M, Amon E, Brekken T K A, von Jouanne A. A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Transactions on Industry Applications,2010,46(6):2392-2400
    [106]Elwood D, Yim S C, Amon E, von Jouanne A, Brekken T K A. Experimental force characterization and numerical modeling of a tant-moored dual-body wave energy conversion system. Journal of Offshore Mechanics and Arctic Engineering, 2010(132):011102-1-6
    [107]Ruehl K, Brekken T K A, Bosma B, Paasch R. Large-scale ocean wave energy plant modeling. IEEE,2010:379-386
    [108]Columbia Power Technologies, www.columbiapower.com
    [109]AWS Ocean Energy, www.awsocean.com
    [110]OCEAN POWER TECHNOLOGIES, www.oceanpowertechnologies.com
    [111]Cho S W, Jung H J, Lee I W. Smart passive system based on MR damper. Proceedings of JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings,2004.
    [112]Cho S W, Jung H J, Lee I W. Smart passive system based on magnetorheological damper. Smart Materials and Structures,2005(14):707-714
    [113]Hong J H, Choi K M, Lee J H, Oh J W, Lee I W. Experimental study on smart passive system based on MR damper. The Eighteenth KKCNN Symposium on Civil Engineering, Taiwan,2005.
    [114]Cho S W, Jo J S, Jang J E, Koo J H, Jung H J. A smart passive damping system for stay cables. Smart Structures and Materials 2006:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proc. Of SPIE, 2006(6174):6174Q1-6
    [115]Jung H J, Choi K M, Jang J E, Cho S W, Lee I W. MR damper-based smart passive control system for seismic protection of building structures. Smart Structures and Materials 2006:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proc. Of SPIE,2006(6174):6174001-6
    [116]Koo J H, Ritchie E, Cho S W. Alternative power source for magneto-rheological dampers. Active and Passive Smart Structures and Integrated Systems 200, Proc. Of SPIE,2007,6525(65250B):1-7
    [117]Choi K M, Jung H J, Lee H J, Cho S W. Feasibility study of an MR damper-based smart passive control of system employing an electromagnetic induction device. Smart Mater. Struct,2007(16):2323-2329
    [118]Choi K M, Jung H J, Cho S W, Lee I W. Application of smart passive damping system using MR damper to highway bridge structure. Journal of Mechanical Science and Technology,2007(21):870-874
    [119]Jung H J, Jang D D, Lee H J, Cho S W. Large-scale smart passive system for civil engineering applications. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, Proc. Of SPIE,2008,6932(69320T):1-8
    [120]Lee H J, Moon S J, Jung H J, Huh Y C, Jang D D. Integrated design method of MR dampers and electromagnetic induction system for structure control. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, Proc. Of SPIE,2008,6932(69320S):1-10
    [121]Jung H J, Jang D D, Koo J H. MR damper-based semiactive control system using electromagnetic induction device. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, Proc. Of SPIE,200,7292(92923X): 1-8
    [122]Jung H J, Jang D D, Cho S W, Koo J H. Experimental verification of sensing capability of an electromagnetic induction system for an MR fluid damper-based control system. Journal of Physics:Conference Series,2009,149(012058):1-5
    [123]Jung H J, Jang D D, Choi K M, Cho S W. Vibration mitigation of highway isolated bridge using MR damper-based smart passive control system employing an electromagnetic induction part. Struct. Control Health Monit, 2009(16):613-625
    [124]Jung H J, Jang D D, Lee H J, Lee I W, Cho S W. Feasibility test of adaptive passive control system using MR fluid damper with electromagnetic induction part. Journal of Engineering Mechanics,2010:254-259
    [125]Kim I H, Jung H J, Koo J H. Experimental evaluation of a self-powered smart damping system in reducing vibration of a full-scale stay cable. Smart Mater. Struct., 2010,19(115027):1-10
    [126]Jung H J, Jang D D, Koo J H, Cho S W. Experimental evaluation of a'self-sensing' capability of an electromagnetic induction system designed for MR dampers. Journal of Intelligent Materials and Structures,2010(21):827-835
    [127]Choi Y T, Wereley N M. Self-powered magnetorheological dampers. Proceedings of IMECE2006,2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, USA,2006
    [128]Choi Y T, Wereley N M. Self-powered magnetorheological dampers. Journal of Vibration and Acoustics,2009,131(044501):1-5
    [129]Chen C, Liao W H. A self-powered, self-sensing magnetorheological damper. Proceeding of the 2010 IEEE International Conference on Mechatronics and Automation, Xi'an, China,2010:1364-1369
    [130]Chen C, Liao W H. A self-sensing magnetorheological damper with power generation. Smart Mater. Struct,2012,21(025014):1-14
    [131]Sapinski B. Vibration power generator for a linear MR damper. Smart Mater. Struct., 2010,19(105012):1-12
    [132]Sapinski B. Characterization of semi-active vibration control system with energy regeneration based on MR damper. Proceedings of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey,2011:576-580
    [133]Snamina J, Sapinski B. Energy balance in self-powered MR damper-based vibration reduction system. Bulletin of the Polish Academy of Sciences Technical Sciences, 2011,59(1):75-80
    [134]Sapinski B, Snamina J, Jastrzebski L. Laboratory stand for testing self-powered vibration reduction systems. Journal of Theoretical and Applied Mechanics,2011, 49(4):1169-1181
    [135]Sapinski B. Experimental study of a self-powered and sensing MR-damper-based vibration control system. Smart Mater. Struct.,2011,20(105007):1-13
    [136]Wang Z H, Chen Z Q, Spencer B F, Jr. Self-powered and sensing control system based on MR damper:presentation and application. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System 2009, Proc. Of SPIE, 2009,7292(729240):1-10
    [137]LORD Corporation. Magneto-Rheological (MR) Technological Hydrocarbon-Based MR Fluid MRF-140CG Product Bulletin. Printed in USA,2008
    [138]http://www.sinocera.net/en/piezo_material.asp
    [139]An American National Standard-IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987. New York:The Institute of Electrical and Electronics Engineers, Inc,1987
    [140]White N M, Glynne-Jones P, Beeby S P.A novel thick-film piezoelectric micro-generator. Smart Materials and Structures,2001,7:389-395
    [141]Ferrari M, Ferrari V, Marioli D, Taroni A. Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems. Proceedings of the IEEE Instrumentation and Measurement Technology Conference 2005,3:1862-1866
    [142]Rocha J G, Gonalves L M, Rocha P F, Silva M P, Lanceros-Mendez S. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Transactions on Industrial Electronics,2010,37(3):813-819
    [143]Chen X R, Yang T Q, Wang W, Yao X. Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. (2011), doi:10.1016/j.ceramint. 2011.04.099
    [144]Gu L. Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectronics Journal,2011,42:277-282
    [145]http://www.magnetsales.co.uk/application_guide/magnetapplicaitonguide.html
    [146]Pria S, Inman D J. Energy harvesting technologies. New York:Springer Science +Business Media,2009
    [147]钱天明.高效直线发电机.实用新型专利,申请号:200820137310.8,授权公告号:CN 201263119Y
    [148]Cheong G H, Eng. C. The truth about airgap leakage reactance in polyphase squirrel-cage induction motors. PROC. IEE, Vol.126, No.10, OCTOBER 1979: 971-978
    [149]Boglietti A, Cavagnino A, Lazzari M. Algorithms for the computation of induction motor equivalent circuit parameters-PartⅡ. IEEE,2008:2028-2034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700