用户名: 密码: 验证码:
分段组合式厌氧生物反应器工作性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球面临能源紧缺与环境污染的双重压力,将厌氧消化技术用于有机废水处理,可同时实现污染治理与能源生产,在“节能减排”中发挥重大作用。厌氧反应器是厌氧消化技术的核心载体,高效厌氧反应器的研发有力推动了厌氧消化技术的发展。
     分段组合式厌氧反应器(Compartmentalized Anaerobic Reactor, CAR)是本课题研发的新型厌氧反应器。本论文系统研究了该反应器的运行性能、纵向分布特性、预警性能、流态特性和抗生素类制药废水及其厌氧消化中间产物的急性毒性,主要成果如下:
     (1)探明了分段组合式厌氧反应器的运行性能。
     ①分段组合式厌氧反应器具有较高的容积效能。容积负荷可达100.46gCOD·L-1·d-1,容积去除率可达84.35gCOD·L-1·d-1,容积产气率可达57.00L·L-1·d-1,效能指标处于国内外文献报道值的前列。
     ②分段组合式厌氧反应器具有较大的反应动力。高负荷运行时,反应器平均出水COD浓度和出水挥发性脂肪酸(VFA)浓度分别为2447mg·L-1和1638mg·L-1,它们是反应器常负荷运行时相应值的18.49倍与37.52倍,可提供较大的反应推动力。
     ③高负荷厌氧反应器的运行稳定性低于常负荷厌氧反应器。在常负荷工况下,进水COD浓度的提升(平均相对标准偏差为23.92%)基本上与出水COD浓度(平均相对标准偏差为24.57%)和出水VFA浓度(平均相对标准偏差为23.03%)的增大同步,而在高负荷工况下,进水COD浓度的小幅提升(平均相对标准偏差为8.08%)可引起出水COD浓度(平均相对标准偏差为32.95%)和出水VFA浓度(平均相对标准偏差为40.46%)的大幅增加。
     (2)探明了分段组合式厌氧反应器纵向特性及预警性能。
     ①分段组合式厌氧反应器具有显著的容积效能纵向分布特征。在高负荷工况下,区段Ⅰ、Ⅱ、Ⅲ的平均容积负荷和平均容积效能依次为327.6gCOD·L-1·d-1、221.2gCOD-L-1·d-1、153.3gCOD·L-1·d-1和106.4gCOD·L-1·d-1、67.9gCOD·L-1·d-1、32.0gCOD·L-1·d-1。与常负荷工况相比,高负荷工况下容积效能的纵向分布特征弱化,有利于均衡基质负荷、挖掘各区段的反应潜能。
     ②分段组合式厌氧反应器具有显著的基质浓度纵向分布特征。在高负荷工况下,区段Ⅰ、Ⅱ、Ⅲ的平均VFA浓度、平均COD浓度及两者之比依次为1267.7mg·L-1、1006.1mg·L-1、922.9mg·L-1,2867.8mg·L-1、1988.1mg-L-1、1573.5mg·L-1和0.44、0.51、0.58。与常负荷工况相比,高负荷工况下容积效能的纵向VFA和COD浓度分布特征弱化,区段Ⅱ、Ⅲ和出水的平均VFA浓度以及平均VFA浓度与平均COD浓度之比增大,需重视VFA对厌氧消化(特别是产甲烷)反应的抑制作用。
     ③高效厌氧反应器的负荷饱和度和VFA饱和度具有预警性。容积负荷饱和度和VFA饱和度分别低于0.89与0.40时(即常负荷工况),反应运行性能稳定;容积负荷饱和度和VFA饱和度趋近1时(即满负荷工况),反应运行性能波动增大;容积负荷饱和度和VFA饱和度超过1时(即超负荷工况),反应运行性能恶化。
     (3)探明了分段组合式厌氧反应器流态特性。
     ①容积负荷可显著影响CAR的流态。在常负荷下该反应器的返混程度较小,流态偏向平推流,以轴向扩散模型表征的Pe准数为7.94与5.66,以多釜串联模型表征的串联釜数为4.55与3.44;在高负荷与超高负荷下该反应器的返混程度较大,流态偏向全混流,以轴向扩散模型表征的Pe准数为4.02、2.57与3.93、3.77,以多釜串联模型表征的串联釜数为2.66、2.00与2.62、2.51。
     ②沼气分段排出可显著改善CAR的性状。CAR的总死区平均值为33.58%,其中污泥死区的平均值为20%,水力死区的平均值为13.58%。水力死区Vh(%)与水力负荷L(m3·m-3·d-1)和产气速率G(m3·m-3·d-1)之间的相关关系为:Vh=3.75L+0.19G-9.47(相关系数R2=0.953)。在CAR中,容积产气速率对水力死区的影响小于容积水力负荷。
     ③产气速率和进水速率显著影响CAR的效能。不产沼气工况下反应器的水力效率高于产沼气工况下反应器的水力效率。高负荷(进水速率较大)下反应器的水力效率低于常负荷(进水速率较小)下反应器的水力效率。CAR采用分段排气方式可有效遏制返混作用,弱化所产沼气对反应器水力效率的影响。
     (4)探明了抗生素类制药废水及其厌氧消化中间产物的急性毒性。
     ①制药废水所含抗生素金霉素、多粘菌素、氯霉素对发光杆菌发光强度的半抑制浓度IC50分别为12.06、6.24和429.90mg·L-1,其毒性大小顺序为:多粘菌素>金霉素>氯霉素。厌氧消化中间产物乙醇、乙酸、丙酸和丁酸对发光杆菌发光强度的半抑制浓度IC50分别为19.40、20.71、10.47和12.17g·L-1,其毒性大小顺序为:丙酸>丁酸>乙醇>乙酸。
     ②厌氧消化中间产物(4元混合物)、多粘菌素-厌氧消化中间产物(5元混合物)、氯霉素-厌氧消化中间产物(5元混合物)的联合毒性R值分别为0.779、1.684、2.384,对发光细菌的联合毒性呈相加作用。金霉素-厌氧消化中间产物(5元混合物)、3种抗生素-厌氧消化中间产物(7元混合物)的联合毒性R值分别为3.005与3.827,其对发光细菌发光强度的联合毒性呈协同作用。
Energy shortage and environmental pollution are two major survival pressures in the world, and the application of anaerobic digestion technology to organic wastewater treatment can eliminate pollutants as well as produce bioenergy, which will play a great role in energy-saving and emission-reduction. Anaerobic reactor is the core of digestion technology, the research of high-rate anaerobic reactor have forcefully promoted the development of anaerobic digestion technology.
     Compartmentalized Anaerobic Reactor (CAR) is a novel high-rate anaerobic reactor designed by our laboratory.In this paper, the performance, vertical distribution, early warning and flow patterns of CAR were investigated and the toxicity of pharmaceutical wastewater containing antibiotics and its anaerobic digestion intermediates was assayed.The main acchievements were as follows.
     (1)Having revealed the working performance of CAR.
     ①CAR could reach a high volumetric efficiency.The organic loading rate, volumetric COD removal rate and volumetric biogas production were100.46gCOD·L-1·d-1,84.35gCOD·L-1·d-1and57.00L·L-1·d-1respectively.
     ②CAR could provide a greater driving force for the anaerobic digestion reaction. The average concentrations of COD and volatile fatty acids (VFA) in a high-rate CAR were2447mg·L-1and1638mg·L-1respectively, which were18.49and37.52times as high as their counterparts in a common-rate CAR.
     ③The performance stability of CAR at high loading rate was worse than that at common loading rate. At normal loading rate, the fluctuation of effluent COD concentration and volatile fatty acids (VFA) concentration was synchronous with that of influent COD concentration. The average relative standard deviation of effluent COD concentration and VFA concentration was24.57%and23.03%respectively,while that of influent COD concentration was23.92%, neverthesless, the fluctuation of effluent COD concentration and VFA concentration was large as compared with regard to that of influent COD concentration at high loading rate,. The average relative standard deviation of effluent COD concentration and VFA concentration was32.95%and40.46%respectively, while that of influent COD concentration was8.08%.
     (2) Having shown the vertical distribution and early-warning characteristics of CAR
     ①CAR showed an obvious vertical distribution of volumetric efficiency, e.g. the organic loading rate and volumetric COD removal rate of partⅠ,Ⅱ and Ⅲ (bottom, middle and top) at the high loading rate were327.6gCOD·L-1·d-1,221.2gCOD·L-1·d-1,153.3gCOD·L-1·d-1and106.4gCOD·L-1·d-1,67.9gCOD·L-1·d-1,32.0gCOD·L-1·d-1respectively. Compared with that at common loading rates, the vertical distribution of volumetric efficiency at high loading rates became less obvious, which was helpful to homogenize the organic loading rate along the reactor and exploit reaction potential of the whole reactor.
     ②CAR also showed an obvious vertical distribution of substrate concentration. The average concentrations of VFA and COD as well as the values of VFA to COD were1267.7mg·L-1,1006.1mg·L-1,922.9mg·L-1;2867.8mg·L-1,1988.1mg·L-1,1573.5mg·L-1and0.44、0.51、0.58respectively。The vertical concentration gradient of VFA and COD was smaller at high loading rates, and the ratios of VFA to COD in part Ⅰ, Ⅱ,Ⅲ increased significantly. More attention should be paid to the serious inhibition caused by VFA at high loading rates.
     ③The saturation of volumetric loading rate (SVLR) and VFA (SVFA) could be used to alarm the performance of anaerobic reactors. The working performance was good when the CAR was operated at normal OLR, in which SVLR and SVFA were below0.89and0.4respectively. The fluctuation of performance became larger when the CAR was operated at OLR near saturation, in which SVLR and SVFA were close to 1. The performance of CAR was deteriorated when the SVLR and SVFA were more than1.
     (3) Having revealed the hydraulic characteristics and their effects on working performance of CAR
     ①The flow pattern of CAR was significantly influenced by volumetric organic loading rate. The back-mixing at normal loading rate was small and the flow pattern tended to plug-flow,Pe numbers of the axial dispersion (AD) model under the condition with or without biogas production were5.66and7.94respectively, N numbers of the tanks-in-series(TIS) model under the condition with or without biogas production were3.44and4.55respectively. The back-mixing at high or super-high loading rate was large and the flow pattern tended to complexly mixed flow, Pe numbers of the AD model under the condition with or without biogas production were2.57,4.02and3.77,3.93respectively, N numbers of the TIS model under the condition with or without biogas production were2.00,2.66and2.51,2.62respectively.
     ②The hydraulic characteristics of CAR were ameliorated by discharging biogas individually out of each compartment. The average total dead space of CAR was33.58%, of which the average hydraulic dead space was13.58%. The regression equation (Vh=3.75L+0.19G-9.47) was established among the hydraulic dead space (Vh), the volumetric hydraulic loading rate (L) and the volumetric biogas production rate(G), the influence of G on Vh was less than L in CAR.
     ③The efficiencies of CAR were significantly influenced by volumetric hydraulic loading rate and volumetric biogas production rate. The reactor hydraulic efficiency under the condition without biogas production was better than that with biogas production, and the hydraulic efficiencies at high or super-high loading rate were lower than that at normal loading rate. The mode of discharging biogas from each compartment could alleviate the back-mixing, weaken the influence of biogas production on volumetric efficiency and improve the reactor performance.
     (4) Having assayed the acute toxicity of pharmaceutical wastewater containing antibiotics and its anaerobic digestion intermediates.
     ①The15min-IC5o of aureomycin, polymyxin and chloromycetin were12.06,6.24and429.90mg·L-1, the toxicity descended in the order of polymyxin, aureomycin and chloromycetin. The15min-IC50of ethanol,acetate, propionate and butyrate were19.40,20.71,10.47and12.17g·L-1respectively, the toxicity descended in the order of propionate, butyrate, ethanol and acetate.
     ②The R values of anaerobic digestion intermediates (quad mixtures), intermediates together with polymyxin (penta mixtures), intermediates together with chloromycetin (penta mixtures) were0.779,1.684,2.384respectively, their joint effects were all additive. The R values of intermediates together with aureomycin (penta mixtures),intermediates together with three antibiotics (hepta mixtures) were3.005,3.827respectively, their joint effect were synergistic.
引文
Agdag, O.N., Sponza, D.T.,2005. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems [J].Process Biochemistry,40(2):895-902.
    Altenburger, R., Backhaus, T., Boedeker, W., Faust, M., Scholze, M., Grimme, L.H., 2000. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals [J]. Environmental Toxicology and Chemistry,19(9):2341-2347.
    APHA, AWWA, WPCF,2005. Standard Methods for the Examination of Water and Wastewater, twenty-first ed [M]. American Public Health Association, Washington, DC.
    Araujo C.V.M., Nascimento R.B., Oliveira C.A., Strotmann U.J., da silva E.M.,2005. The use of Mcirotox to assess the toxicity removal of industrial effluents from the industrial district of Camacari (BA, Brazil) [J]. Chemosphere,58(9): 1277-1281.
    Barber W.P., Stuckey D.C.,1999. The use of the anaerobic baffled reactor (ABR) for wastewater treatment:A review [J]. Water Research,33(7):1559-1578.
    Bhattacharyya, D., Singh, K.S.,2010. Understanding the mixing pattern in an anaerobic expanded granular sludge bed reactor:effect of liquid recirculation [J]. Journal of Environmental Engineering,136(6):576-584.
    Blaszczyk, R., Gardner, D., Kosaric N.,1994. Response and recovery of anaerobic granules from shock loading [J]. Water Research,28(3):675-680.
    Blum, G.J.W., Speece, R.E.,1991. A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlation [J], Research Journal of the Water Pollution Control Federation,63(3):198-207.
    Cammack, R., Attwood, T.K., Campbell, P.N.2000. Oxford Dictionary of Biochemistry and Molecular Biology, revised ed. [M], Oxford University Press, New York.
    Cavinato, F., Fatone, D., Bolzonella, D., Pavan,P.,2010. Thermophilic anaerobic digestion of cattle manure with agro-wastes and energy crops:comparison of pilot and full scale experiences [J]. Bioresoure Technology,101(2):545-550.
    Chen, G.T.,2010. Chemical Reaction Engineering, third ed [M]. Chemical Industry Press, Beijing.
    Chen, X.G., Zheng, P., Guo, Y.J., Mahmood, Q., Tang, C.J., Ding, S.,2010. Flow patterns of super-high-rate anaerobic bioreactor [J]. Bioresoure Technology, 101(20):7731-7735.
    Crane, M., Watts, C., Boucard, T.,2006. Chronic aquatic environmental risks from exposure to human pharmaceuticals [J]. Science of the Total Environment, 367(1):23-41.
    David, A.W., Pamela, W.,2002. Environmental Toxicology [M], Cambridge University Press, New York.
    Demirel, B., Yenigun, O., Onay T.T.,2005. Anaerobic treatment of dairy wastewaters:a review [J]. Process Bioehemistry,40(8):2583-2595.
    Dhaked, R.K., Waghmare, C.K., Alam, S.I., Kamboj, D.V., Singh, L.,2003. Effect of propionate toxicity on methanogenesis of night soil at phychrophilic temperature [J]. Bioresource Technology,87(3):299-303.
    Dogan, T., Ince, O., Oz N.A.,2005. Inhibition of volatile fatty acid production in granular sludge from a UASB reactor [J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 40(3):633-644.
    Driessen, W., Yspeert, P.,1999. Anaerobic treatment of low, medium and high strength effluent in the agro-industry [J]. Water Science and Technology,40(8): 221-228.
    Duggar, B.M.,2006. Aureomycin:a product of the continuing search for new antibiotics [J], Annals of the New York Academy of Sciences,51:177-181.
    Fogler, H.S.,2006.Elements of Chemical Reaction Engineering, fourth ed [M]. Pearson Education, England.
    Gagne, F., Blaise, C., Andre, C.,2006. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes [J]. Ecotoxicology Environmental Safty,64(3):329-336.
    Ge, H.Q., Jensen, P.D., Batstone, D.J.,2011. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge [J]. Journal of Hazardous Materials, 187(1-3):355-361.
    Habets, L.H.A.,1997. Anaerobic treatment of inuline effluent in an internal circulation reactor [J]. Water Science and Technology,35(10):189-197.
    Inanc, B., Matsui, S., Ide, S.,1996. Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate:Effects of H2 and pH [J]. Water Science and Technology,34(5-6):317-325.
    International Standards Organization,1994. Water quality—Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test) [M]. ISO11348-2. Geneva, Switzerland.
    International Standards Organisation,2003. Determination of inhibition of gas production of anaerobic bacteria-Part 1. General test [M]. ISO13641-1.Geneva, Switzerland.
    Isabel, C., Maria, J.B., Flavio, S., Nadais, H., Prates, A., Arroja, L.,2009. Hydrodynamic behaviour of a full-scale anaerobic contact reactor using residence time distribution technique [J]. Journal of Chemical Technology & Biotechnology,84(5):716-724.
    Jackson, B.E., Mclnerney, M.J.,2002. Anaerobic miecrobial metabolism can proceed closed to thermodynamic limits [J]. Nature,415(6870):454-456.
    Jennings, V.L., Rayner-Brandes, M.H., Bird, D.J.,2001. Assessing chemical toxicity with the bioluminescent photobacterium:a comparison of three commercial systems [J], Water Research,35(14):3448-3456.
    Jha, A.K., Li. J., Loring, N., Zhang, L.G.,2011. Research advances in dry anaerobic digestion process of solid organic wastes [J]. Africa Journal of Biotechnology, 10(65):14242-14253.
    Ji, J.Y., Zheng, K., Xing Y.J., Zheng P.,2012. Hydraulic characteristics and their effects on working performance of compartmentalized anaerobic reactor [J]. Bioresource Technology,116:47-52.
    Jiao, S.J., Zheng, S.R., Yin, D.Q., Wang, L.H., Chen, L.Y.,2008. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J], Chemosphere,73(3):377-382.
    Jordening, H.J., Mosche, M.,1999. Comparison of different models of substrate and product inhibition in anaerobic digestion [J], Water Research,33(11): 2545-2554.
    Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C.S., Ternes, T.A., Thomsen, A., Siegrist, H.,2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme [J]. Water Research,40(8):1686-1696.
    Ko, J.H., Woo, H.J., Copp, J.B., Kim, S., Kim, C.W.,2002. Evaluation of several respiration-based activated sludge toxicity control strategies. Water Science and Technology.45(4-5):143-150.
    Kong, I.C.,2008. Microbial characteristics associated with six different organic wastes undergoing anaerobic decomposition in batch vial conditions [J]. Waste Management & Research,26(3):261-266.
    Laender, F.D., Janssen, C.R., Schamphelaere, K.A.D.,2009. Non-simultaneous ecotoxicity testing of single chemicals and their mixture results in erroneous conclusions about the joint action of the mixture [J], Chemosphere,76 (3): 428-432.
    Lansing, M.P., John, P.H., Donald, A.K.,2002. Microbiology, fifth ed. [M], The McGraw-Hill Companies, New York.
    Leitao, R.C., van Haandel, A.C., Zeeman, G.,2006. The effects of operational and environmental variations on anaerobic wastewater treatment systems:A review [J]. Bioresource Technology,97(9):1105-1118.
    Levenspiel, O.,1999. Chemical Reaction Engineering, third ed. [M], John Wiley, New York.
    Lettinga, G., Roersma, R., Grin, P.,1983. Anaerobic Treatment of raw domeotic sewageat ambient temperature using a granulat bed UASB reactor [J], Biotechology and Bioengineering,25(7):1710-1723.
    Lettinga, G., Field, J., van Lier, J., Zeeman, G., Pol, L.W.H.,1997. Advanced anaerobic wastewater treatment in the near future [J]. Water Science and Technology,35(10):5-12.
    Li, J.Z., Ban, Q.Y., Zhang, L.G., Jha, A.K.,2012. Syntrophic propionate degradation in anaerobic digestion:a review [J]. International Journal of Agriculture and Biology,14(5):843-850.
    Lu, G., Zheng, P.,2003. Flow model of internal-loop granular sludge bed nitrifying reactor [J]. Chinese Journal of Biotechnology,19(6):774-777.
    MaCarty P.L.,1982. One Hundred Years of Anaerobic Digestion [M]. Anaerobic Digestion, Elsevier Biomedical Press, Amsterdam.
    Mah, R.A., Xun, L.Y., Boone, D.R., Ahring, B., Smith, P.H., Wilkie, A.,1999. Methanogenesis from propionate in sludge and enrichment systems [M]. Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer Federation of European Microbiological Societies Symposium Series, Pleum Press, New York.
    Organisation for Economic Cooperation and Development. Determination of the inhibition of the activity of anaerobic bacteria-reduction of gas production from anaerobically digesting (sewage) sludge [M].Geneva.(OECD 224 Guideline)
    Orozco, A.,1997. Pilot and full-scale anaerobic treatment of low-strength wastewater at sub-optimal temperature (15℃) with a hybrid plug flow reactor[C]. Proceedings of the 8th International Conference on Anaerobic Digestion. Japan,183-191.
    Pena, M.R., Mara, D.D., Avella, G.P.,2006. Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates [J]. Water Research,40(3):445-452.
    Pereboom J.H.F.,1994. Size distribution model for methanogenic granules from full scale UASB and IC reactors [J].Water Science and Technology,30(12): 211-221.
    Pereboom J.H.F, Vereijken T.L.F.M.,1994. Methanogenic granule development in full scale internal circulation reactors [J].Water Science and Technology,30(8): 9-21.
    Persson, J., Somes, N.L.G., Wong, T.H.F.,1999. Hydraulics efficiency of constructed wetlands and ponds [J]. Water Science and Technology,40(3): 289-291.
    Pullammanappallil, P.C., Chynoweth, D.P., Lyberatos, G., Svoronos, S.A.,2001. Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid [J]. Bioresource Technology,78(2):165-169.
    Ren, N.Q., Chua, H., Chan, S.Y., Tsang, Y.F., Wang, Y.J., Sin, N.,2007. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors [J]. Bioresource Technology,98(9):1774-1780.
    Ren, S., Asce, M., Frymier, P.D.,2003. Toxicity Estimation of Phenolic Compounds by Bioluminescent Bacterium [J]. Journal of Environmental Engineering, 129(4):328-335.
    Ricco, G., Tomei, M.C., Ramadori, R., Laera, G.,2004. Toxicity assessment of common xenobiotic compounds on municipal activated sludge:comparison between respiratory and Microtoc[J]. Water Research,38(8):2103-2110.
    Rodirguez, D.C., Belmonte, M., Penuela, G., Campos, J.L., Vidal, G.,2011. Behaviour of molecular weight distribution for the liquid fraction of pig slurry treated by anaerobic digestion [J]. Environmental Technology,33(4):419-425.
    Russell, J.B.,1991. Resistance of streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation [J], Applied and Environmental Microbiology,57(1):255-259.
    Sanchez, E., Borja, R., Travieso, L., Martin, A., Colmenarejo, M.F.,2005. Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste [J]. Bioresoure Technology,96(3):335-344.
    Seghezzo, L., Zeeman, G., van Lier, J.B., Hamelers, H.V.M., Lettinga, G.,1998. A review: the anaerobic treatment of sewage in UASB and EGSB reactors [J]. Bioresoure Technology,65(3):175-190.
    Shijin, R., Paul, D., Frymier,2003. Kinetics of the toxicity of metals to luminescent bacteria [J]. Advances in Environmental Research,7(2):537-547.
    Speece R.E., Li Y.X.,2001. Anaerobic biotechnology of industrial wastewater [M]. China Building Industry Press, Beijing.
    Stephanopoulos, G.N., Aristidou, A.A., Nielsen, J.,1998. Metabolic Engineering: Principles and Methodologies [M], Academic Press, Waltham.
    Su, L.M., Yuan, X., Mu, C.F., Yan, J.C., Zhao, Y.H.,2008. Evaluation and QSAR Study of Joint Toxicity of Substituted Phenols and Cadmium to Photobacterium phosphoreum. Chemical Research in Chinese Universities,24(3):281-284.
    Syberg, K., Jensen, T.S., Cedergreen, N., Rank, J.,2009. On the use of mixture toxicity assessment in REACH and the water framework directive:a review [J]. Human and Ecological Risk Assessment,15:1257-1272.
    Terashima, M., Goel, R., Komatsu, K., Yasui, H., Takahashi, H., Li, Y.Y., Noike, T., 2009. CFD simulation of mixing in anaerobic digesters [J]. Bioresoure Technology,100(7):2228-2233.
    Tian, D.Y., Lin, Z.F., Yu, J.Q., Yin, D.Q.,2012. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects [J]. Chemosphere, 88(8):994-1000.
    Tomlinson. E.J., Chambers, B.,1979. The Effect of Longitudinal Mixing on the Settleability of Activated Sludge [M]. Technical Report TR 122. Stevenage, England.
    Torres, J.J., Soler, A., Saez, J., Llorens, M.,2000. Hydraulic performance of a deep stabilisation pond fed at 3.5 m depth [J]. Water Research,34(3):1042-1049.
    Ventura, S.P.M, Marques, C.S., Rosatella, A.A., Afonso, C.A.M., Goncalves, F., Coutinho, J.A.P.,2012. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria [J]. Ecotoxicology and Environmental Safety,76(2):162-168.
    Wallace, H. A.,2007. Principles and Methods of Toxicology, fifth ed. [M], Taylor and Francis, Boston.
    Yuttachai, S., Thammarat, K., Antoine, M.,2010. Hydraulic characteristics of an anaerobic baffled reactor as onsite wastewater treatment system [J]. Journal of Environmental Science,22(9):1319-1326.
    Zhang Y. J.,Yan L., Chi, L., Long, X., Mei, Z., Zhang, Z.,2008. Statup and operation of anaerobic EGSB reactor treating palm oil mill effluent [J]. Journal of Environmental Sciences,20(6):658-663.
    陈建伟,唐崇俭,郑平,张蕾,2008.实验室模拟高负荷SPAC厌氧反应器运行[J].生物工程学报,25(6):1413-1419.
    陈小光,郑平,唐崇俭,张蕾,2009.超高效厌氧生物反应器能耗特征[J].化工学报,60(12):3097-3102.
    何连生,朱迎波,席北斗,刘鸿亮,2004.高效厌氧生物反应器研究动态及趋势[J].环境工程,22(1):7-11.
    胡纪萃,周孟津,左剑恶,2002.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社.
    胡细全,刘大银,蔡鹤生,2004.ABR反应器结构对水力特性的影响[J].中国地质大学学报:地球科学,29(3):369-373.
    管锡珺,2005.高效厌氧反应器开发与应用研究[D].中国海洋大学.
    国家环境保护部《水和废水监测分析方法》编委会,2002.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社.
    黄正,王玲家,1995.发光细菌的生理特性及其在环境监测中的应用[J].中国环境科学,16(3):87-90.
    江瀚,王凯军,倪文,石宪奎,2005.有机负荷及水力条件对EGSB运行效果影响的研究[J].环境污染治理技术与设备,6(1):40-43.
    季军远,郑平,张吉强,陆慧锋,2011.分段组合式厌氧反应器预警性能[J].生物工程学报,27(9):1347-1354.
    季军远,郑平,张吉强,陆慧锋,2011.分段组合式厌氧反应器的运行性能[J].农业工程学报,27(11):252-257.
    季军远,邢雅娟,郑平,2012.分段组合式厌氧生物反应器流态研究[J].化工学报,63(10):3045-3051.
    林永波,李慧婷,李永峰,2010.基础水污染控制工程[M].哈尔滨:哈尔滨工业大学出版社.
    李建平,左剑恶,2006.沼气循环厌氧颗粒污泥床反应器的运行特性[J].中国沼气,24(3):6-10.
    李军,杨秀山,彭永臻,2002.微生物与水处理工程[M].北京:化学工业出版社.
    李秀芬,邹华,王新华,2012.水污染控制工程实践[M].北京:中国轻工业出版社.
    李永峰,任南琪,陈瑛,李建政,胡立杰,郑国香,2004.发酵产氢细菌分离培养的厌氧实验操作技术[J].哈尔滨工业大学学报,36(12):1589-1592.
    凌云,赵渝,徐亚同,朱文杰,2005.发光细菌法在食品安全性检测中的应用[J].食品与生物技术学报,24(6):106-110.
    陆慧峰,赖玢洁,蔡靖,陈婷婷,郑平,2010.同步脱氮除硫工艺基质及产物对发光细菌的急性毒性[J].环境科学学报,30(5):972-979.
    吕炳南,陈志强,2004.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出
    马溪平,2005.厌氧微生物学与污水处理[M].北京:化学工业出版社.
    孟紫强,2003.环境毒理学基础[M].北京:高等教育出版社.
    闵航,陈美慈,赵宇华,钱泽树,1993.厌氧微生物学[M].杭州:浙江大学出版社.
    盘爱享,施英乔,丁来保,房桂干,2008.废水处理厌氧生物反应器研究进展[J].生物质化学工程,42(5):37-42.
    戚以政,汪叔雄,1995.生化反应动力学与反应器[M].北京:化学工业出版社.
    钱正英,张光斗,2001.中国可持续发展水资源战略研究[M].中国水利水电出版社.
    钱泽树,闵航,1985.沼气发酵微生物学[M].杭州:浙江科学技术出版社.
    任南琪,赵丹,陈晓蕾,李建政,2002.厌氧生物处理丙酸产生和积累的原因及控制对策[J].中国科学(B辑),32(2):83-89.
    任南琪,许丽英,张颖,徐慧,王兴祖,陈冠雄,2006.产氢发酵新菌Ethanoligenens sp B49对铁的依赖性及产氢途径初控[J].环境科学学报,26(10):1643-1650.
    任南琪,王爱杰,2004.厌氧生物技术原理与应用[M].北京:化学工业出版社.
    沈萍、彭珍荣译,2003.《微生物学》(第五版)[M].北京:高等教育出版社.
    沈耀良,王惠民,赵丹,王承武,2002.厌氧生物处理反应器混合流态及其分析[J].环境科学与技术,25(3):13-16.
    沈耀良,1999.废水生物处理新技术[M].北京:中国环境科学出版社.
    施汉昌,胡志荣,周军,陈光浩译,2011污水生物处理-原理、设计与模拟[M].北京:中国建筑工业出版社.
    孙剑辉,吴俊峰,张波,2004.冲击负荷对厌氧折流板反应器运行性能的影响[J].水处理技术,30(6):362-364.
    孙立柱,沈耀良,李媛,杨光冠,2010.ABR反应器水力混合性能研究[J].苏州科技学院学报,23(3):6-9.
    宋铁红,韩相奎,李胜男,2010.异波折流板反应器水力特性试验研究[J].水处理技术,36(4):41-49.
    叶长兵,2009.异波折流板厌氧反应器处理低浓度污水研究[D].吉林:吉林大学.
    汪彩华,郑平,陈建伟,唐崇俭,余一,2009.SPAC厌氧反应器的动力学特性研究[J].浙江大学学报(农业与生命科学版),35(2):222-227.
    王镜岩、朱圣庚、徐长法,2008.《生物化学》(第三版)[M].北京:高等教育出版社.
    王凯军,方浩,2007.厌氧悬浮颗粒污泥床反应器流态和运行状态相关关系研究[J].中国沼气,25(6):10-15.
    王凯军,常丽春,甘海南,2007.厌氧颗粒污泥悬浮床反应器示范工程的研究与应用[J].给水排水,43(2):58-62.
    王立军,郑文华,史绪盛,张耀英,2007.IC反应器酸化原因分析及重新启动[J].中国给水排水,23(24):96-97.
    汪小兰,1997.有机化学[M].北京:高等教育出版社.
    吴静,陆正禹,胡纪萃,顾夏声,2001.新型高效内循环(1C)厌氧反应器[J].中国给水排水,17(1):26-29.
    吴淑杭,2007.发光细菌法快速检测农产品中主要污染物联合毒性技术研究[D].上海:华东师范大学.
    许保玖,龙腾锐,2008.当代给水与废水处理原理[M].北京:高等教育出版社.
    徐金兰,王志盈,刘可,高峰,2004.ABR系统中酸解过程的污泥特性及分析[J]环境污染治理技术与设备,5(2):47-49.
    于雷,彭剑峰,宋永会,徐东耀,2011.厌氧反应器的酸化及其恢复研究进展[J].工业水处理,31(8):1-5.
    余一,郑平,汪彩华,陈婷婷,黄武,2009.厌氧消化中间产物毒性的研究[J].农业环境科学学报,28(8):1651-1654.
    中华人民共和国环境保护部,2011.2010年中国环境状况公报[M].
    张翔,2008.厌氧消-SBR-絮凝组合工艺处理牛粪废水研究[D].郑州:郑州大学.
    张寿通,郭海燕,费庆志,杨凤林,张鑫,孟璐鹭,2009.斜板式ABR水力特性 及生活污水的处理[J].环境化学,28(4):492-496.
    赵立军,滕登用,刘金铃,沈凤丹,栗毅,2001.废水厌氧生物处理技术综述与研究进展[J].环境污染治理技术与设备,2(5):58-66.
    赵学明,白冬梅译,2003.代谢工程-原理与方法[M].北京:化学工业出版社.
    赵群英,2005.生产性UASB反应器处理淀粉废水的快速启动研究[D].西安:西安建筑科技大学.
    郑平,徐向阳,胡宝兰,2004.新型生物脱氮理论与技术[M].北京:科学出版社.
    郑平,冯孝善,2006.废水生物处理[M].北京:高等教育出版社.
    郑平,2010.环境微生物学教程[M].北京:高等教育出版社.
    郑强,2001.UASB在啤酒废水处理中的应用[J].上海环境科学,30(11):540-543.
    周德庆,2004.《微生物学教程》(第二版)[M].北京:高等教育出版社.
    朱葛夫,2007.厌氧折流板反应器应用技术及微生物群落生态学研究[D].沈阳:哈尔滨工业大学.
    朱瑾,叶小梅,常志州,许智,杜静,2011.不同因素对秸秆两相厌氧消化的影响[J].农业工程学报,27(13):79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700