用户名: 密码: 验证码:
非平衡等离子体脱除NO的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平衡等离子体脱除NO是集物理学、化学和环境工程学于一体的交叉学科,其影响NO转化脱除的本质是等离子体中进行的一系列微观物理化学反应过程,这些过程难以通过实验直接加以研究,但可以通过数值模拟进行分析。论文基于不同的背景气体,分别进行了以氦气为载气的模拟烟气系统He/NO、 He/NO/O2、He/NO/O2/H2O和以氮气为载气的模拟烟气系统N2/NO的非平衡等离子体脱除转化NO的数值模拟研究。依据非平衡等离子体脱除转化NO的反应机理和反应方程式,建立了各模拟烟气系统下的化学反应动力学方程,并对其进行了数值求解,通过调整反应物初值和反应中的各种参数,系统地考察了等离子体内的微观物理化学反应过程及各种因素对不同背景气体下非平衡等离子体脱除转化NO的影响机制,指出了各种系统脱除转化NO的主要途径。
     对以氦气为载气的简化模拟烟气系统He/NO、He/NO/O2和He/NO/O2/H2O,主要考察了体系中NO转化为N2的反应及各因素对NO脱除的影响。结果表明,在He/NO/O2/H2O系统中,随微波等离子体输出功率增加,NO脱除效率呈现先快速增加后增加缓慢的趋势,N2的选择性也呈现同样规律,而在无水系统He/NO和He/NO/O2中,微波等离子体输出功率对NO脱除与转化影响不显著;模拟计算过程中,O·自由基和N·自由基的屏蔽与否对各系统的NO转化和N2选择性均有显著影响,其中N·自由基的影响尤为明显,存在O·屏蔽N·使NO主要转化为NO2,存在N·屏蔽O·有利于NO脱除并提高N2的选择性;O2和H2O的加入可增加产物中NO2的生成量,但仍小于N2的生成量;在3个体系中,He/NO体系脱除NO主要为还原反应,而He/NO/O2和He/NO/O2/H2O体系脱除NO则包括还原和氧化双重作用,其中以还原作用为主,氧化作用较弱,主要氧化物种为O·和·OH自由基,芬顿试剂为氧化添加剂的液相脱除实验研究证实了·OH自由基对NO的氧化脱除作用。
     为使模拟烟气系统接近实际烟气成分,选取以氮气为载气的模拟烟气系统N2/NO。在N2/NO体系中,考察了等离子体主要特征量及各因素对NO脱除的影响。结果表明,等离子体电离度和电子平均能量对NO脱除效率影响显著;初始电子相对数密度是决定体系非平衡等离子体NO脱除的本质因素,初始电子相对数密度大,体系NO脱除效率高,当初始电子相对数密度为1/2时,NO脱除效率高达97.91%;电子平均能量与NO脱除效率成正相关关系,电子平均能量高于10eV时,NO的脱除效率可达到87%以上;反应的最终产物以N2为主,但也有一定量的O2和少量的N02,这表明在此体系中,还原反应是NO脱除的主要历程;O·自由基屏蔽前后,NO脱除效率由58.68%下降为49.75%,NO2选择性由8.86%下降为0;N·自由基屏蔽后,NO的脱除效率和NO2选择性均下降为0,表明体系中O·为氧化物种,N·为主要还原物种,NO的脱除在很大程度上取决于体系中的活性N·;O2的加入降低了NO脱除的还原氛围,导致NO脱除效率下降。
The removal of the NO by non-equilibrium plasma belongs to the interdiscipline combining physics, chemistry and environmental engineering, the essence which impacts the NO removal lies in the micro physical and chemical reactions. It is difficult to study these courses though experiments, but it can be researched by the numerical simulation experiments. Based on different gases backgrounds, the NO removal in the simulating gases systems with the He and N2as the carrier by non-equilibrium plasma were studied through the numerical simulation in this paper. According to the mechanism and the reaction equation of the NO removal by non-equilibrium plasma, the kinetic reaction equations of the simulating gases systems were obtained, and the numerical solutions were derived. By adjusting the initial values and the reaction parameters, the courses of the micro physical and chemical reactions of the plasma were systemically studied, and the cofactors which effect the NO removal by non-equilibrium plasma based on different gases were also studied. The major course of the NO removal in each system was revealed.
     For the simplified simulating gas system with the He as the carrier, such as the He/NO、He/NO/O2and He/NO/O2/H2O systems, the reactions of NO converting to N2and the impactors on the NO removal were mainly studied. The results showed that the efficiency of the NO removal increased initially and then slowed down as the micro-wave output increased in the He/NO/O2/H2O system. The same result was found for the selectivity of the N2. But, for the no-water system, the micro-wave output had little impact on the NO removal. In the course of the simulation calculation, the NO removal and the selectivity of N2were obviously impacted by the O-radical and N-radical, and especially by the N· radical. Existing O· shielding N· facilitated the converting of the NO to NO2, and existing N· shielding O· facilitated the NO removal and increased the selectivity of the N2. The addition of the O2and H2O could increase the yield of NO2, but it was still lower than the production of N2. The major reaction of the NO removal in the He/NO system was reduction. The NO removal in the He/NO/O2and He/NO/O2/H2O systems included not only reduction process but also oxidation process, but the major reaction was reduction reaction and the oxidation reaction was comparably weaker. The oxidation agents were O· and·OH radicals. The effects of the oxidizing removal of the NO by the·OH radicals was verified by the addition of Fenton agents as the oxidizing agent in the liquid phase.
     In order to simulate the actual flue gas, the N2/NO system was selected, the impact of main features of the plasma and other factors on the NO removal were studied. The results showed that the ionized degree of the plasma and the average energy of the electrons had strong effects on the efficiency of the NO removal. The NO removal by non-equilibrium plasma was essentially determined by the initial comparable electron number density. The higher the initial comparable electron number density was, the higher the NO removal efficiency. When the initial comparable electron number density was1/2, the efficiency of the NO removal reached to97.91%; The efficiency of the NO removal was positively related to the average energy of the electrons. When the average energy of the electrons was over10eV, the efficiency of the NO removal could be over to87%, the final reaction products were mainly N2with little O2and NO2. The above result showed that the main course for the NO removal was the reduction process. With the O· radicals shielding, the efficiency of the NO removal descended from58.68%to49.75%, and the selectivity of the NO2reduced from8.86%to0. With the N· radicals shielding, the efficiency of the NO removal and the selectivity of the NO2all decreased to0, which showed that O· radical was oxidizing agent and N· was reduction agent. The removal of NO was mainly depended on the reactivity of the N·. The addition of the O2was against to the reduction environment of the NO removal and made the efficiency of the NO removal decrease.
引文
[1]李少敏.空气中氮氧化物的污染物分析及治理技术[J].河南科技,2010,1(下):95-96
    [2]肖晓存,王雪纳.大气中氮氧化物的污染与防治[J].煤炭技术,2005,24(8):157-158
    [3]徐青,郑章靖,凌长明,等.氮氧化物污染现状和控制措施[J].安徽农业科学,2010,38(29):16388-16391
    [4]GB 13223-2011,火电厂大气污染物排放标准[S].北京:中国环境科学出版社,2011
    [5]柳清华.简述选择性催化还原法(SCR)烟气脱硝技术[J].锅炉制造,2008,3:42-43
    [6]吕君英,龚凡,郭亚平.选择性催化还原NOx的反应机理研究[J].工业催化,2006,14(1):40-44
    [7]吕林,沈颖倩.NH3低温选择性催化还原NO的研究[J].燃烧科学与技术,2011,17(2):103-106
    [8]闫志勇,高翔,吴杰,等.NH3选择性催化还原烟气中NO的反应动力学[J].动力工程,2007,27(4):601-605
    [9]沈伯雄,王成东,郭宾彬,等.控制氮氧化物排放的低温SCR催化剂及工程应用[J].电站系统工程,2006,22(5):30-34
    [10]胡晓宏,刘艳华,董淑萍.氮氧化物选择性催化还原催化剂研究综述[J].环境科学与技术,2007,30(11):107-110
    [11]丁朋果,张育婵.燃煤电厂SCR脱硝还原剂种类及其工程应用[J].能源与环境,2011,2:96-97
    [12]吕健.浅谈SCR烟气脱硝技术[J].锅炉制造,2008,3:40-41
    [13]高莲,马晓驰.选择性催化还原废气脱硝技术[J].化工环保,2005,25(5):358-360
    [14]吴碧君,王述刚,方志星,等.烟气脱硝工艺及其化学反应原理分析[J].热力发电,2006,35(11):59-60
    [15]曾纪良.选择性非催化还原脱硝技术的应用[J].广东电力,2008,21(10):38-42
    [16]胡浩毅.以尿素为还原剂的SNCR脱硝技术在电厂的应用[J].电力技术,2009,3:22-25
    [17]李可夫,吴少华,高冠帅,等.选择性非催化脱硝不同还原剂的比较试验研究[J].热能动力工程,2008,23(4):417-420
    [18]黄霞,刘辉,吴少华.选择性非催化还原(SNCR)技术及其应用前景[J].电站系统工程,2008,24(1):12-14
    [19]李晓芸,蔡小峰.混合SNCR-SCR烟气脱硝工艺及其应用[J].华电技术,2008,30(3): 22-25
    [20]龚家猷,李庆.燃煤电厂SNCR与SCR联合脱硝工艺在国内的首次应用[J].华北电力技术,2011,2:31-34
    [21]周国民,赵海军,龚家猷.SNCR-SCR联合脱硝技术在410t/h锅炉上的应用[J].热力发电,2011,40(3):58-61
    [22]韩奎华,路春美,王永征,等.选择性非催化还原脱硝特性试验研究[J].中国电机工程学报,2008,28(14):80-85
    [23]栾积毅,孙锐,路军锋,等.生物质再燃脱硝的试验研究[J].中国电机工程学报,2008,28(14):73-78
    [24]赵毅,刘凤,赵音,等.亚氯酸钠溶液同时脱硫脱硝的热力学研究[J].化学学报,2008,66(15):1827-1832
    [25]张虎,佟会玲,王晋元,等.用KMnO4调质钙基吸收剂从燃煤烟气同时脱硫脱硝[J].化工学报,2007,58(7):1810-1815
    [26]马双忱,马京香,赵毅,等.采用UV/H2O2体系进行烟气脱硫脱硝的实验研究[J].中国电机工程学报,2009,29(5):27-31
    [27]王智化,周俊虎,魏林生,等.用臭氧氧化技术同时脱除锅炉烟气中NOx及SO2的试验研究[J].中国电机工程学报,2007,27(11):1-5
    [28]裴梅香,林赫,上官文峰,等.等离子体在同时去除NOx和碳烟催化反应中的作用[J].物理化学学报,2005,21(3):255-260
    [29]Chalise P R., Yu Wang, Mustafa K A, et al. NOx Treatment Using Low-Energy Secondary Emission Electron Gun[J]. IEEE Transactions on Plasma Science, 2004,32(3):1392-1399
    [30]Yamamoto, T., Okubo, M., Nagaoka, T., et al. Simultaneous removal of NOx, SOx and CO2 at elevated temperature using a plasma chemical hybrid process[J]. Transactions on Industry Applications,2002,38(5):1168-1173
    [31]He Yuanji, Dong Liming, Yang Jiaxiang. Removal of NO and SO2 in corona discharge plasma reactor with water film[J]. Plasma Science & Technology, 2004,6(2):2250-2255
    [32]Chang J S, Urashima K, Tong Y X, et al. Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems - pilot plant tests[J]. Journal of Electrostatics,2003,57:313-323
    [33]Yamamoto T, Yang C L, Behran M R, et al. Plasma- Assisted Chemical Process for NOx Control[J]. IEEE Transactions on Industry Applications,2000,36(3): 923-927
    [34]曹玮,骆仲泱,徐飞,等.脉冲电晕放电协同烟气脱硫脱硝试验研究[J].环境科学学报,2008,28(12):2487-2491
    [35]I Orlandini, U Riedel. Chemical kinetics of NO removal by pulsed corona discharges [J]. Journal of Physics D:Applied Physics:2000,33(19):2467-2474
    [36]冯光耀,裴元吉,王相綦.电子束与烟气相互作用机制模拟分析[J].强激光与粒子束,2006,18(10):1721-1725
    [37]Ivanov A S, Ovchinnikov V P, Svinin M P, et al. New irradiation field shaping systems of high voltage electron accelerators for industry[A]. Proceedings of the 1993 particle accelerator conference[C].1993:555-557
    [38]Chmielewski A G, Tyminski B, Licki J, et al. Pilot plant for flue gas treatment with electron beam start up and two stage irradiation tests [J]. Radiation Physics and Chemistry,1993,42 (4-6):663-668
    [39]Namba H, Tokunaga D, Tanaka T, et al. The study on electron beam flue gas treatment for coal fired thermal plant in Japan[J]. Radiation Physics and Chemistry,1993,42 (4-6):669-672
    [40]毛本将,王保健,姜一鸣等.电子束辐照烟气脱硫脱硝工业化试验装置[J].环境保护,2000,8:13-14
    [41]O. Tokunaga, N. Suzuki. Radiation Chemical Reactions in NO and SO2 Removal from Flue Gas [J]. Radiation Physics and Chemistry,1984,24(1):145-165
    [42]杨睿戆,吴彦,毛本将.电子束辐照烟气脱硫脱硝机理研究现状[J].环境科学动态,2003,4:43-45
    [43]Yoshitaka Doi, Ikuo Nakanishi, Yoshihide Konno, et al. Operational experience of a commercial scale plant of electron beam purification of flue gas[J]. Radiation Physics and Chemistry,2000,57(3-6):495-499
    [44]林赫.直流电晕放电诱导自由基簇射烟气脱硝试验和机理研究[D].浙江:浙江大学,2002,7-9
    [45]任志凌,杨睿戆,毛本将.电子束辐照烟气脱硫脱硝技术及模型模拟[J].能源环境保护,2006,20(6):24-28
    [46]张明,徐光.电子束法烟气净化工艺主要因素分析[J].环境技术,2003,6:25-28
    [47]任志凌,陈伟华,毛本将.影响电子束氨法烟气脱硫效率与脱硝率主要因素的分析[J].环境技术,2006,1:38-40
    [48]Mizuno A, Shimizu K, Chakrabar A, et al. NOx removal process using pulsed discharge plasma. IEEE Trans on Ind Appl,1995,31 (5):957-963
    [49]Chung J W, Cho M H, Son B H, et al. Study on reduction of energy consumption in pulsed corona discharge process for NOx removal [J]. Plasma Chemistry and Plasma Processing,2000,20(4):495-509
    [50]K. Yan, E.J.M.van Heesch, A.G.M. Pemen, et al. Corona induced non-thermal plasma for pollution control and sustainable technology[J]. Journal of Electrostatics,2001,51(52):218-224
    [51]Akiyama H, Kawamura K, Takeshita T, et al. Removal of NOx using discharges by pulsed power [A]. Tenth IEEE International Pulsed Power Conference Digest of Technical Paper[C],1995,133-137
    [52]Mok Y S, Ham S W, Nam I S. Evaluation of energy utilization efficiencies for SO2 and NO removal by pulsed corona discharge process [J]. Plasma Chemistry and Plasma Processing,1998,18(4):535-549
    [53]E. M. van Veldhuizen, L. M. Zhou, W. R. Rutgers. Combined effects of pulsed discharge removal of NO、SO2 and NH3 from flue gas [J]. Plasma Chemistry and Plasma Processing,1998,18(1):91-111
    [54]K. Yan, S. Kanazawa, T. Ohkubo et al. Oxidation and reduction process during NOx removal with corona-induced nonthermal plasma[J]. Plasma Chemistry and Plasma Processing,1999,19(3):421-443
    [55]赵志斌,王宁会,王荣益.含灰含水烟气的脉冲放电脱除NO和NOx的研究[J].环境科学,1996,17(3):27-30
    [56]任先文,吴彦,赵君科.脉冲电晕等离子体反应器能量注入效率[J].中国工程物理研究院科技年报,2004,1:89-89
    [57]王晓臣,商克峰.应用脉冲放电等离子体氧化NO、SO2的影响因素[J].高电压技术,2009,35(5):1122-1126
    [58]商克峰,李国锋,吴彦,等.添加剂对电晕放电烟气脱硝效率和NOx转化影响[J].大连理工大学学报,2007,47(1):21-25
    [59]余奇,曾克思,张振伟,等.脉冲放电NO脱除过程模拟[J].化工学报,2008,59(1):195-199
    [60]李谦,李劲.脉冲电晕烟气脱硫脱硝的化学动力学分析[J].环境科学学报,1998,18(3):236-241
    [61]尹书慧.电晕放电与介质阻挡放电等离子体简介[J].现代物理知识,2006, 18(2):20-22
    [62]XU Xudong, Kushner M. J.. Microstreamer expansion and toxic gas remediation efficiency in dielectric barrier discharges[A]. IEEE International Conference on Plasma Science[C].1996,145-149
    [63]Baroch P, Saito N, Takia O, et al. Special type of plasma dielectric barrier discharge reactor for direct ozonization of water and degradation of organic pollution[J]. Journal of Physics D:Applied Physics,2008,41(8):3722-3727
    [64]Rudolph R., Francke K.-P., Miessner H. OH radicals as oxidizing agent for the abatement of organic pollutants in gas flows by dielectric barrier discharges. Plasma and Polymers,2003,8 (2):153-161
    [65]U. Kogelschatz.Dielectric-barrier discharges:their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing,2003,23(1): 1-46
    [66]H Sekiguchi, M Ando, H Kojima, et al. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor[J]. J. Phys. D:Appl. Phys.,2005, 38(11):1722-1727
    [67]Chung-Liang Chang, Hsunling Bai,Shu-Jen Lu. Destruction of styrene in an air stream by packed dielectric barrier discharge reactors [J]. Plasma Chemistry and Plasma Processing,2005,25(6):641-657
    [68]Zhaolian Ye, Yaning Zhang, Ping Li,et al. Feasibility of destruction of gaseous benzene with dielectric barrier discharge [J]. Journal of Hazardous Materials, 2008,156(1-3):356-364
    [69]章程,邵涛,龙凯华,等.大气压空气中纳秒脉冲介质阻挡放电特性分析[J].中国电机工程学报,2010,30(7):111-117
    [70]侯健,郑光云,蒋洁敏,等.DBD技术脱除恶臭气体H2S和C82的可行性[J].环境科学,2001,22(5):12-16
    [71]白敏冬,朱晓峰,白敏药,等.大气压DBD甲烷二氧化碳转化方法研究[J].北京理工大学学报,2005,25(增刊):217-221
    [72]叶招莲,张仁熙,侯惠奇.介质阻挡放电降解乙酸异丁脂气体[J].环境科学研究,2011,24(3):319-323
    [73]Sun Qi, Ren Liang, Niu JinHai, et al. Interactions of Dielectric Barrier Discharge Plasmas with NO or NO/O2 Adsorbed on CuZSM -5[J]. Acta Phys Chim Sin, 2008,24(7):1214-1218
    [74]Song C. L., Bin F, Tao Z. M., et al. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges[J]. Journal of Hazardous Materials,2009,166(1):523-530
    [75]Sun Wanming, Pashaie Bijan, Dhali Shirshak K., et al. Non-thermal plasma remediation of SO2/NO using dielectric-barrier discharge[J]. Journal of Applied Physics,1996,79(7):3438-3444
    [76]Chang M B, Yang S C. NO/NOx removal with C2 H2 as additive dielectric barrier discharges[J]. AIChE Journal,2001,47 (5):1226-1233
    [77]李华,唐晓龙,易红宏,等.NO在等离子体中氧化分解特性研究[J].热力发电,2010,39(5):9-12
    [78]张旭东.介质阻挡放电冷等离子体去除NO的研究[D].北京:清华大学,2003:24-28
    [79]杨宏旻,王宁,李佳凤,等.非平衡等离子体的NO净化试验[J].南京师范大学学报,2007,7(2):49-52
    [80]高旭东,孙保民,肖海平,等.介质阻挡放电脱除NOx反应器的评价方法及运行流量特性分析[J].中国电机工程学报,2010,30(7):27-32
    [81]McLarnon C R. Final technical report for mercury removal in a non-thermal, plasma-based multi-pollutant control technology for utility boilers[R]. USA: Powerspan Corp.,2004
    [82]吴宇煌,杨学昌,陈波,等.非热等离子体对柴油机尾气中NOx的治理[J].清华大学学报,2009,49(1):1-4
    [83]陈溪滢,曹先安,丁训民,等.微波放电法生长GaS薄膜的性质[J].物理学报,1997,46(4):826-832
    [84]胡征,王喜章,吴强,等.多功能微波等离子体化学反应装置及其应用[J].化学通报,2001,1:56-59
    [85]孙文周,马建军,韩非,等.微波等离子体法合成SrA12O4: Eu2+, Dy3+的基质配比[J].材料科学与工程学报,2010,28(3):429-433
    [86]张达欣,于爱民,金钦汉.微波-炭还原法处理一氧化氮的研究[J].高等学校化学学报,1997,18(8):1271-1274
    [87]唐军旺,杨黄河,任丽丽,等.微波放电脱除NO[J].高等学校化学学报,2002,23(4):632-635
    [88]马双忱,赵毅,马宵颖,等.微波诱导催化还原脱硫脱硝实验研究[J].中国电机工程学报,2006,26(18):121-124
    [89]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2009:3-10
    [90]陈殿英.低温等离子体及其在废气处理中的应用[J].化工环保,2001,21(3): 136-139
    [91]刘道清,季学李.低温等离子体技术及在空气污染控制中的应用[J].四川环境,2004,23(3):1-4
    [92]漆安慎,杜婵英.力学[M].北京:高等教育出版社,1997:129-134
    [93]唐军旺.微波辐射下NO转化的研究[D].大连:中国科学院大连化学物理研究所,2001:51-60
    [94]Hyun H K, Graciela P, Kazunori T, et al. Performance Evaluation of Discharge Plasma Process for Gaseous Pollutant Removal [J]. Journal of Electrostatics, 2002,55:25-41
    [95]Oda T. Non-thermal Plasma Processing for Environmental Protection: Decomposition of Dilute VOCs in Air [J]. Journal of Electrostatics,2003,57: 293-311
    [96]Chae J O. Non-thermal Plasma for Diesel Exhaust Treatment [J]. Journal of Electrostatics,2003,57:251-262
    [97]Khacef A, Cormier J M, Pouvesle J M. NOx Remediation in Oxygen-rich Exhaust Gas Using Atmospheric Pressure Non-thermal Plasma Generated by a Pulsed Nanosecond Dielectric Barrier Discharge [J]. J Phys D:Appl Phys,2002, 35:1491-1498
    [98]Tsai Cheng-Hsien. Reducing nitric oxide into nitrogen via a radio frequency discharge [J]. Journal of Hazardous Materials,2007,143:409-414
    [99]McLarnon C R, Mathur V K. Nitrogen oxide decomposition by barrier discharge [J]. Ind Eng Chem Res,2000,39 (8):2779-2787
    [100]余刚,严铮,叶丹,等.气体NO/N2系统等离子体反应NO还原机理研究[J].工程热物理学报,2003,24(2):354-356
    [101]孙保民,尹水娥,孙红华,等.不同背景气体下非平衡等离子体去除NO实验[J].环境科学学报,2010,30(1):66-71
    [102]Senichi Masuda, Hideyuki Nakao. Control of NOx by positive and negative pulsed corona discharge. IEEE Trans Ind Appl,1990,26(2):374-383
    [103]Tomio Fujii. Removal of NOx by DC-corona reactor with water [J]. Journal of Electrostatics,2001,52(51):8-14
    [104]Yan Keping, Hui Hexing, Cui Mi, et al. Corona induced non-thermal plasmas: fundamental study and industry applications[J]. Journal of Electrostatics,1998, 44(1):17-39
    [105]孙继忠,宫野,王荣毅.带电粒子在电子束法脱硝中的行为及应用[J].大 连理工大学学报,1995,35(6):805-809
    [106]刘新,王树东.非热等离子体烟气脱硝中的二氧化硫、氨和温度的效应[J].化工学报,2006,57(10):2411-2415
    [107]马双忱,赵毅,马宵颖,等.活性炭床加微波辐射脱硫脱硝的研究[J].热能动力工程,2006,21(4):338-341
    [108]Ouyang Jiang-Ming, Guo Wei,Wang Long. Numerical simulation of chemical processes in atmospheric plasmas[J]. Chinese physics,2004,13(12):2174-2181
    [109]Ouyang Jiang-Ming, Guo Wei,Wang Long. Numerical simulation of chemical processes in heliem plasmas in atmosphere invironment[J]. Chinese physics, 2005,14(1):154-158
    [110]马振华.现代应用数学手册(计算与数值分析卷)[M].北京:清华大学出版社,2005:555-573
    [111]于润伟.Matlab基础及其应用[M].北京:机械工业出版社,2003:107-112
    [112]宫野,张建红,王晓东,等.应用特雷纳法和吉尔法求解脱硫脱硝中化学反应动力学方程[J].计算物理,2006,23(1):103-108
    [113]M.Tsuji, A.Tanaka, T.Hamajami, et al. An Efficient Decomposition of NO into N2 and O2 in a Fast Discharge Flow of NO/He Mixtures[J]. Jpn. J. Appl. Phys., 2000,39:L933-L935
    [114]Lowke J J, Morrow R.Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators[J]. IEEE Transactions on Plasma Science,1995,23(4):661-671
    [115]Jarvis J B, Day A T, Suchak N J.LOTOx(tm) process flexibility and multi-pollutant control capability[A]. The Mega Symposium and Air & Waste Management Association's Specialty Conference,2003:19-22
    [116]李平,卢冠忠,肖文德.面向21世纪的脱硫脱氮一体化工艺[J].化学世界,2000,41(7):343-347
    [117]Myers E. B., Thomas J. Hydrogen peroxide scrubber for the control of nitrogen oxides [J]. Environmental Engineering Science,2002,19(5):321-327
    [118]Akishev Y S, Deryugin A A, Kochetov I V. DC glow discharge in air flow at atmospheric pressure in connection with waste gases treatment[J]. J.Phys. D: Appl. Phys.,1993,26(10):1630-1637
    [119]王凤春,董丽敏,池晓春,等.水对电晕放电脱硫脱硝影响的研究[J].哈尔滨理工大学学报,2004,9(2):79-81
    [120]Myers E. B., Thomas J. Hydrogen peroxide scrubber for the control of nitrogen oxides [J]. Environmental Engineering Science,2002,19(5):321-327
    [121]Song Qiang, Shibamori, Yasumori, Nishioka, Masateru, Sadakata, Masayoshi. A new technique to simultaneously oxidize NO and SO2 in flue gas [A].In:Energy and the Environment-Proceedings of the International Conference on Energy and the Environment,2003,2:1225-1228
    [122]李菊,陈和谦,黄友谊,等.Fenton氧化法处理含乌洛托品废水[J].工业水处理,2004,24(6):39-41
    [123]许海燕,李义久,刘亚菲.Fen ton-混凝催化氧化法处理焦化废水的影响因素[J].复旦大学学报,2003,42(3):440-444
    [124]BoSSmann S.H., Oliveros E., Gob S.. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photo chemically enhanced Fenton reaction[J]. J. Phys. Chem. A,1998,102(28):5512-5520
    [125]Zeep R. G. Hydroxyl radical formation in aqueous reactions (PH=3-8) of iron (11) with hydrogen peroxide:the photo-Fenton reaction[J]. Environ. Sci. Technol.,1992,26:313-319
    [126]解宏端,孙冰,朱小梅,等.大气压氩气微波等离子体参数的光谱诊断[J].河北大学学报,2009,25(3):256-261
    [127]杜宏亮,何立明,丁伟,等.空气放电非平衡等离子体的模拟计算[J].强激光与粒子束,2011,23(4):1077-1081
    [128]张强,顾璠,余刚等.氮氧化物在等离子体中的分解与转化[J].燃烧科学与技术,2002,8(6):512-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700