用户名: 密码: 验证码:
大炸高下聚能粉末粒子流的侵彻效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“聚能粉末粒子流”即是粉末药型罩在爆轰波的作用下压垮、变形,并在其轴线上形成的一束主要由众多的处于离散状态的金属粉末微粒所组成的聚能射流。与传统密实金属药型罩相比,粉末药型罩是离散粉末和孔隙的结合体,其所形成的射流具有微观离散不连续特性,导致聚能粉末粒子流的形成与侵彻机理与传统的聚能射流之间既有区别又有一定的联系。本学位论文即以此为背景,对聚能粉末粒子流的形成过程、侵彻机理及其关键影响因素展开分析与探讨。
     以聚能粉末粒子流形成过程及其侵彻机理为基础,借助Birkhoff定常理论与格尼压垮速度公式给出了聚能粉末粒子流微元的速度估算公式,估算结果表明:(1)在药型罩材料的材料特性相对稳定的条件下,提高药型罩的材料密度有助于提高聚能粉末粒子流射流的侵彻性能;(2)在药型罩密度一定的条件下,药型罩有一相对理想的壁厚取值范围;(3)药型罩结构合理的条件下,其密度是影响聚能粉末粒子流侵彻效能的关键因素。
     为研究粉末药型罩密度对聚能粉末粒子流侵彻效能的影响,借助Newton阻力定律,构建了聚能粉末粒子流的速度衰减模型,估算结果表明:(1)提高药型罩的密度有助于减缓聚能粉末粒子流的速度衰减;(2)提高药型罩的密度有助于提高聚能粉末粒子流的侵彻效能;(3)提高药型罩密度有助于提高其有效侵彻距离,即提高其大炸高下的侵彻效能。
     以提高粉末药型罩的密度为目的,在成型装药相关参数、综合性能与粉末药型罩的压制工艺、相关参数相对稳定的条件下,对材料配比、材料颗粒度以及烧结温度对粉末药型罩的密度和聚能粉末粒子流侵彻效能的影响进行试验研究,结果表明:(1)增加钨粉的含量,可有效提高药型罩的平均密度,但其比例与烧结温度有一定关系;(2)在金属粉末组分配比一定的条件下,减小粉末材料的颗粒度并提高其烧结温度有助于提高粉末药型罩的微观致密性、密度及其侵彻效能;(3)聚能粉末粒子流的侵彻效能随着粉末药型罩密度的增加而增大,与理论分析结果吻合较好。
     以单因素试验结果为基础,同样在成型装药相关参数、综合性能与粉末药型罩的压制工艺、相关参数相对稳定的条件下,通过“炸高对聚能粉末粒子流侵彻效能的影响”以及“大炸高下聚能粉末粒子流侵彻有效性”的试验研究,结果表明:(1)烧结粉末药型罩的穿深随炸高的增大很快而减小较慢,且其理想炸高高于旋压铜板药型罩;(2)聚能粉末粒子流的侵彻效能与粉末药型罩密度、炸高之间的关系与理论分析结果吻合较好;(3)合理提高钨粉的质量百分比,可有效提高药型罩的烧结温度和保温时间,从而提高其密度,并有助于提高粉末药型罩在大炸高下的侵彻效能。(4)试验获得,当炸高为100mm时,配方为W:Cu:石墨:机油=70:25:4:1的粉末药型罩的穿深比传统旋压铜板药型罩提高了203.88%。
     总之,理论分析结果与试验结果吻合较好,而且一致表明:提高粉末药型罩的密度可有效提高聚能粉末粒子流的有效侵彻距离及其侵彻效能,为其进一步研究提供了一定的参考。
"Cumulation powder particle flow" is formed by powder liner that was crushed by deto-nation. It is mainly comprised of the discrete state material power particle. Compared with the traditional traditional metal liner, powder liner is combination of discrete powder and pore. The main character of its jet is micro-discrete-continuous. Therefore, there is not only differ-ence but also certain relation between the mechanism of formation and penetration of cumula-tion powder particle flow and the traditional shaped charge jet. It is valuable to study on the formation processes, penetration mechanism and key influencing factors of the cumulation powder particle flow.
     Based on the formed process and penetration mechanism of the cumulation powder par-ticle flow, the speed estimates formula was got by the Birkhoff theory and Gurney pressure collapsed speed formula. The conclusions can be got followed. In the condition that the ma-terial characteristics are relative stability, improving the density of powder liner can help to improve the penetration ability of the cumulation powder particle flow. The wall thickness of the powder liner has a relative ideal value range at the same density. If the structure of the powder liner is reasonable, its density is the key influencing factor of the penetration effec-tiveness of cumulation powder particle flow.
     In order to study the effect of powder liner density on penetration effectiveness of the cumulation powder particle flow, the velocity attenuation model of the cumulation powder particle flow was constructed with the aid of the Newton resistance law. The conclusions can be got followed. Improving the density of the powder liner will be helpful to slowing down the velocity attenuation of the cumulation powder particle flow. Improving the density of the powder liner will be helpful to increase the penetration effectiveness of the cumulation powder particle flow. Improving the density of the powder liner will be helpful to increase the effective penetration distance of the cumulation powder particle flow. One can notice that it will increase the penetration effectiveness of the cumulation powder particle flow in large stand-off.
     In order to improve the density of the powder liner, in the condition of using the same shaped charge and the same development process of the powder liner, the material ratio and sintering temperature of the powder liner and the material granularity of the powder effecting on the density of the powder liner and the penetration effectiveness of the cumulation powder particle flow were studied by experiment. The conclusions could be reached followed. The average density of the powder liner can improved effectively by increasing the content of tungsten powder, but the penetration ability is not increase proportionally. It is not quite con-sistent with the theoretical analysis result. It is relevant to the sintering temperature of the powder liner. In the condition of same distribution ratio, reducing the particle size of the powder material and improving the sintering temperature can effectively improving the den-sity and compactness of the liner and the penetration effectiveness of the cumulation powder particle flow. The penetration effectiveness of the cumulation powder particle flow increases with the improving of the powder liner density. It agrees with the theoretical analysis results well.
     Based on the experimental results of the single factors, in the same condition, the stan-doff effect on the penetration effectiveness of the cumulation powder particle flow and the penetration effectiveness of the cumulation powder particle flow in large stand-off were stu-died by experiment. The conclusions could be reached followed. The ideal stand-off of the powder liner is larger than that of the spinning copperplate one. The relation between the pe-netration effectiveness of the cumulation powder particle flow and the density and stand-off of the powder liner is consistent with the theoretical analysis results well. Improving the mass percentage of the tungsten powder reasonably, the sintering temperature and holding time can be increased effectively. It will help to improving the density of the sintered powder liner and the penetration effectiveness of the s cumulation powder particle flow in large stand-off. The penetration depth of the powder liner, which was composed of W(70%), Cu(25%) and others (5%), increased203.88%than that of the spinning copper one at the100mm stand-off in the experiment.
     In short, the experimental results agree with the theoretical analysis results well. They showed that improving the density of the powder liner can effectively improve the effective penetration distance and the penetration effectiveness of the cumulation powder particle flow. The conclusions provided some reference for its further study.
引文
[1]赵文宣.终点弹道学[M].北京:兵器工业出版社,1989
    [2]华东工程学院202教研室.弹丸作用和设计理论[M].南京:华东工学院,1975
    [3]陈秀宁.机械优化设计[M].杭州:浙江大学出版社,1991
    [4]Henry Mohaupt. Shaped charges and warheads[M]. NewJersey:Inc., Englewood Cliffs, 1966
    [5]Yosuke Nagao, Seishiro Kibe, Takayuki Shimizu, et al. Development of a conical shaped charge system aiming at an impact velocity of 7 km/sec [J]. Space Technolgy Japan, The Japan Society for Aeronautical and Space Sciences,2007,6:37-45
    [6]LB Seely, JC Clark. High speed radiographic studies of controlled fragmentation (BRL Report No.368)[R]. Aberdeen Proving Ground, MD:US Army Ballistic Research La-boratory,1943
    [7]JC Clark, WM Rodas. High speed radiographic studies of controlled fragmentation (BRL Report No.585)[R]. Aberdeen Proving Ground, MD:US Army Ballistic Research Laboratory,1945
    [8]James L.Tuck. A note on the theory of the munroe effect[R]. U.K.Report, A.C. 3596(Phys. Ex.393-WA-638-32), March 27,1943
    [9]Linschitz H, Paul M.A. Experimental studies of cone collapse and jet formation. Part I: Recovery of cone from low-powered charges[R]. National Defense Research Commit-tee, Report OSRD NO.2027, November 29,1943
    [10]Eichelberger R.J., Pugh E.M.. Experimental verification of the theory of jet formation by charges with lined conical cavities[J]. Journal of Applied Physics,1952,23(5): 537-542
    [11]Birkhoff G. Mathematical jet theory of lined hollow charges[R]. BRL Report No.370, June 18,1943
    [12]Birkhoff G. Hollow charge anti-tank (HEAT) projectiles[R]. BRL Report No.623, Feb-ruary 10,1947
    [13]Birkhoff G, MacDougall D.P., Pugh E.M., et al. Explosives with lined cavities[J]. Jour-nal of Applied Physics,1948,19(6):563-582
    [14]Evans W.M.. The hollow charge effect[R]. Inst.Min.Metall, No.520, March,1950
    [15]Evans W.M., A.R.Ubbelohde. Formation of munroe jets and their action on massive targets[R]. London:Res.Sup,1950a:3-7
    [16]Evans W.M., A.R.Ubbelohde. Some kinematic properties of munroe jets[R]. London: Res. Sup., May,1950b:3-8
    [17]Pugh E.M., Eichelberger R.J., Rostoker N. Theory of jet formation by charges with lined conical cavities[J]. Journal of Applied Physics,1952,23(2):532-536
    [18]Schardin H, Thomer G. Investigation of the hollow charge problmes with help of the flash X-ray method[R]. Ordnance Technical Intelligence Bulletin 20,1941:1628
    [19]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2000
    [20]David Bender, Bounmy Chhouk, Richard Fong, et al. Explosively formed penetrators (EFP) with canted fins[A].19th International symposium on Ballistics[C]. Interlaken, Switzerland,2001(5):755-762
    [21]郑宇,王晓鸣,李文彬,等.材料对双层药型罩形成串联EFP的影响[J].兵器材料科学与工程,2009,32(1):38-41
    [22]Bouet T H, Tarayre P, Guillon J P. Study of a multi-point ignition EFP [A].15th Interna-tional Symposium on Ballistics[C]. Jerusalem, Israel,1995(5):159-166
    [23]顾文彬,刘建青,唐勇,等.球缺型EFP战斗部结构优化设计研究[J].南京理工大学学报(自然科学版),2008,32(4):165-170
    [24]Jun Wu, Jingbo Liu, Yixin Du. Experimental and numerical study on the flight and pen-etration properties of explosively-formed projectile[J]. International Journal of Impact Engineering,2007,34(7):1147-1162
    [25]Weibing Li, Xiaoming Wang, Wenbin Li. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator[J]. International Journal of Impact Engineering,2009,37(4):414-424
    [26]唐蜜,柏劲松,李平,等.爆炸成型弹丸成型因素的正交设计研究[J].火工品,2006,10:38-44
    [27]谭多望,孙承纬.成型装药研究新进展[J].爆炸与冲击,2008,28(1):50-56
    [28]张先锋,陈惠武,赵有守.EFP冲击引爆带壳炸药数值模拟研究[J].弹道学报,2006,18(3):90-92
    [29]赵文宣.弹丸设计原理[M].北京:北京理工大学出版社,1988
    [30]Hermann JW, Randers-Pehrson G., Berus ER. Experimental and analytical investigation of self-forging fragments for the defeat of armor at extremely long standoff[A]. Proc.3rd Int. Symp. on Ballistics[C]. Karlsruhe, Germany, March23-25,1977
    [31]安二峰,沈兆武,周听清,等.一种新型聚能破甲战斗部及其发展趋势探讨[J].中国工程科学,2004,6(6):85-90
    [32]Hirsch E, Magen A. Results from a one dimensional code for simulating the ductile break-up process of shaped charge jets and expanding Rings[J]. J.Phys.IV France,1994, 4(C8):589-594
    [33]M.Moyses. Penetration by shaped charge jets with varying off-axis velocity distribu-tions[A].17th International Symposium on Ballistics[C]. Midrand, South Africa, 1998(2):413-420
    [34]Brown J, Curtis J.P, Cook D.D. The formation of jets from shaped charges in the pres-ence of asymmetry [J]. Journal of Applied Physics.1992,72(6):2136-2143
    [35]Curtis J.P, Kelly R.J. Circular streamline model of shaped-charge jet and slug formation with asymmetry [J]. Journal of Applied Physics,1994,75(12):7700-7709
    [36]Curtis J.P, Cornish R. Formation model for shaped charge liners comprising multiple layers of different materials[A].18th International Symposium on Ballistics[C]. Lancas-ter:Technomic Publishing Company,1999:456-465
    [37]Steven L.Hancock. Jet penetration for a class of cumulative mass profiles[J]. Interna-tional Journal of Impact Engineering,1999,23 (1):353-363
    [38]U.Rokni, N.Sela, S.Golde, et al. A study of the cratering process by particulated jets and its implication on the prediction of jet penetration[A].17th International Symposium on Ballistics[C]. Midrand, South Africa,1998(2):325-332
    [39]Held M. Theoretical optimum jet diameter profile for maximum penetration[A].17th International Symposium on Ballistics[C]. Midrand, South Africa,1998(2):259-265
    [40]M.Mayseless, E.Hirsch. The penetration standoff relation of jets with non-linear veloci-ty distribution[A].18th International Symposium on Ballistics[C]. Lancaster:Technomic Publishing Company,1999:535-542
    [41]R.Cornish, J.T.Mills, J.P.Curtis, et al. Degradation mechanisms in shaped charge jet penetration[J]. International Journal of Impact Engineering,2001,26 (1-10):105-114
    [42]P.Y.Chanteret. Theoretical consideration about jet density and shaped charge perfor-mance[A].17th International Symposium on Ballistics[C]. Midrand, South Africa,1998, (2):373-380
    [43]R.J.Kelly, J.P.Curtis, M.Bremer. On analytic modeling of casing and liner thickness variations in a shaped charge[J]. Journal of Applied Physics,1994,75(1):96-103
    [44]B.S.Haugstad. Compressibility effects in shaped charge jet penetration[J]. Journal of Applied Physics,1981,52(3):1243-1246
    [45]Murphy M. J., Baker E. L. Using nonlinear optimization methods to reverse engineer liner material properties from EFP tests[R]. United States:UCRL-JC--117649; CONF-950537-6,1995
    [46]M.Mayseless, R.Genussov. Jet penetration into low density targets[J]. International Journal of Impact Engineering,1999,23 (1):585-595
    [47]M.Maysless, E.Hirsch, A.Lindenfeld, et al. Jet tip and appendix characteristics depend-ence on liner thickness in 60° point initiated shaped-charge[A].17th International Symposium on Ballistics[C]. Midrand, South Africa,1998, (2):187-196
    [48]M. J. Murphy, G. Randers-Pehrson, R. M. Kuklo, et al. Experiments and simulations of penetration into granite by an aluminum shaped charge[J]. Journal de Physique. Ⅳ, 2003,110:603-608
    [49]Eitan Hirsch. Scaling of the shaped charge jet break-up time[J]. Propellants, Explosives, Pyrotechnics,2006,31(3):230-233
    [50]P.Y.Chanteret, A.Lichtenberger. About varying shaped charge liner thickness[A].17th International Symposium on Ballistics[C]. Midrand, South Africa,1998, (2):365-372
    [51]Yu.A.Bykov, T.E.Vorkina. Powder composite materials for plugless facing of perfora-tor shaped charges[J]. Metal Science and Heat Treatment,1994,36(6):318-321
    [52]Martin N. Raftenberg, Claire D. Krause. Metallographic observations of armor steel specimens from plates perforated by shaped charge jets [J]. International Journal of Im-pact Engineering,1999,23:757-770
    [53]J.P.Curtis. Axisymmetric instability model for shaped charge Jets[J]. Journal of Applied physics,1987,61 (11):4978-4985
    [54]秦承森,李勇.一个新的射流颗粒速度差公式[J].爆炸与冲击,2001,21(1):8-12
    [55]Steven M.Buc. Shaped charge liner materials:resources, processes, properties, costs, and applications[R]. USA:Defense Technical Information Center,1991
    [56]Bake E.L., Daniels A, Voorhis G P, et al. Development of molybdenum shaped charge liners[A].127th Annual Meeting and Exhibition of the Minerals, Metals & Materials Society[C]. San Antonio, TX,1998(2):173-182
    [57]B.Bourne, K.G.Cowan, J.P.Curtis. Shaped charge warheads containing low melt energy metal liners[A],19th International symposium on Ballistics[C]. Interlaken, Switzerland, 2001(5):583-590
    [58]王铁福,阮文俊,朱鹤荣,等.贫铀药型罩及其聚能射流[J].爆炸与冲击,1995,15(2):180-184
    [59]李国宾.复合药型罩的研究进展[J].兵器材料科学与工程,1995,18(1):63-68
    [60]Adam Jackowski, Edward Wlodarczyk. The influence of repressing liners made from sintered copper on jet formation[J]. Journal of Materials Processing Technology,2006, 171:21-26
    [61]L.E.Murr, H.K.Shih, C.-S.Niou. Dynamic recrystallization in detonating tantalum shaped charges:A mechanism for extreme plastic deformation[J]. Materials Character-ization,1994,33(1):65-74
    [62]L.E.Murr, C.-S.Niou, J.C.Sanchez, et al. Comparison of beginning and ending micro-structure in metal shaped charges as a means to explore mechanisms for plastic defor-mation at high rates[J]. Journal of Materials Science,1995,30 (1):2747-2758
    [63]C.Feng, L.E.Murr, C.-S.Niou. Aspects of dynamic recrystallization in shaped charge and explosively formed projectile devices[J]. Metallurgical and materials transactions: A,1996,27(7):1773-1778
    [64]W.H.Tian, A.L.Fan, H.Y.Gao, et al. Comparison of microstructures in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates [J]. Materials science and engineering:A,2003,350 (1-2):160-167
    [65]I.Bransky, E.Faibish, S.Miller. Investigation of shaped charges with conical and hemi-spherical liners of tungsten alloys[A].9th International Symposium on Ballistics[C], England,1986,2:237-242
    [66]A.Lichtenberger. Ductile behavior of some materials in the shaped charge jet[A]. Met-allurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (EXPLOMET'95)[C]. Elsevier,1995:463-470
    [67]A.Lichtenberger. Influence of the elaboration of W-alloys liners on the behavior of shaped charge jet[A].4th International Conference on Tungsten Refractory Metals and Alloys[C]. ISL,1997:66-73
    [68]王凤英,刘天生,苟瑞君,等.钨铜镍合金药型罩的研究[J].兵工学报,2001,22(1):112-114
    [69]王铁福,朱鹤荣,周箭隆,等Copper-tungsten shaped charge liners and their per-formance [J]弹道学报,1992(2):61-66
    [70]D.Chaiat. Future P/M materials for kinetic energy penetrators and shaped charge lin-ers[J]. Powder Metallurgy in Defense Technology,1986,7:185-195
    [71]汪永庆,王树山.粉末药型罩射流速度的近似计算方法[J].火工品,2001(4):45-48
    [72]郭圣廷,曾新吾.铋在石油射孔弹药型罩中的作用[J].测井技术,2002,26(4):338-340
    [73]翟国锋,黄魁.射流在大炸高下的断裂及速度分布[J].弹箭与制导学报,2010,30(2):103-105
    [74]黄正祥,陈惠武,官程.大炸高条件下药型罩结构设计[J].弹箭与制导学报,2000(3):51-53
    [75]赵明哲,高兴勇,巩永孝.钢筋混凝土对大炸高聚能射流的防护研究[J].装备环境工程,2009,6(5):90-99
    [76]陈威,李吉峰,朱磊.药型罩锥角对有利炸高影响的数值分析[J].弹箭与制导学报,2010,30(6):98-99,107
    [77]朱铭颉,顾文彬,唐勇,等.炸高对侵彻效应影响试验和数值模拟研究[J].爆破器材,2010,39(2):31-34
    [78]张向荣,黄风雷.炸高对钨铜射流空气及水中侵彻的影响[J].北京理工大学学报,2011,31(3):262-264
    [79]W.A.Gooch, M.S.Burkins, W.P.Walters, et al. Target strength effect on penetration by shaped charge jets[J]. International Journal of Impact Engineering,2001,26:243-248
    [80]J. T. Mills, J. P. Curtis. A theoretical investigation of the penetration properties of hol-low particles[J]. International Journal of Impact Engineering,2001,26:523-531
    [81]Qianyi Chen, Kaixin Liu. A high-resolution eulerian method for numerical simulation of shaped charge jet including solid-fluid coexistence and interaction [J]. Computers & Fluids,2012,56:92-101
    [82]Robert E. Green. First X-ray diffraction photograph of a shaped charge jet[J]. Review of Scientific Instruments,1975,46(9):1257-1261
    [83]D.C.Pack, J.P.Curtis. On the effect of asymmetries on the Jet from a linear shaped charge[J]. Journal of Applied Physics,1990,67 (11):6701-6704
    [84]V.S.Zhuchenko, G.P.Postnikov, N.V.Shikunov. Optical methods of studying the explo-sion of shaped charges[J]. Combustion, Explosion, and Shock Waves,1995,31(6): 738-744
    [85]Stuart I.Wright, John F.Bingert, Louis Zernow. Microtextural zones in a copper shaped charge particleJ]. Materials Science and Engineering:A,1996,207 (2):224-227
    [86]P.V.Pinich. Experimental investigation of fast shaped-charge jets [J]. Journal of Applied Mechanics & Technical Physics,2000,41(5):818-823
    [87]S.A.Kinelovskii, A.V.Alekseev, S. A.Gromilov, et al. Formation of a specific layer on the surface of a metallic target interacting with a shaped-charge jet of boron-containing liners[J]. Combustion, Explosion, and Shock Waves,2006,42(2):231-236
    [88]Patrik Appelgren, Torgny E.Carlsson, Andreas Helte, et al. Interaction between solid copper jets and powerful electrical current pulses[J]. Journal of Applied Mechanics, 2011,78(2):1-7
    [89]景青波,景振禹,石健.粉末药型罩金属粒度级配及热处理对聚能射流性能的影响[J].火炸药学报,2008,31(1):42-44
    [90]谭多望,孙承纬,赵继波,等.大锥角聚能射流试验研究[J].高压物理学报,2003,17(3):204-208
    [91]李如江,刘天生,沈兆武,等.多孔药型罩聚能射流的稳定性[J].爆炸与冲击,2009,29(2):217-220
    [92]Bogdan Zygmunt, Zenon Wilk. Formation of jets by shaped charges with metal powder liners[J]. Propellants, Explosives, Pyrotechnics,2008,33(6):482-487
    [93]R.Trebinski, Some improvements into analytical models of shaped charge jet for-mation[A],19th International symposium on Ballistics[C]. Interlaken, Switzerland,2001: 725-732
    [94]James S. Stolken, S. Christian Simonson, et al. Shaped charge jet stability calculations: the role of initial and boundary conditions [A].22nd ISB[C].2005,23:654-661
    [95]Yu. A. Trishin. Motion of a shaped-charge jet in a porous medium[J]. Combustion, Ex-plosion, and Shock Waves,1999,35(6):711-716
    [96]Masahide Katayama, Seishiro Kibe. Numerical study of the conical shaped charge for space debris impact[J]. International Journal of Impact Engineering,2001,26 (1-10): 357-368
    [97]L.Zernow, E.J.Chapyak, Initial results obtained from a 3D computational model of the shaped charge jet particulation process[A].17th International Symposium on Ballis-tics[C]. Midrand, South Africa,1998 (2):199-206
    [98]O.Ayisit. The influence of asymmetries in shaped charge performance[J]. International Journal of Impact Engineering,2008,35 (12):1399-1404
    [99]V.V.Azharonok, L. E. Krat'ko, S.V.Goncharik, et al. Character of the fast jet efflux upon detonation of shaped charges [J]. Journal of Engineering Physics and Thermo-physics,2008,81(3):494-499
    [100]Jacques Petit, Veronique Jeanclaude, Claude Fressengeas. Breakup of copper shaped-charge jets:experiment, numerical simulations, and analytical modeling[J]. Journal of Applied Physics,2005,98 (12):1-10
    [101]雷锋斌,曹端林.钨铜粉末药型罩形成聚能射流的数值模拟[J].火炸药学报,2010,33(6):73-75
    [102]张先锋,陈惠武.三种典型聚能射流侵彻靶板数值模拟[J].系统仿真学报,2007,19(19):4399-4401,4410
    [103]K.G.Cowan, K.J.A.Mawella, D.J.Standing, et al. Analytical code and hydrocode mod-eling and experimental characterization of shaped charges containing conical tungsten liners[C].18th International Symposium on Ballistics. Lancaster:Technomic Publishing Company,1999,449-457
    [104]王成,付晓磊,宁建国.起爆方式对聚能射流性能影响的数值分析[J].北京理工大学学报,2006,26(5):401-404
    [105]崔军,徐峰,李向荣.聚能射流对靶板侵彻的数值仿真[J].兵工自动化,2010,29(1):24-26
    [106]J.Carleone, R.Jameson, P.C.Chou. The tip origin of a shaped charge jet[J]. Propellants, Explosives, Pyrotechnics,1977,2 (6):126-130
    [107]E. Hennequin. Modelling of the shaped charge jet break-up[J], Propellants, Explosives, Pyrotechnics,1996,21:181-185
    [108]陈熙蓉,许丽云,陈书言,等.炸药性能与装药工艺[M].北京:国防工业出版社,1988
    [109]孙业斌,许桂珍.从炸药装药装备现状看21世纪发展趋势[J].火炸药学报,2001,(1):69-72
    [110]彭庆明.自锻破片战斗部设计方法的讨论[A].第四届破甲会议文集[C].陕西:中国兵工学会弹药分会,1984:41-50
    [111]李润蔚.大锥角药型罩形成自锻破片参数计算[A].第六届破甲会议文集[C].北京:兵器工业出版社,1992:156-161
    [112]C.A.Weikert, K.M.Pewell, P.L.Winter, et al. Interaction of large diameter explosively formed projectiles with concrete targets[A].18th International Symposium on Ballis-tics[C]. Lancaster:Technomic Publishing Company,1999,1:596-602
    [113]北京工业学院八系.爆炸及其作用[M].北京:国防工业出版社,1979
    [114]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005
    [115]E.V.Proskuryakov, M.V.Sorokin, V.M.Fomin. Rebounding of a shaped-charge Jet[J]. Journal of Applied Mechanics and Technical Physics,2007,48(5):633-635
    [116]郑平泰,杨涛,秦子增.聚能射流形成过程的理论建模与分析[J].国防科技大学学报,2006,28(3):28-32
    [117]谭多望,孙承纬.大锥角罩聚能装药射流理论计算方法[J].高压物理学报,2006,20(3):270-276
    [118]R.E.Allison, R.Vitali. An application of the jet-formation theory to a 105mm shaped charge[R]. Defense Technical Information Center, BRL Report No.1165,1962
    [119]G.M.Bryan, R.J.Eichelberger, D.Macdonald, et al. Application of radioactive tracers to the study of shaped charge phenomena[J]. Journal of Applied Physics,1957,28(10): 1152-1155
    [120]M.K.Gainer. The application of radioactive tracers to shaped charge liners[R]. Defense Technical Information Center, BRL Report No.1242,1960
    [121]R.J.Eichelberger, Re-examination of the non-steady theory of jet formation by lined cavity charges[J]. Journal of Applied Physics,1955,26(4):398-392
    [122]J.Carleone, P.C.Chou, C.A.Tanzio. User's manual for DESC-1, A one-dimensional computer code to model shaped charge liner collapse, jet formation, and jet proper-ties[R]. Dyna East Corporation, DE-TR-75-4,1975
    [123]G.Randers-Pehrson. An improved equation for calculating fragment projection angle[A]. 2nd International Symposium on Ballistics[C]. Daytona Beach,1976
    [124]L.Behrmann, N.Birnbaum. Calculation of shaped charge jets using engineering ap-proximations and finite difference computer codes[Z]. AFATL-TR-72-160 September, 1973
    [125]Carleone J. Mechanics of shaped charges, course notes[Z], Basic Principles of Hyper-velocity Impact and Related Topics. Baltimore, MD:Computational Mechanics Associ-ates,1987(4)
    [126]F.E.Allison, R.Vitali. A new method of computing penetration variables for shaped charge jets[R]. PN, BRL Report No.1184.1963
    [127]Manfred Held. Initiation criteria of high explosives at different projectile or jet densi-ties[J]. Propellants, Explosives, Pyrotechnics,1996,21:235-237
    [128]纪国剑.聚能射流形成射流的仿真计算与理论研究[D].南京:南京理工大学,2004
    [129]Marvin E(美).终点弹道学[M].北京:国防工业出版社,1981
    [130]A.N.Mikhailov, A.N.Dremin. Flight speed of a plate propelled by products from a slid-ing detonation[J]. Combustion, Explosion, and Shock Waves,1974,10(6):787-792
    [131]P.C.Chou, W.J.Flis. Recent developments in shaped charge technology [J]. Propellants, Explosives, Pyrotechnics,1986,11(4):99-114
    [132]L.A.Shushko, B.I.Shekhter, S.L.Krys'kov. Bending of a metal strip by a sliding detona-tion wave[J]. Combustion, Explosion, and Shock Waves,1975,11(2):229-236
    [133]G.E.Duvall, J.O.Erkman. Tech. Rept. No.1[R]. Stanford Research Institute, No. GU-2426,1958
    [134]H.R.Kleinhanss. Experimentelle untersuchungen zum kollapsprozess bei hohl-ladungen[R]. Proceedings of the Third International Symposium on Military Applica-tion[C]. English Translation, Army Foreign Science and Technology Center, Report no FSTC-HT-23-794-73,1973(3)
    [135]Taylor GI. Analysis of the explosion of a long cylindrical bomb detonated at one end[A]. Paper written for the Civil Defence Research Committee. Ministry of Home Security (1941)[C]. Reprinted in:The Scientific Papers of G. I. Taylor,3, Cambridge Univ. Press, G. K. Batchelor Ed.1963:277-286
    [136]M. I. Radulescu, A. J. Higgins, S. B. Burray, et al. An experimental investigation of the direct initiation of cylindrical detonations [J]. Journal of Fluid Mechanics,2003, 480:1-24
    [137]P.C.Chou, J.Carleone, W.J.Flis, et al. Improved formulas for velocity, acceleration, and projection angle of explosively driven liners[J]. Propellants, Explosives, Pyrotechnics, 1983,8(6):175-183
    [138]王文佑,王起来.工业炸药制造工艺学[M].太原:山西省民爆器材管理局,1996
    [139]Alan Lamb. Explosive combat wing chun[M]. Action Pursuit Group,2002
    [140]J.M.Walsh, R.G.Shreffler, F.J.Willing. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics,1953,24(3):349-359
    [141]P.C.Chou, J.Carleone, R.RKarpp. Criteria for jet formation from impinging shells and plates[J]. Journal of Applied Physics,1976,47(7):2975-2981
    [142]S.Miller, S.Konfino, D.Peretz. Extension of the criterion on cohesiveness of jets formed by collapsing shells[A].12th International Symposium on Ballistics[C]. San Antonio, TX,1990:298
    [143]Douglas Kirkpatrick, Andrew Argyle, Katharine Harrison, et al. A comparison of the blast & fragment mitigation performance of several structurally weak materials[J]. AIP Conference Proceedings,2007,955:951-954
    [144]Baker, Ernest L. Modeling and optimization of shaped charge liner collapse and jet formation[R]. Technical rept,1993,1
    [145]W.P.Walters, Jonas A.Zukas. Fundamentals of shaped charges[M]. New York: Wiley-Inter-science,1989
    [146]A.TATE. A theory for the deceleration of long rods after impact[J]. Journal of the Me-chanics and Physics of Solids,1967,15(6):387-399
    [147]C.Voumard, H.P.Roduner, W.Santschi, et al. Performances and behaviour of WCu-Pseudo-Alloy shaped charges with a simple model for calculating the stand-off curve[A].19th International symposium on Ballistics[C].Interlaken, Switzerland,2001: 1479-1485
    [148]K.D.Werneyer, F.J. Mostert. Analytical model predicting the penetration behavior of a jet with a time-varying density profile[A].21st International Symposium on Ballis-tics[C]. Adelaide, South Australia,390-97,2004:390-397
    [149]Brenden Grove. Theoretical considerations on the penetration of powdered metal jets[J]. International Journal of Impact Engineering,2006,33(1-12):316-325
    [150]M.F.Maritz, K.D.Werneyer, F.J.Mostert. An analytical penetration model for jets with varying mass density profiles[A].22nd International Symposium on Ballistics[C].2005: 622-629
    [151]李如江.多孔药型罩聚能射流机理及应用研究[D].合肥:中国科学技术大学,2008
    [152]H.J.Flis, M.G.Crilly. Hypervelocity jet penetration of porous materials[A].18th Interna-tional Symposium on Ballistics[C]. Lancaster:Technomic Publishing Company,1999: 869-876
    [153]Morris W. Hirsch, Stephen Smale, Robert L. Devaney. Differential equations dynamical systems and an introduction to chaos[M]. Academic Press,2012
    [154]谭多望,曹仁义,王广军,等.爆轰驱动对钨珠终点弹道性能的影响[J].爆炸与冲击,2009,29(6):481-487
    [155]Animesh Bose, Robert J Dowding. Tungsten and Refractory Metal,1994:proceedings of the Second International Conference on Tungsten and Refractory Metals [M]. Penn-sylvania:The Federation, Metal Powder Industries Federation, APMI International, 1995,12:447
    [156]Hong Changyi. New advanced technology of ordnance industry[M]. Beijing:Ordnance Industries Press,1994:319
    [157]Manfred Held. Liners for shaped charges[J]. Journal of Battlefield Technology,2001, 4(3):1-5
    [158]Livermore Software Technology Cooperation. LS-DYNA keywords user's manual[Z]. 1999
    [159]郭志俊,张树才,林勇.药型罩材料技术发展现状和趋势[J].中国钼业,2005,29(4):40-42
    [160]Johnson G.R. Material characterization for warhead computations (in:Tactical Missile Warheads, Chapter 3)[M]. Washington, DC:American Institute of Aeronautics and As-tronautics, Inc.,1993:165-197
    [161]M.J.W.Billings, P.J.A Fuller. The rupture behaviour of metals at high strain rates[J]. J INST MET,1967,95(8):244-251
    [162]Gordon R.Johnson, William H.Cook. A constitutive model and data for metals subject-ed to large strains, high strain rates and high temperatures [A].7th International Sympo-sium on Ballistics[C]. The Hague, The Netherlands,1983:541-548
    [163]S.Hao, W.Brocks. The Gurson-Tvergaard-Needleman-model for rate and tempera-ture-dependent materials with isotropic and kinematic hardening[J]. Computational Mechanics,1997,20(1-2):34-40
    [164]齐振伟.反机场跑道串联随进弹终点效应的试验研究与数值模拟[D].长沙:国防科学技术大学,2007
    [165]David Bender, Joseph Carleone. Explosively formed projectile (in:Tactical Missile Warheads)[M]. Washington, DC:American Institute of Aeronautics and Astronautics, Inc.,1993
    [166]王铁福,王雷,阮文俊,等.药型罩材料的晶粒度对射流性能的影响[J].高压物理学报,1996,10(4):291-298
    [167]高尔欣,杨仁树.爆破工程[M].徐州:中国矿业大学出版社,1999
    [168]杜明章.聚能切割器研究[J].测井技术,1999,23(3):223-225
    [169]李景云,李德君.聚能切割器的初步研究[J].北京工业学院学报,1985(4):30-42
    [170]张天生.高密度金属药型罩高能成形技术研究[J].国外兵器动态,1997(12):12
    [171]朱忠节.岩石爆破新技术[M].北京:中国铁道出版社,1986
    [172]吴腾芳,王凯.微差爆破技术研究现状[J].爆破,1997,14(1):53-57
    [173]赵云涛,徐文新,周望,等.药型罩对射孔弹射孔性能的影响[J].测井技术,2005,29(增刊):37-39
    [174]苟瑞君,赵国志,杜忠华,等.炸药能量与聚能射流凝聚性探讨[J].弹箭与制导学报,2004,24(5):476-478
    [175]A.R.Azami, A.R.Khoei.3D computational modeling of powder compaction processes using a three-invariant hardening cap plasticity model [J]. Finite Elements in Analysis and Design,2006,42 (8-9):792-807
    [176]Yosuke Nagao, Seishiro Kibe, Takayuki Shimizu, et al. Improvement of conical shaped charge system and comparison of the test result between CSC and gas gun[J]. Acta As-tronautica,2007,60 (8-9):763-769
    [177]A.J.M.Spencer. A theory of the kinematics of ideal soils under plane strain conditions [J]. Journal of the Mechanics and Physics of Solids,1964,12(5):337-351
    [178]A.J.M.Spencer. Deformation of ideal granular materials (In:Mechanics of solids)[M]. Oxford:Pergamon Press,1982:607-652
    [179]韩欢庆,陈飞雄,甘乐,等.钨在药型罩中的应用[J].中国钨业,2004,19(1):26-28
    [180]韩欢庆,姜伟,张鹏,等.金属粉末在药型罩中的应用[J].粉末冶金工业,2004,14(3):1-4
    [181]杨华.高比重钨-铜复合材料制备及性能研究[D].武汉:武汉理工大学,2008
    [182]Beeman. Shaped Charge-Armor Nemesis[Z]. National Defense,1978
    [183]赵如.国外冷等静压机简介[J].炭素技术,1987(1):17-21
    [184]李洪桂.冶金原理[M].北京:科学出版社,2005:80
    [185]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:173-195
    [186]池家春,马冰.带薄钢壳钝黑铝柱型装药爆炸波研究[J].爆炸与冲击,1999,19(1):50-59
    [187]S.J.Kim, T.H.Kwon. Development of numerical simulation methods and analysis of ex-trusion processes of particle-filled plastic materials subject to slip at the wall[J]. Powder Technology,1995,85(3):227-239
    [188]胡焕性.不对称因素及药型罩材料性质对射流特性和破甲效能影响[A].破甲文集[C].北京:中国兵工学会弹药分会,1984:44
    [189]胡焕性.破甲战斗部精密装药基础及试验研究[J].火炸药学报,1999,22(1):1-5
    [190]白锡忠,常熹.油气井射孔弹及其应用[M].北京:石油工业出版社,1992:14-18
    [191]郭红军,石健,王长栓,等.粉末药型罩的试验研究[J].测井技术,2005,29(增刊):71-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700