用户名: 密码: 验证码:
梳型聚羧酸盐分散剂化学结构与水煤浆流变相关性及与煤作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水煤浆技术是一种将煤炭液化的洁净利用技术。水煤浆具有燃烧率高、成本低的优势,容易达到节能减排的环保要求,是一种替代油的清洁燃料。水煤浆是一种固、液两相粗分散体系,为了使浆体具有较好的流动性、较低的粘度以便于运输,同时在静止时具有很好的稳定性,不易产生沉淀,在水煤浆的制备过程中必须加入分散剂。目前,现有工业使用的萘磺酸分散剂受气候变化影响大,浆稳定性降低,易析水产生硬沉淀,并具有一定的毒性,使生产和使用都不利于环保,需找出替代品。然而利用腐植酸制备水煤浆的稳定性较差、木质素分散剂降粘作用差,而且这两种分散剂成分复杂,会引入很多杂质。而聚羧酸盐分散剂作为水泥减水剂具有出色的性能,并且有广泛的适应性。梳型聚羧酸盐分散剂用在水煤浆中,具有较好的分散性能和浆体稳定性。它是一种人工合成的水溶性高分子,生产和使用环节都不会对环境造成污染。聚羧酸盐结构灵活可控,可设计、生产各种结构以适应各种煤种制水煤浆。
     目前,梳型聚羧酸盐分散剂的分子设计、制备及结构与水煤浆流变相关性的系统研究比较欠缺。本论文通过分子结构设计、根据自由基聚合原理,制备基于聚醚大单体二元聚羧酸、基于聚醚大单体三元聚羧酸、基于聚酯聚羧酸以及两性离子聚羧酸分散剂共四类九种梳型聚羧酸盐分散剂,并系统讨论了梳型聚羧酸盐分散剂化学结构与水煤浆流变性能的相关性,揭示了聚羧酸盐分散剂与煤颗粒作用机理。
     本论文设计、制备了基于聚醚大单体二元聚羧酸盐分散剂,使用不同链长(m=16,23,27,55)烯丙基聚氧乙烯醚(APEG)大单体分别与甲基丙烯酸(MAA)、烯丙基磺酸钠(SAS)、苯乙烯磺酸钠(SSS)共聚,合成了具有不同侧链长度的MAA-APEG、SAS-APEG和SSS-APEG三种二元聚羧酸分散剂。采用傅里叶红外光谱(FT-IR)和裂解气相质谱(Py-GCMS)及凝胶渗透色谱(GPC)表征了分散剂的结构,使用热失重(TGA)和差示扫描量热(DSC)测试了分散剂的热稳定性。讨论了聚合反应条件对神府煤水煤浆粘度的影响,通过单因素分析确定了各种分散剂的较佳合成条件为引发剂k2S2O8用量为单体总质量4%,反应温度80℃,MAA、SAS和SSS与APEG的反应摩尔比分别是1:1、1:1和0.5:1。并通过比较筛选出分散性能较好的分散剂MAA-APEG1200(m=27)、SAS-APEG1000(m=23)和SSS-APEG1000(m=23),它们的成浆稳定性均优于工业萘磺酸盐分散剂。
     基于聚醚三元聚羧酸盐分散剂,使用不同链长(m=16,23,27,55)烯丙基聚氧乙烯醚(APEG)大单体,分别与甲基丙烯酸、烯丙基磺酸钠、丙烯酰胺和苯乙烯磺酸钠中的两种单体共聚,合成了具有不同侧链长度的三种三元聚羧酸分散剂,MAA-AM-APEG、MAA-SAS-APEG和SSS-AM-APEG。采用傅里叶红外光谱(FT-IR)和裂解气相质谱(Py-GCMS)及凝胶渗透色谱(GPC)表征了分散剂的结构,使用热失重和差示扫描量热测试了分散剂的热稳定性。讨论了聚合反应条件对水煤浆粘度的影响,通过单因素分析确定了各种分散剂的较佳合成条件为引发剂k2S2O8用量2%,反应温度80℃,MAA-AM-APEG、MAA-SAS-APEG和SSS-AM-APEG的反应摩尔比分别为2.5:1:1、2.0:1:1和0.5:1:1。通过比较筛选出分散性能较好的分散剂MAA-AM-APEG1000(m=23)、 MAA-SAS-APEG1000(m=23)和SSS-AM-APEG1000(m=23),其分散性能和稳定性能较好,成浆稳定性均优于工业萘磺酸分散剂。
     基于聚酯大单体聚羧酸盐分散剂,论文使用自制的不同链长衣康酸聚乙二醇酯IAPEG (m=5,9,14,18,23,45)和马来酸聚乙二醇酯MaPEG(m=9,14,18,23,45)聚酯大单体,与甲基丙烯酸和苯乙烯磺酸钠共聚合成了具有不同侧链长度的MAA-IAPEG-SSS和MAA-MaPEG-SSS两种三元聚羧酸分散剂。采用傅里叶红外光谱(FT-IR)和裂解气相质谱(Py-GCMS)及凝胶渗透色谱(GPC)表征了分散剂的结构,使用热失重和差示扫描量热测试了分散剂的热稳定性。讨论了聚合反应条件对水煤浆粘度的影响,通过单因素分析确定了分散剂MAA-IAPEG-SSS的合成较佳条件为甲基丙烯酸、衣康酸聚乙二醇酯大单体和对苯乙烯磺酸钠摩尔比3:1.5:1,引发剂用量为单体总质量2%,反应温度为76℃,滴加物料时间2h,保温反应3h。MAA-MaPEG-SSS聚羧酸分散剂合成较佳条件为甲基丙烯酸、马来酸聚乙二醇酯大单体和对苯乙烯磺酸钠摩尔比3:1.5:1,引发剂用量为单体总质量2%,反应温度80℃,滴加物料时间2h,反应时间共计5h。通过比较,筛选出分散性能较好的分散剂MAA-IAPEG600-SSS (m=14)、MAA-MaPEG800-SSS(m=18)和SSS-AM-APEG1000(m=23),其分散性能和稳定性能较好,成浆稳定性均优于工业萘磺酸分散剂。
     在前文研究的基础上,用聚乙二醇和丙烯酸酯化生成聚酯大单体,同时引入阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC),另外选苯乙烯磺酸钠为第三单体,设计、制备具有季铵阳离子、羧基和苯磺酸基的两性聚羧酸盐列分散剂SSS-DMC-AAPEG1000。采用傅里叶红外光谱(FT-IR)和裂解气相质谱(Py-GCMS)及凝胶渗透色谱(GPC)表征了分散剂的结构,使用热失重和差示扫描量热测试了分散剂的热稳定性。讨论了聚合反应条件对水煤浆粘度的影响,通过单因素分析确定了两性离子聚羧酸的较佳合成条件:苯乙烯磺酸钠与聚酯大单体的摩尔比为1:1,阳离子单体DMC用量为聚酯大单体和苯乙烯磺酸钠总质量的5%,引发剂过硫酸铵和亚硫酸钠(摩尔比4:1)用量为单体总质量的8%,反应温度80℃。两性离子聚羧酸分散剂所制备水煤浆(水煤浆浓度65%)稳定性高于萘磺酸(水煤浆浓度63%),其水煤浆析水率较低,稳定等级达到一级,静态和动态稳定性均较好,添加量0.5%时对神府煤最高制浆浓度为72%。
     在实验结果基础上,研究各种聚羧酸分散剂对煤种的适应性能。研究表明,较适合于神府煤制水煤浆的分散剂有:SSS-DMC-AAPEG1000、MAA-IAPEG600-SSS、SSS-AM-APEG1000和MAA-SAS-APEG1000;较适合于彬长煤制水煤浆的分散剂有: SSS-DMC-AAPEG1000、SSS-AM-APEG1000、 MAA-IAPEG600-SSS、 MAA-AM-APEG1000和MAA-MaPEG800-SSS。采用了三种模型对聚羧酸盐分散剂水煤浆的流变曲线进行拟合,结果显示Bingham模型更适合于水煤浆流变曲线的拟合,模型方程式为:τ=τ0+μγ,拟合相关系数R2为0.9993。
     通过表面接触角、Zeta电位仪、吸附量和扫面电镜等测试了分散剂对煤表面润湿性改善、煤表面Zeta电位、分散剂在煤表面的吸附性,研究了分散剂与煤颗粒相互作用。研究表明,梳型聚羧酸盐分散剂分子结构对水-煤界面作用有很好的改善,分散剂分子结构(主链长度、侧基种类和侧链长度)影响着水煤浆的体系吸附-分散稳定状态。煤吸附了梳型聚羧酸盐分散剂而形成特殊的胶团结构,梳型聚羧酸盐分散剂对煤的分散存在着双重作用,即静电斥力和立体位阻,为开发可用于生产实际的新型分散剂提供理论指导。梳型聚羧酸盐分散剂结构灵活可控,可以根据不同煤种的特点来改变梳型聚羧酸分散剂的分子结构,以生产出低掺量、高性能、适应强的分散剂。
CWS technology is a clean use of coal liquefaction technology. Coal-waterslurry has the advantages of high combustion rate and low cost, and it is easy forit to achieve the environmental requirements of energy saving and emissionreduction, so it is a clean fuel to replace the oil. CWS is a two-phase crudedispersion system with solid and liquid. In order to make the slurry have goodfluidity, low viscosity to facilitate transport and also good stability to producelittle precipitate, the dispersing agent should be added to the coal slurry in thepreparation process. At present, the available industrial naphthalene sulfonatedispersant is easy to be affected by climate. When the climate is changing, theslurry stability of the naphthalene sulfonate dispersant cuts down, then theprecipitate with certain toxicity appears. In short, the production and the use of itare not conducive to environmental protection. So, we should find somereplacements. However, the coal-water slurry, prepared by humic acid, is notstable and the lignin dispersant has poor viscosity reducing effect. Bothdispersants have complex ingredients, which mean a lot of impurities. As a waterreducing agent of cement, polycarboxylic acid dispersant shows excellentperformance, and has a wide range of applications. Also, it has good dispersionproperty and slurry stability when used in coal-water slurry. It is a syntheticwater soluble polymer; its production and use do not result in the environmentalpollution. Moreover, polycarboxylic acid has clear components and flexiblestructures, so it could be designed and produced to adapt to a variety of CWSmade for various kinds of coals.
     At present, a systematic research about the molecule design, the preparationof polycarboxylic acid dispersant and the relationship between its structure and the CWS rheological properties is still blank. My work is about: design themolecular structures to prepare four categories, nine kinds of comb-likepolycarboxylic acid dispersants, based on the polyether macromonomer binarypolycarboxylic acid, the polyether macromonomer ternary polycarboxylic acid,polyester polycarboxylic acid and zwitterionic polycarboxylic acid, according tothe principle of free radical polymerization; systematically discuss the relativitybetween chemical structures of polycarboxylic acid dispersants and CWSrheological properties; reveal the acting mechanism of polycarboxylic aciddispersants and coal particles.
     This thesis designed and prepared binary polycarboxylic acid dispersantsbased on the polyether macromonomer. Methyl methacrylate (MAA), allylsulfonate (SAS), sodium styrene sulfonate (SSS) respectively, and allylpolyoxyethylene ether (APEG) macromonomer with different chain lengths(m=16,23,27,55) were used to copolymerize into three binary polycarboxylicacid dispersants, MAA-APEG, SAS-APEG and SSS-APEG. They had differentside chains. Using Fourier transform infrared spectroscopy (FT-IR), thepyrolysis-gas chromatography and mass spectrometry (Py-GCMS) and gelpermeation chromatography (GPC), the structures of the dispersing agents werecharacterized; using thermogravimetric (TGA) and differential scanningcalorimetry(DSC), the thermal stabilities of the dispersants were tested. Theeffects on the viscosity of CWS from polymerization conditions were discussed.The optimal synthesizing conditions of the various dispersants were confirmedby univariate analysis. Dosage of k2S2O8as initiator for4%of the total mass ofmonomer, reaction temperature at80℃, reaction molar ratio of MAA, SAS, andSSS with APEG1:1,1:1and0.5:1respectively. And the preferred dispersantswere screened by comparing their dispersion performance. They were theMAA-APEG1200(m=27), the SAS-APEG1000(m=23), and theSSS-APEG1000(m=23). Besides, their slurrying stabilities were superior to theindustrial naphthalene sulfonate dispersing agent.
     Three ternary polycarboxylic acid dispersants (MAA-AM-APEG,MAA-SAS-APEG and SSS-AM-APEG) based on the polyether macromonomerwere prepared, using the two monomers of methacrylic acid, sodiumallylsulfonate, acrylamide, sodium styrene sulfonate and allyl polyoxyethylene ether (APEG) macromonomer with different chain lengths (m=16,23,27,55) tocopolymerize. They had different side chains. Using Fourier transform infraredspectroscopy (FT-IR), the pyrolysis-gas chromatography and mass spectrometry(Py-GCMS) and gel permeation chromatography (GPC), the structures of thedispersing agents were characterized; using thermogravimetric and differentialscanning calorimetry, the thermal stabilities of the dispersants were tested. Andeffects on the viscosity of CWS from polymerization conditions were discussed.Also, through univariate analysis, the optimal synthesizing conditions of thevarious dispersants were confirmed. They were: dosage of k2S2O8as initiatorfor2%of the total mass of monomer, reaction temperature at80℃, reactionmolar ratios of MAA-AM-APEG, MAA-SAS-APEG and SSS-AM-APEG2.5:1:1,2.0:1:1and0.5:1:1respectively. And the preferred dispersants werescreened by comparing their dispersion performance. They were theMAA-AM-APEG1000(m=23), the MAA-SAS-APEG1000(m=23)and theSSS-AM-APEG1000(m=23). Besides, their slurrying stabilities were superior tothe industrial naphthalene sulfonate dispersing agent.
     Methacrylic acid, sodium styrene sulfonate and alternatively itaconic acidpolyethylene glycol ester, IAPEG (m=5,9,14,18,23,45) and maleic acidpolyethylene glycol ester, MaPEG(m=9,14,18,23,45)were copolymerized intotwo ternary polycarboxylic acid dispersants with different side chains,MAA-IAPEG-SSS and MAA-MaPEG-SSS. Using Fourier transform infraredspectroscopy (FT-IR), the pyrolysis-gas chromatography and mass spectrometry(Py-GCMS) and gel permeation chromatography (GPC), the structures of thedispersing agents were characterized; using thermogravimetric and differentialscanning calorimetry, the thermal stabilities of the dispersants were tested. Andeffects on the viscosity of CWS from polymerization conditions were discussed.Also, through univariate analysis, the optimal synthesizing conditions of the twodispersants were confirmed. For MAA-IAPEG-SSS, the conditions were:reaction molar ratio of methacrylic acid, maleic acid polyethylene glycol esterand sodium styrene sulfonate3:1.5:1, dosage of k2S2O8as initiator for2%ofthe total mass of monomer, reaction temperature at76℃, dropping time2hours,reactive time totally5hours. And preferred dispersants were screened bycomparing their dispersion performances. They were the MAA-IAPEG600-SSS (m=14), the MAA-MaPEG800-SSS(m=18)and the SSS-AM-APEG1000(m=23). In all, their slurrying stabilities were better than the industrialnaphthalene sulfonate dispersing agent.
     On the basis of previous research, amphiprotic polycarboxylic aciddispersing agent (SSS-DMC-AAPEG) with quaternary ammonium cations,carboxyl group and sulfobenzoic acid group was prepared, using cationicmonomer methyl acrylic acid ethyltrimethyl chloride ammonium(DMC), sodiumstyrene sulfonate and polyester monomer esterified by polyethylene glycol andacrylic acid. Using Fourier transform infrared spectroscopy (FT-IR), thepyrolysis-gas chromatography and mass spectrometry (Py-GCMS) and gelpermeation chromatography (GPC), the structures of the dispersing agents werecharacterized; using thermogravimetric and differential scanning calorimetry, thethermal stabilities of the dispersants were tested. And effects on the viscosity ofCWS from polymerization conditions were discussed. Also, through univariateanalysis, the optimal synthesizing conditions of the amphiprotic poly carboxylicacid dispersing agent were confirmed. They were: reaction molar ratio of sodiumstyrene sulfonate and polyester monomer1:1, dosage of cationic monomer DMCfor5%of the total mass of sodium styrene sulfonate and polyester monomer,dosage of ammonia sulfate and sodium sulfite (molar ratio4:1) as initiator for8%of the total mass of monomer, reaction temperature at80℃. The stability ofCWS (concentration65%)produced by Amphiprotic poly carboxylic aciddispersing agents was better than that(concentration63%) made by naphthalenesulfonate dispersants. Also the former has lower water separating rate. And itsstability reached to grade one; its dynamic and static stabilities were fine. Whenits additive amount ran up to0.5%, the highest concentration of CWS was72%.
     According to the experimental results, adaptive properties of polycarboxylicacid dispersants to different coals were studied. It indicated thatSSS-DMC-AAPEG1000, MAA-IAPEG600-SSS, SSS-AM-APEG1000andMAA-SAS-APEG1000were suitable for shenfu coal to prepare CWS; whileSSS-DMC-AAPEG1000, SSS-AM-APEG1000, MAA-IAPEG600-SSS,MAA-AM-APEG1000and MAA-MaPEG800-SSS were suitable for binchangcoal. There were three models used to fit the CWS rheological curve ofpolycarboxylic acid dispersants. It showed that the Bingham model was much suited to the CWS rheological curve fitting. The model equation was τ=τ0+μγ;fitting correlation coefficient R2was0.9993.
     Through surface contact angle, zeta potential analyzer, adsorption quality ofdispersant on coal and scanning electron microscope, tests of coal surfacewettability improvement from dispersants, Zeta potential of coal surface,adsorption of dispersants on coal surface were made; interactions betweendispersants and coal particles were studied. The research indicated that themolecular structure of comb-like polycarboxylic acid dispersants improvedactions of the water-coal interface. The molecular structures of the dispersants(main chain length, the type of side groups and side chain length) affected thestable systematic adsorption–dispersion status with the CWS. Coal adsorbedcomb-like polycarboxylic acid dispersants to form special micelle structure. Andcomb-like polycarboxylic acid dispersants on the dispersion of coal had dualroles, namely electrostatic repulsion and sterical hindrance, providing theoreticalguidance for new dispersants applied for actual production. The structures ofcomb-like polycarboxylic acid dispersants were flexible. And the molecularstructures of comb-like polycarboxylic acid dispersants could be changedaccording to characteristics of different coals to produce dispersants of lowdosage, high performance and strong adaptation.
引文
[1]周明松,邱学青,王卫星.水煤浆分散剂的研究进展[J].化工进展,2004,23(8):846-851.
    [2]刘晓霞,屈睿,黄文红,等.水煤浆添加剂的研究进展[J].应用化工,2008,37(1):101-103
    [3]吴晓华.聚丙烯酸系列水煤浆添加剂的合成及应用机理研究[D].中国矿业大学(北京)博士论文,2009.4.
    [4] Dingcer H, Boylu F, Sirkeci A A, et al.Influence of polymers on the rheology of coal watersuspensions [J].Int. J.Miner. Process,2003,70:41-51.
    [5] Marek P. Polymeric dispersants for coal-water slurries[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2005,266:32-90.
    [6] Zhou M S,Qiu X Q, Yang D J, et a1.Synthesis and evaluation of sulphonatedacetone-form aldehyde resin applied as dispersant of coal-water slurry[J].EnergyConversion and Management,2007,48(1):204-209.
    [7]王晓春,吴国光,王共远.水煤浆添加剂及其研究进展[J].煤化工,2004,6:15-18.
    [8]谢欣馨,戴爱军,杜彦学,等.水煤浆分散剂的发展动向[J].煤炭综合利用,2010,2:43-46
    [9] Boylu F,Atesok G,Dincer H.The efect of carboxymethyl celulose(CMC)on the stabilityof coal-water slurries[J].Fuel,2005,84(2/3):315-319
    [10]华商网.神渭输煤管道预计7月底全线开工727公里世界最长.http://news.hsw.cn/system/2012/06/28/051360396.shtml
    [11]鬲丽华.高效聚羧酸系水煤浆添加剂制备与性能研究[D].西安科技大学硕士论文,2009-04-22
    [12]付华,赵继荣.洁净的代油燃料——水煤浆[J].能源工程,2000-08-20
    [13]卜银坤,王绍华,汪景武.水煤浆及其在工业锅炉中的应用[J].工业锅炉2005-04-20
    [14]贾传凯.水煤浆锅炉应用与节能减排分析[J].洁净煤技术,2011, l7(3):1-47
    [15]郝祯娟,付晓恒,张晓波.水煤浆干法制浆工艺发展现状[J].煤炭加工与综合利用,2010(2):41-43
    [16]郑福尔,刘以凡,刘明华.利用高浓度印染废水制备水煤浆的研究[J].煤炭工程,2012(2):85-91
    [17]贾传凯,谢惠珠.水煤浆燃烧技术的现状与发展[J].洁净煤技术,2011, l7(4):67-69
    [18]刘明强,刘建忠,王传成,等.水煤浆添加剂研究及发展动向[J].现代化工,2011,31(7):8-13
    [19]李永听,孙成功,李保庆,等.水煤浆添加剂研究评述[J].煤炭转化,1997,20(1):8-13
    [20]郁向民,李文鹏,徐显明,等.我国煤化工技术现状及其发展趋势[J].云南化工,2005,32(2):57-62
    [21]李凤起,朱书全.添加剂对煤-水界面性质的影响与效能研究[J].选煤技术,2001(1):22-24
    [22]杨纯,朱书全,张华文,等.聚丙烯酸系水煤浆分散剂合成工艺改进及应用[J].煤炭科学技术,2011,39(4):121-128
    [23]李永昕,李保庆,陈诵英,等.添加剂分子结构特征与灵武煤水煤浆浆体各性质间匹配规律研究[J].燃料化学学报,1997,25(3):247-252
    [24]苏毅,王世兵,朱书全等.烷基酚聚氧乙烯醚亲水链长度对水煤浆性能的影响[J].过程工程学报,2011,11(3):524-528
    [25]王金华.我国煤炭高效洁净利用新技术[J].煤炭科学技术,2012,40(1):1-22
    [26] Meryem O, Zeki A.Coal Froth Flotation: Effects of Reagent Adsorption on the FrothStructure [J].Fuel Processing Technology,2000,62:1-15.
    [27] Tiwari K K, Basu S K,Bit K C, et al.High-concentration coal-water slurry from Indiancoals using newly developed additives [J].Fuel Processing Technology,2004.85:31-42.
    [28]任军哲,张安琪,魏辉,等.一种新型聚羧酸系水煤浆分散剂的合成及性能研究[J].陕西科技大学学报,2011,29(2):40-43
    [29]孙振平,赵磊.聚羧酸系减水剂大单体MPEGMA的制备[J].建筑材料学报,2009,12(1):101-105
    [30]皇甫月姣,郑江,梅来宝.衣康酸-丙烯酰胺-丙烯酸三元共聚物螯合分散剂的合成及性能评价[J].精细石油化工,2011,28(2):56-59
    [31]桂斌.新型高效水煤浆添加剂的研究[D].浙江大学硕士学位论文,2006,2
    [32]丁永杰.添加剂的分子结构特性与煤质及水煤浆浆体各性质间的匹配规律研究[D].宁夏大学硕士学位论文,2005,3
    [33]高志芳.提质褐煤制浆及配煤成浆特性的研究[D].中国矿业大学博士学位论文,2009,4
    [34]尹宝华.水煤浆分散剂的研制与性能评价[D].北京化工大学硕士学位论文,2003,1
    [35]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究Ⅵ[J].煤炭转化,2005(4),28(2):43-46.
    [36]李艳昌,程军,刘剑,等.配煤提高神华煤成浆性能的研究[J].煤炭转化,2008,31(4):72-74
    [37]冉千平,刘加平,缪昌文,等.梳形共聚物分散剂侧链长度对浓水泥浆体分散保持性能的影响及机理[J].东南大学学报(自然科学版),2010(40):138-143
    [38] Sayeda G H, Ghuibab F M, Abdoub M I, et al. Synthesis, surface and thermodynamicparameters of some biodegradable nonionic surfactants derived from tannic acid[J].Colloids Surf., A: Physicochem. Eng. Aspects,2012,393,96-104.
    [39]周志军,李摇响,周俊虎,等.生物质水煤浆及添加剂的研究[J].煤炭学报,2012,37(1):147-153
    [40]张光华,郝皓,朱军峰.柠檬酸酯型聚羧酸水煤浆分散剂的合成与研究[J].煤炭科学技术,2011,39(9):121-124
    [41] Zhou M S, Kong Q, Pan B, et al. Evaluation of treated black liquor used as dispersant ofconcentrated coal-water slurry[J]. Fuel2010,89,716-723.
    [42]廖国胜,王劲松,马保国,等.新型聚羧酸类化学减水剂合成的几个关键问题研究探讨[J].国外建材科技,2004,25(2):48-50
    [43] Zhang R Z, Zeng F, Hu K M. Research on CWM preparation technique with Chinesecoals [A]. Proceedings of6th International Symposium on Coal Slurry Combustion andTechnology[C]. Orlando, Florida, USA,1984,234-250.
    [44] Nat Distillers Chem Corp. Derivatives of polyether glycol esters of poly-carboxylic acidsas rheological additives for coal water slurries [P]. CA1303353,1992-06-16
    [45] Zhou M S, Yang D J, Qiu X Q. Influence of dispersant on bound water content incoal-water slurry and its quantitative determination[J].J. Energy. Conv. Manag.2008,49,3063.
    [46] Qiu X Q, Zhou M S,Yang D J. Evaluation of sulphonated acetone–formaldehyde (SAF)used in coal water slurries prepared from different coals. Fuel2007,86,1439–1445.
    [47]冉宁庆,戴郁菁,朱光,何其慧,等.亚甲基萘磺酸-苯乙烯磺酸-马来酸盐对水煤浆的分散作用研究[J].南京大学学报(自然科学),1999,35(5):643~647.
    [48]陈迎,李寒旭复合水煤浆添加剂对煤浆流动特性影响的实验研究,安徽化工,2010,3:47-50
    [49]周志军,桂斌,李宁,等.高分子交联的添加剂对煤粉成浆性的研究[J].能源工程,2006(4):18-21
    [50]李崇智,冯乃谦,王栋民,等.梳形聚羧酸系减水剂的制备,表征及其作用机理[J].硅酸盐学报,2005,33(1):87-92
    [51]孔祥明,曹恩祥,侯珊珊.聚羧酸减水剂的研究进展[J],科技导航,2010,6:28-37
    [52]赵樑.高型酰胺多胺聚羧酸减水剂的制备与性能[D].北京工业大学硕士学位论文,2009,5
    [53]公瑞煜,李建蓉,张化锋,等.聚羧酸型梳状共聚物的合成和超分散性能研究[J].功能材料,2004,35(3):379-382
    [54]公瑞煜,肖传健,徐诗强,等.聚羧酸型梳状共聚物超分散剂的构性关系研究[J].高分子材料科学与工程,2003,19(1):132-135
    [55]蔡苇,崔鸿越,郭桂珍,等.侧链结构对聚羧酸盐减水剂性能的影响[J].硅酸盐通报,2011,30(4):800-804
    [56]寿崇琦,徐磊,蒋大庆,等.超支化星型聚羧酸减水剂的合成及其在硫铝酸盐水泥中的应用[J].新型建筑材料,2011(12):18-23
    [57]冉千平,游有鲲,丁蓓.低引气性聚羧酸类高效减水剂的制备及其性能研究[J].化学建材,2003(6):33-35
    [58]智艳飞,宋涛文,吴峰,等.端羧基型超支化聚羧酸减水剂的合成工艺及性能研究[J].商品混凝土,2011(12):24-28
    [59]宋家乐,温宏平,吕长亮,等.高性能聚醚类减水剂的制备及性能研究[J].混凝土,2012(2):86-92
    [60]孙振平,罗琼.酰胺类聚羧酸系减水剂的合成工艺及性能研究[J].建筑材料学报,2012,15(1):22-41
    [61]刘春燕,王自为,任建国,等.新型保坍型聚羧酸系减水剂的合成及性能研究[J].山西大学学报(自然科学版),2012,35(1):113-117
    [62]何靖,庞浩,张先文,等.新型聚醚接枝聚羧酸型高效混凝土减水剂的合成与性能[J].高分子材料科学与工程,2005,21(5):44-50
    [63]王秀梅,李晓,张浩,等.新型聚羧酸高效减水剂的合成及减水性能[J].混凝土,2011(11):64-66
    [64]刘春燕,王自为,卫晓慧,等.新型聚羧酸接枝保坍剂的合成与性能研究[J].新型建筑材料,2012(2):42-64
    [65]张恂,顾丽瑛.国内减水剂用两亲性聚合物的研究进展[J].胶体与聚合物,2006,24(2):39-41
    [66]周科利,刘瑾,李真.含短侧基低分子量聚羧酸系减水剂的合成与作用机理探讨[J].材料科学与工程学报,2011,29(2):295-300
    [67]付东康,吴绍祖,何霄嘉,等.含长聚醚侧链基团共聚羧酸高效减水剂的制备及其性能[J].混凝土,2007(11):39-42
    [68]段建平,吕生华,高瑞军,等.减水剂中磺酸基和羧基吸附特点及其影响因素探讨[J].混凝土,2012(1):84-87
    [69]伍家卫,唐蓉萍,杨兴锴,等.简述聚丙烯酸系减水剂的合成及性能研究进展[J].中国建材,2011(2):104-106
    [70]雷家珩,鲁茜,杜小弟,等.聚丙烯酸减水剂用聚乙二醇丙烯酸酯化大单体的提纯[J].精细化工,2012,29(2):192-195
    [71]姜玉,庞浩,廖兵.聚醚侧链聚羧酸类减水剂的结构及应用性能[J].化工进展,2008,27(5):733-735
    [72]温勇,罗玲,朱景伟,等.聚醚型高效聚羧酸减水剂结构与性能关系研究[J].混凝土,2008(12):57-87
    [73]宋家乐,温宏平,吕长亮,等.聚醚型聚羧酸系减水剂的性能研究[J].混凝土与水泥制品,2011(12):19-21
    [74]熊卫锋,王栋民,左彦峰,等.聚羧酸超塑化剂的侧链结构对其吸附分散性能的影响[J].新型建筑材料,2008(6):35-38
    [75]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究Ⅹ[J].燃料化学学报,2006(2),34(1):10-14.
    [76] Zhou Z J, Li X, Liang J M, et al. Surface Coating Improves Coal_Water Slurry Formationof Shangwan Coal[J], Energy Fuels,2011,25,3590-3597.
    [77]易聪华,黄欣,张智,等.聚羧酸分子结构对水泥砂浆早强性能的影响[J].华南理工大学学报(自然科学版),2011,39(8):93-98
    [78]肖雪清,黄雪红,胡玉娟.聚羧酸共聚物侧链结构对水泥分散性的研究[J].化学研究与应用,2005,17,825-828
    [79]卞荣兵,沈健.聚羧酸混凝土高效减水剂的合成和研究现状[J].精细化工,2006,23(2):179-182
    [80]李亮,马保国,谭洪波,等.聚羧酸减水剂侧链结构对水泥水化影响规律研究[J].新型建筑材料,2009(2):6-8
    [81]马保国,张慢,谭洪波,等.聚羧酸减水剂侧链密度对水泥早期水化特性的影响[J].新型建筑材料,2008(6):41-44
    [82]乔敏,冉千平,周栋梁,等.聚羧酸减水剂的分子结构信息对其分散性能的影响[J].绿色建筑,2011(5):63-65
    [83]苏瑜,庞浩,王斌,等.聚羧酸系混凝土减水剂的研究——大分子单体的制备与表征[J].精细化工,2012,29(2):187-191
    [84]韩操,张晓梅.聚羧酸系超塑化剂的合成及性能研究[J].云南化工,2007,34(1):40-43
    [84]王少鹏,张立锁,王德松.聚羧酸系高效减水剂聚合反应动力学及其减水性能[J].河北科技大学学报,2012,33(1):14-19
    [85]魏金,丁向群,沈洁,等.聚羧酸系高效减水剂的制备及其性能研究[J].硅酸盐通报,2012,31(1):42-45
    [86]王国建,黄韩英.聚羧酸盐高效减水剂的合成与表征[J].化学建材,2003(6):47-51
    [87]张晓梅,邓成刚,朱宗军,等.聚羧酸型梳状共聚物的合成及其对水泥塑化效果研究[J].化学建材,2005(4):43-46.
    [88]李顺,余其俊,韦江雄,等.分子量及其分布对聚羧酸减水剂吸附行为的影响[J].硅酸盐学报,2011,39(1):80-86.
    [89]王少会.超分散剂结构设计,合成及其在塑料改性中的应用[D].合肥工业大学博士学位论文,2008,5
    [90]姜玉,庞浩,廖兵.聚羧酸系高效减水剂的研究和应用[J].化工进展,2007,26(1):37-41
    [91]朱化雨,李因文,赵洪义.聚羧酸系高性能超塑化剂的研究进展[J].高分子通报,2010(5):17-21
    [92]马保国,谭洪波,孙恩杰,等.聚羧酸系高性能减水剂的构性关系研究[J].化学建材,2006,22(2):36-38
    [93]史俊,马英杰,陈叮琳.双磺化剂型减水剂的合成及性能研究[J].新型建筑材料,2011(12):12-17
    [94]侯珊珊,孔祥明,曹恩祥,等.水泥基体系中聚羧酸系高效减水剂的化学结构对其性能的影响[J].硅酸盐学报,2010,38(9):1698-1701
    [95]成立强,王文平.水相ATRP法合成聚羧酸类高效减水剂[J].高分子材料科学与工程,2010,26(2):29-32
    [96]陈暖文,林灿铭,彭国伟.神华煤制浆工艺与传统制浆工艺的比较研究[J].煤,2011,20(1):10-28.
    [97] Zhou M S, Qiu X Q, Yang D J. Influence of dispersant on bound water content incoal-water slurry and its quantitative determination[J]. Energy Conv.Manag.2008,49,3063-3068.
    [98]虞育杰,刘建忠,张传名,等.低挥发分煤的成浆特性和水煤浆流变特性[J].浙江大学学报,2011,45(2):335-340
    [99]孙成功,谢亚雄,李保庆,等.分散剂分子结构特征对煤浆流变特性的影响[J].燃料化学学报,1997,25(3):213-217
    [100]张光华,魏辉,费菲,等.马来酸型聚羧酸水煤浆分散剂的合成研究[J].选煤技术,2010(6):5-8
    [101]冯亮杰,郑明峰,尹晓晖,等.煤制甲醇项目的煤气化技术连择[J].洁净煤技术,2011,17(2):34-38
    [102]邱芳梅,方润,程贤.酶解木质素-磺化丙酮-甲醛缩聚物的合成与应用[J].纤维素科学与技术,2011,19(2):24-29.
    [103]朱雪丹,张光华.聚羧酸系分散剂合成单体对水煤浆性能的影响[J].煤炭科学技术,2010,38(7):122-125.
    [104]潘祖仁.高分子化学[M].化学工业出版社,2002.
    [105] Toshio K K, Hidehiro K. Effect of Sodium Aromatic Sulfonate Group in AnionicPolymer Dispersant on the Viscosity of Coal Water Mixtures. Energy Fuels2004,18,652.
    [106]张新民,冯恩娟,徐正华,等.聚羧酸类减水剂的分子设计与结构性能关系[J].化工进展,2008,27(6):913-916
    [107] Panagiotis I, Maria S, Georgios B, et al. Water-Soluble Hydrogen-Bonding InterpolymerComplex Formation between Poly(ethylene glycol) and Poly(acrylic acid) Grafted withPoly (2-acrylamido-2-methylpropanesulfonic acid)[J]. Langmuir2006,22,9181-9186.
    [108] Brent S S, Michael S D, Yoshiro M, et al.Water-Soluble Polymers.84.ControlledPolymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT[J].Macromolecules,2001,34,6561-6564.
    [109] Meikap B C, Purohit N K, Mahadevan V J. Effect of microwave pretreatment of coal forimprovement of rheological characteristics of coal–water slurries[J]. J. Colloid InterfaceSci.2005,281,225.
    [110]王为,陈赞,刘佩,等.聚羧酸系减水剂侧链结构对水泥塑化效果的影响[J].新型建筑材料,2008(4):24-27
    [111]周小野.浅议我国煤化工技术的现状与发展[J].科技创学导报,2011(29):63
    [112] Li P W, Yang D J, Lou H M, et al. Study on the stability of coal water slurry usingdispersion-stability analyzer[J]. J Fuel Chem Technol,2008,36(5):524-529
    [113] Dong W L, Se J P, Jong S B, et al. Preparation and Characterization ofCoal Water Alcohol Slurry for Efficient Entrained-Flow Gasification[J]. Ind. Eng.Chem. Res,2011,(50):11059-11066
    [114] Andrzej S, Adam W. The Effect of chemicals on the rheology of highly loaned coalwater slurrles (CWS)[J]. Physicochem. Probl. Miner. Process.2012,48(1):141-148
    [115] Gu T Y, Wu G G, Li Q H, et al. Blended coals for improved coal water slurries[J]. JChina Univ Mining&Technol,2008,(18):0050-0054
    [116]Wang R K, Liu J Z, Yu Y J, et al. The slurrying properties of coal water slurriescontaining raw sewage sludge[J]. Energy Fuels,2011,25,747-752
    [117]Boylu F, Atesok G, Dincer H. Effect of coal particle size distribution, volume fraction andrank on the rheology of coal–water slurries[J]. Fuel Process. Technol.2004,85,241-250.
    [118] Zhou M S, Qiu X Q, Yang D J, et al. High-performance dispersant of coal-water slurrysynthesized from wheat straw alkali lignin[J]. Fuel Processing Technology,2007,(88):375-382.
    [119] Zhu J F, Zhang G H, Li J G. Preparation of amphoteric polyacrylamide flocculant and itsapplication in the treatment of tannery wastewater[J]. J. Appl. Polym. Sci.2011,120,518-523.
    [120]严明芳.木质素磺酸盐的溶液行为及其在气液和固液界面的吸附机理研究[D].华南理工大学博士学位论文,2011,4
    [121]王文平,朱国军,成立强,等. ATRP法合成聚羧酸类高效减水剂[J].高分子材料科学与工程,2011,27(3):16-18
    [122]曾小君,刘琰,路中培,等. APEG-AA-AM三元共聚聚羧酸高效减水剂合成研究[J].新型建筑材料,2011(2):1-35
    [123]曾小君,路中培,陈剑威,等. MPEGAA-AA-SMAS三元共聚聚羧酸高效减水剂合成工艺研究[J].新型建筑材料,2011(5):56-58
    [124]陈小平,周忠群,申迎华,等.聚羧酸系减水剂大单体PEGMAA的制备[J].硅酸盐通报,2010,29(6):1492-1496
    [125]孙振平,赵磊.聚羧酸系减水剂大单体MPEGMA的制备[J].建筑材料学报,2009,12(1):101-105
    [126] Mahmoud A A M, Shehab M S H, El-Dieb A S. Concrete mixtures incorporatingsynthesized sulfonated acetophenone-formaldehyde resin as superplasticizer.[J]. Cement&Concrete Composites,2010,(32):392-397
    [127] Zhu J F, Zhang G H, Miao Z, et al.Fabrication and Preparation of Coal-Water SlurryDispersant with Amphoteric Polycarboxylate[J], Advanced Materials Research2011,335-336:1257-1261.
    [128] Ran Q P, Somasundaran P, Miao C W, et al. Effect of the length of the side chains ofcomb-like copolymer dispersants on dispersion and rheological properties ofconcentrated cement suspensions[J]. Journal of Colloid and Interface Science,2009,(336):624-633
    [129] Kazuo Y, Tomoo T, Shunsuke H, et al. Effects of the chemical structure on the propertiesof polycarboxylate-type superplasticizer[J]. Cement and Concrete Research,2000,(30):197-207.
    [130] Boylu F, Atesok G, Dincer H. The effect of carboxylmethyl cellulose (CMC) on thestability of coal-water slurries[J]. Fuel,2005,84,315-319.
    [131]郭培培,苏华,卫引茂. SAF及其与木质素磺酸钠复配分散剂的性能研究[J].应用化工,2011,40(10):1689-1691
    [132]Tiwari K K, Basu S K, Bit K C, et al. High-concentration coal–water slurry from Indiancoals using newly developed additives[J]. Fuel Process. Technol.2004,85,31-42.
    [133]傅乐峰,邓最亮,张毅,等.聚羧酸类超塑化剂分子结构对石膏分散性能的影响[J].高分子学报,2011(3):294-301
    [134] Plank J, P llmann K, Zouaoui N, et al. Synthesis and performance of methacrylic esterbased polycarboxylate superplasticizers possessing hydroxy terminated poly(ethyleneglycol) side chains[J]. Cement and Concrete Research,2008,(38):1210-1216
    [135] Plank J, Keller H, Andres P R, et al. Novel organo-mineral phases obtained byintercalation of maleic anhydride-allyl ether copolymers into layered calcium aluminumhydrates[J]. Inorganica Chimica Acta,2006,(359):4901-4908.
    [136] Zhu J F, Zhang G H, Miao Z,et al. Synthesis and performance of a comblike amphotericpolycarboxylate dispersant for coal–water slurry[J], Colloids and Surfaces A:Physicochem. Eng. Aspects2012,412:101-107.
    [137] Bouhamed H, Boufia S, Magnin A. Dispersion of alumina suspension using comb-likeand diblock copolymers produced by RAFT polymerization of AMPS and MPEG[J].Journal of Colloid and Interface Science,2007,(312):279-291
    [138] Yun Z J, Wu G G, Meng X L, et al. A comparative investigation of the properties ofcoal–water slurries prepared from Australia and Shenhua coals[J]. Mining Science andTechnology (China),2011,(21):343-347.
    [139]赵婷婷,王玲,窦琳,等.聚羧酸盐减水剂与水泥的吸附性能研究[J].新型建筑材料,2011(1):57-59
    [140]杨勇,冉千平,刘加平,等.梳形支化结构聚羧酸高性能减水剂的合成[J].新型建筑材料,2011(7):54-57
    [141]刘治猛,蒋欣,刘煜平,等.一类聚羧酸高性能减水剂的设计合成与应用[J].高分子材料科学与工程,2009,25(8):94-98
    [142]周科利,冯中军,傅乐峰,等.醅类聚羧酸系减水剂的合成与性能研究[J].新型建筑材料,2012(2):34-41
    [143]公瑞煜,肖传健,徐洁强,等.聚羧酸型梳状共聚物超分散剂的构性关系研究[J].高分子材料科学与工程,2003,19(1):132-135
    [144]李亮.聚羧酸系混凝土减水剂构性及应用技术研究[D].武汉理工大学博士学位论文,2009,5
    [145]金浩轩.聚羧酸高效减水剂的合成和性能[D].合肥工业大学硕士学位论文,2010,4
    [146] Debadutta D, Uma D, Amalendu N, et al. Surface engineering of low rank indian coalsstarch-based additives for the formulation of concentrated coal-water slurry[J].EnergyFuels,2010(1),24:1260-1268
    [147] Plank J, Winter C. Competitive adsorption between superplasticizer and retardermolecules on mineral binder surface[J]. Cement and Concrete Research,2008,(38):599-605
    [148] Plank J, Sachsenhauser B, Reese J D. Experimental determination of the thermodynamicparameters affecting the adsorption behaviour and dispersion effectiveness of PCEsuperplasticizers[J]. Cement and Concrete Research,2010,(40):699-709
    [149] Plank Johann, Dai Z, Andres P R. Preparation and characterization of newCa-Al-polycarboxylate layered double hydroxides[J]. Materials Letters,2006,(60):3614-3617
    [150] Lei L, Plank J. Synthesis, working mechanism and effectiveness of a novelcycloaliphatic superplasticizer for concrete[J]. Cement and Concrete Research,2012,(42):118-123
    [151] Cyril G, Lionel V L, Gabriel K, et al. A new method to analyze copolymer basedsuperplasticizer traces in cement leachates[J]. Talanta,2011,(84):133-140
    [152] Plank J, Sachsenhauser B.Experimental determination of the effective anionic chargedensity of polycarboxylate superplasticizers in cement pore solution[J]. Cement andConcrete Research,2009,(39):1-5
    [153] Plank J. Hirsch C. Impact of zeta potential of early cement hydration phases onsuperplasticizer adsorption[J]. Cement and Concrete Research,2007,(37):537-542
    [154] Borget Pl, Galmiche L, Meins J-F L, et al. Microstructural characterisation andbehaviour in different salt solutions of sodium polymethacrylate-g-PEO combcopolymers[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2005,(260):173-182
    [155]吴晓华.聚丙烯酸系列水煤浆添加剂的合成及其应用机理研究[D].博士学位论文,2009,4
    [156]李瑜煜,吴荣标,潘润锦,等.生物质煤浆制备技术研究[J].广东农业科学,2011(18):149-151
    [157]傅乐峰,邓最亮,张毅,等.聚羧酸超塑化剂稳定分散石膏浆体的研究[J].建筑材料学报,2010,13(5):589-594
    [158]兰自栋.聚羧酸减水剂与改性木质素磺酸钠复配应用研究[J].商品混凝土,2012(1):31-44
    [159]雷西萍,李辉.聚羧酸减水剂支链密度对水泥水化行为的影响[J].硅酸盐通报,2009,28(6):1254-1258
    [160]段建平,吕生华,高瑞军,等.聚羧酸系减水剂结构与分散性能研究进展[J].混凝土,2011(11):59-66
    [161]李平,张福强,齐怿.聚羧酸系减水剂支链组成对水泥分散性能的影响及其机理[J].硅酸盐通报,2010,29(4):815-833
    [162] Palacios M, Houst Y F, Bowen P, et al. Adsorption of superplasticizer admixtures onalkali-activated slag pastes[J]. Cement and Concrete Research,2009,(39):670-677.
    [163] Debadutta D, Uma D, Amalendu N, et al. Effect of organized assemblies. part5: studyon the rheology and stabilization of a concentrated coal-water slurry using Saponin ofthe Acacia concinna plant [J].Energy Fuels,2009(2),23:3217-3226.
    [164] Debadutta D, Uma D, Amalendu N, et al. Effect of organized assemblies. Part4.formulation of highly concentrated coal-water slurry using a naturalsurfactant[J].Energy Fuels,2008(1),27:1865-1872.
    [165] Toshio K, Hidehiro K. Effect of sodium aromatic sulfonate group in anionic polymerdispersant on the viscosity of coal-water mixtures[J]. Energy Fuels2004,18,652
    [166] Liu J Z, Zhao W D, Zhou J H, et al. An investigation on the rheological andsulfur-retention characteristics of desulfurizing coal water slurry with calcium-basedadditives[J]. Fuel Process. Technol.2009,90,91-98
    [167] Aiuchi K, Moriyama R, Takeda S, et al. A pre-heating vaporization technology ofcoal-water-slurry for the gasification process[J]. Fuel Process. Technol.2007,88,325-331.
    [168] Ran Q P, Ponisseril S, Miao C W, et al. Effect of the length of the side chains ofcomb-like copolymer dispersants on dispersion and rheological properties ofconcentrated cement suspensions[J]. Journal of Colloid and Interface Science2009,336:624–633.
    [169] Plank J, P llmann K, Zouaoui N, et al. Synthesis and performance of methacrylic ester
    based polycarboxylate superplasticizers possessing hydroxy terminated poly(ethylene
    glycol) side chains[J]. Cement and Concrete Research2008,38:1210–1216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700