用户名: 密码: 验证码:
中温H_2S固体氧化物燃料电池阳极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于国内外固体氧化物燃料电池(SOFC)的发展,针对其在高温及H2S燃气下的局限性,论文以中温H2S SOFC阳极材料为研究对象,采用实验与热力学软件分析相结合的方法,系统地研究了几种阳极材料的制备方法及其电化学性能,并构建以电解质为支撑的单电池,通过测试其电输出性能,筛选出最适合中温H2S SOFC的阳极材料。
     采用尿素燃烧法制备了不同掺杂量的钙钛矿结构Lao7Sr0.3Cr1-xYxO3-δ(简写为LSCY阳极材料。经X-射线衍射(XRD).H2S电导率及H2-程序升温还原(H2-TPR)测试确定了LSCY的最适煅烧温度为1350℃、Y的最佳掺杂量为0.13、催化活性温度为600℃。以氧离子型Ce0.8Sm0.2O1.9(SDC)电解质为支撑,构建单电池LSCY13-SDC‖SDC‖Ag,在600℃及5%H2S燃气下,开路电压为0.85V,最大功率密度为12.42mW·cm-2.单电池运行前后阳极材料的X射线光电子能谱(XPS)及光致发光光谱(PL)表征结果表明,Sr取代La后产生不带电的氧空位,为O2-传导提供了通道,扩大了H2S与O2-反应三相界面;Y掺杂后由于体系中存在离域的d电子,增强了该阳极材料的电子电导性。
     采用溶胶燃烧法制备了Ce0.9Sr0.1Cr0.5Co0.5O4-δ(CSCCo)的前驱体粉末,1100℃及3%H2条件下还原5h得到萤石结构的CSCCo阳极材料。经XRD、H2-TPR及FT-IR等测试,结果表明CSCCo适合作为中温H2S SOFC的阳极材料。构建的CSCCo-SDC‖SDC‖Ag单电池,在600℃及5%H2S燃气下,开路电压为0.97V,最大功率密度为14.21mW·cm-2.单电池运行前后阳极材料的XPS测试表明,Ce3+的电子容易跃迁到Co3+上,电子的这种跃迁增强了阳极材料的电子电导性;生成的H20与阳极表面的氧空位作用产生羟基氧,其易与H2S中的H发生作用,提高了单电池在H2S燃气中的电输出性能。
     采用溶胶燃烧法制备了Ce0.9Sr0.1Cr0.5Mn0.5O4-δ(CSCMn)前驱体粉末,在1100℃及3%H2条件下还原5h得到萤石结构的CSCMn阳极材料。经XRD、H2-TPR及H2S电导率等测试,确定CSCMn粉末适合作为中温H2S SOFC的阳极材料。构建的CSCMn-SDC‖SDC‖Ag单电池,在600℃及5%H2S燃气下,开路电压和最大功率密度分别为0.95V和15.12mW·cm-2.单电池运行前后阳极材料的XPS谱图表明,CSCMn体系中存在Ce3+电子跃迁至Mn4+上,电子的这种跃迁增大了材料的电子电导性;阳极表面的晶格氧转化为化学间隙氧,同时放出的氧空位把来自阴极的O2-传导到阳极材料表面,扩大了H2S与O2-反应的三相界面,提高了单电池的电输出性能。
     采用溶胶燃烧法制备了Ce0.9Sr0.1Cr0.5Fe0.5O3-δ(CSCFe)前驱体粉末,经3%H2和100%H2还原分别得到钙钛矿结构和萤石结构的CSCFe阳极材料,通过XRD.H2-TPR及FT-IR等测试表明,二者均适合作为中温H2S SOFC的阳极材料,由此构建的单电池CSCMn-SDC‖SDC‖Ag在600℃及5%H2S燃气下,其最大电流密度分别为52.35mA·cm·-2和82.38mA.cm-2,最大功率密度分别为17.75mW.cm-2和18.75mW.cm-2,表明钙钛矿结构的CSCFe阳极材料比萤石结构的催化活性要低一些,这是由于这两种CSCFe材料中Ce3+含量不同所引起的,前者Ce3+的含量(30.35%)比后者的(70.26%)要低的多。
     以质子型电解质BaCe0.35Zr0.5Y0.15O3-δ(BCZY)为支撑,分别以无定形结构的BaCe0.35Zr0.5Y0.15O3-Li3PO4-CaSO4(BCZY-Li-Ca)和钙钛矿结构的Ce0.8Sr0.2Cr0.5V0.5O3-δ (CSCV)为阳极材料,构建的单电池BCZY-Li-Ca-BCZY‖BCZY‖Ag和CSCV-BCZY‖BCZY‖Ag,在600℃及5%H2S燃气下,开路电压分别为0.81V和0.99V,最大功率密度分别为13.1mW·cm-2和22.6mW·cm-2。CSCV阳极材料和BCZY电解质同为钙钛矿结构且.均含有Ce,因而二者的化学相容性更好,同时降低了其接触电阻,导致单电池的电性能输出更好。
Based on the development of higher temperature H2S Solid Oxide Fuel Cells (SOFC), in order to overcome the shortcoming of the materials under the condition of higher temperature and in H2S, the paper was focused on anode materials for intermediate temperature H2S SOFC by experiments and analysis of thermodynamic calculation. The preparations of sevrial anode and the properties of them in H2S were studied. After building single cells which electrolytes as surppoted, the tested electrochemical properties were used to find out a more suitable anode for intermediate temperature H2S SOFC.
     Urea combustion method was used to prepare a series of La0.7Sr0.3Cr1-xYx03-δ (abbreviation:LSCY). The measurements of X-ray diffraction (XRD), conductivities in H2S and H2-temperature programmed reduction (H2-TPR) were used to determine the optimum sintering temperature1350℃and the favourable doping quantity x=0.13. The maximum OCV was0.85V and the maximum power density was12.42mW·cm-2for the single cell LSCY13-SDC‖SDC‖Ag in5%H2S at600℃. The results of X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) after the cell test showed that La was replaced by Sr to produce oxygen vacancies which had no charge, and the oxygen vacancies provided channel for migrating of O2-, which enlarged area of reaction H2S with O2-. The appearance of delocalized d electron after Y doping enhanced the conduction of the anode material.
     Gel combustion method was used to synthesize Ce0.9Sr0.1Cr0.5Co0.5O4-δ (CSCCo) precursor, then reduced in3%H2at1100℃to get fluorite of CSCCo anode powder. The results of XRD, H2-TPR and FT-IR, et al. showed that CSCCo was suit for as anode for intermediate temperature H2S SOFC. The maximum OCV was0.97V and the maximum power density was14.21mW·cm-2for the single cell CSCCo-SDC‖SDC‖Ag in5%H2S at600℃. Due to the electron easily transfering from Ce3+to Co3+, the hoping elentron increased the electron conductivity of the material; meanwhile Sr doping producing oxygen vacancies was in favour of enhancing the electrochemical properties for intermediate temperature H2S SOFC.
     Ce0.9Sr0.1Cr0.5Mn0.5O4-δ (CSCMn) precursor was synthesized by gel combustion method, after reduction in3%H2, the fluorite of CSCMn anode powder was abtained. The analysis of XRD、H2-TPR and conductiviyies in H2S made sure CSCMn fitting as anode for intermediate temperature H2S SOFC. The maximum OCV was0.95V and the maximum power density was15.12mW·cm-2for the single cell CSCMn-SDC‖SDC‖Ag in5%H2S at600℃. After the single cell test, XPS patterns showed that electron transferred from Ce3+to Mn4+which enhanced the conduction of the anode material. Lattice oxygen on the surface of the anode was changed to interstitial atom of oxygen and letted out oxygen vacancies, which magnified the area of touching for H2S and O2-.
     Gel combustion method was used to synthesize Ce0.9Sr0.1Cr0.5Fe0.5O3-δ(CSCFe) precursor powder, perovskite CSCFe and fluorite type CSCFe were gotten after the reducrion in3%H2or in100%H2at1100℃for5h. XRD, H2-TPR and FT-IR were used to certain both CSCFe all suiting as anodes for intermediate temperature of H2S SOFC, and the single with them as anode, the maximum current densities were52.35mA·cm-2and82.38mA·cm-2, the maximum power densities were17.75mW·cm-2and18.75mW·cm-2for the cell CSCFe-SDC‖SDC‖Ag in5%H2S at600℃, respectively. The reason may be the difference from content of Ce3+in CSCFe; Ce3+in the former (30.35%) was less than the latter (70.26%).
     Model of the cell was proton conducting electrolyte BaCe0.35Zr0.5Y0.15O3-δ as supported. Amorphous structure BaCe0.35Zr0.5Y0.15O3-Li3PO4-CaSO4(BCZY-Li-Ca) and perovskite structure Ce0.8Sr0.2Cr0.5V0.5O3-δ(CSCV) as anode, the electrochemical propteries were carried out for the single cells BCZY-Li-Ca-BCZY‖BCZY‖Ag and CSCV8255-BCZY‖BCZY‖Ag in5%H2S at600℃, the maximum OCVs were0.81V and0.99V, the maximum power densities were13.1mW·cm-2and22.6mW·cm-2, respectively. The activity of fomer was lower than that of the former, the reason was that CSCV and BCZY were all perovskite and all contained Ce, which made magnify the chemical compatibility and reduced the contacting resisitance between them.
引文
[1]Singhal S C, Iwahara H. Tubular solid oxide fuel cells[C]. Proceeding of the third international symposium on solid oxide fuel cells. The Electrochemical Society,1993:665-677
    [2]Minh N Q. Ceramic fuel cell[J]. Journal of American Ceramics Society,1993,76:563-588
    [3]衣宝廉.燃料电池原理、技术与应用[M].第一版.北京:化工出版社,2003
    [4]Ito N, Iijima M, Kimura K, et al. New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte[J]. Journal of Power Sources,2005,152:200-203
    [5]Li T S, Wang W G. Sulfur-poisoned Ni-based solid oxide fuel cell anode characterization by varying water content[J]. Journal of Power Sources,2011,196:2066-2069
    [6]Marina O A, Coyle C A, Engelhard M H, et al. Mitigation of sulfur poisoning of Ni/zirconia SOFC anodes by antimony and tin[J]. Journal of the Electrochemical Society,2011,158(4):B424-B429
    [7]Rasmussen J F B, Hagen A. The effect of H2S on the performance of SOFCs using methane containing fuel[J]. Fuel Cells,2010,10(6):1135-1142
    [8]Peng C, Luo J L, Sanger A R, et al. Sulfur-tolerant anode catalyst for solid oxide fuel cells operating on H2S-containing syngas[J]. Chemistry of Materials,2010,22:1032-1037
    [9]Malyi O I, Chen Z, Shu G G, et al. Effect of sulfur impurity on the stability of cubic zirconia and its interfaces with metals[J]. Journal of Material Chemistry,2011,21:12363-12368
    [10]Brian C H, Angelika H. Materials for fuel-cell technologies[J]. Nature,2001,414(15):345-352
    [11]于强.稀土资源产业发展前景分析[J].世界有色金属,2004,5:9-11
    [12]Cropper M A J, Geiger S, Jollie D M, et al. Fuel Cells:A survey of current developments[J]. Journal of Power Sources,2004,131(1-2):57-61
    [13]Pillai M R, Kim I, Bierschenk D M, et al. Fuel-flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support[J]. Journal of Power Sources,2008,185:1086-1093
    [14]Ye X F, Wang S R, Wang Z R, et al. Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel[J]. Journal of Power Sources,2008,177:419-425
    [15]Burnette D D, Kermer G G, Bayless D J. The use of hydrogen-depleted coal syngas in solid oxide fuel cells[J]. Journal of Power Sources,2008,182:329-333
    [16]Wang F Y, Jung G B, Su A, et al. Porous Ag-Ce0.8Sm0.2O1.9 cermets as anode materials for intermediate temperature solid oxide fuel cells using CO fuel[J]. Journal of Power Sources,2008, 185:862-866
    [17]Singhal S C. Advances in solid oxide fuel cell technology[J]. Solid State Ionics,2000,135:305-313
    [18]Meng G, Ma G, Peng R, et al. Ceramic membrane fuel cells based on solid proton electrolytes[J]. Solide State Ionics,2007,178:697-703
    [19]Williams M C, Utz B R, Moore K M. DOE FE distributed generation program[J]. Journal of Fuel Cell Science and Technology,2004, 1(1):18-20
    [20]Kurokawa H, Yang L, Jacobson C P, et al. Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells[J]. Journal of Power Sources,2007,164:510-518
    [21]Baratto F, Diwekar U M. Life cycle assessment of fuel cell-based APUs[J]. Journal of Power Sources, 2005,139:188-196
    [22]Song C S. Fuel processing for low-temperature and high-temperature fuel cells:Challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today,2002, 77(1-2):17-49
    [23]Shao Z P, Haile S M.A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature,2004,431:170-173
    [24]Norby T. Solid-state protonic conductors:principles, properties, progress and prospects[J]. Solid State Ionics,1999,125:1-11
    [25]Virkar A V. A model for solid oxide fuel cell (SOFC) stack degradation[J]. Journal of Power Sources, 2007,172(2):713-724
    [26]Lai T S, Barnett S A. Effect of cathode sheet resistance on segmented-in-series SOFC power density[J]. Journal of Power Sources,2007,172(2):742-745
    [27]Fu Q, Tietz F, Sebold D, et al. An efficient ceramic-based anode for solid oxide fuel cells[J]. Journal of Power Sources,2007,172(2):663-669
    [28]Metzger P, Friedrich K A, Schiller G. SOFC characteristics along the flow path[J]. Solid State Ionics, 2006,177(19-25):2045-2051
    [29]Haanappel V A C, Mertens J, Malzbender J. Characterisation of Ni-cermets SOFCs with varying anode densities[J]. Journal of Power Sources,2007,172(2):789-792
    [30]Mather G C, Figueiredo F M, Jurado J R. Electrochemical behaviour of Ni-cermet anodes containing a proton-conducting ceramic phase on YSZ substrate[J]. Electrochimica Acta,2004,49(16): 2601-2612
    [31]Skinner S J. Recent advances in perovskite-type materials for SOFC cathodes[J]. Fuel Cells Bulletin, 2001,4(33):6-12
    [32]Nielsen J, Jacobsen T. Three-phase-boundary dynamics at Pt/YSZ microelectrodes[J]. Solid State Ionics,2007,178(13-14):1001-1009
    [33]Wang W G, Mogensen M. High-performance lanthanum-ferrite-based cathode for SOFC[J]. Solid State Ionics,2005,176(5-6):457-462
    [34]Xu S, Niu X, Chen M. Carbon doped MO-SDC material as an SOFC anode[J]. Journal of Power Sources,2007,165(1):82-86
    [35]Boden A, Di J, Lagergren C. Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidising atmospheres[J]. Journal of Power Sources,2007,172(2):520-529
    [36]Nikooyeh K, Jeje A A, Hill J M.3D modeling of anode-supported planar SOFC with internal reforming of methane[J]. Journal of Power Sources,2007,171(2):601-609
    [37]Jia J, Abudula A, Wei L, et al. A Mathematical Model of a tubular solid oxide fuel cell with specified combustion zone[J]. Journal of Power Sources,2007,171(2):696-705
    [38]Oishi M, Yashiro K, Hong J O. Oxygen nonstoichiometry of B-site doped LaCrO3[J]. Solid State Ionics,2007,178(3-4):307-312
    [39]Park S K, Oh K S, Kim T S. Analysis of the design of a pressurized SOFC hybrid system using a fixed gas turbine design[J]. Journal of Power Sources,2007,170(1):130-139
    [40]Kim S D, Moon H, Hyun S H, et al. Nano-composite materials for high-performance and durability of solid oxide fuel cells[J]. Journal of Power Sources,2006,163(1):392-397
    [41]Fruth V, Popa M, Berger D, et al. Deposition and characterisation of bismuth oxide thin films[J]. Journal of the European Ceramic Society,2005,25(12):2171-2174
    [42]Godfrey B, Foger K, Gillespie R, et al. Planar solid oxide fuel cells:the australian experience and outlook[J]. Journal of Power Sources,2000,86(1-2):68-73
    [43]Dicks A L, Costa D A, Diniz J C, et al. Fuel cells, hydrogen and energy supply in Australia[J]. Journal of Power Sources,2004,131(1):1-12
    [44]Inghal S C. Solid oxide fuel cells[J]. Electrochemical Society Interface,2007,16(4):41-44
    [45]Larminie J, Dicks A. Solid oxide fuel cells explained[M]. England:John Wiley & Sons Ltd,2003: 207-226
    [46]周利,程谟杰,衣宝廉.管型固体氧化物燃料电池技术进展[J].电池,2005,35(1):63-65
    [47]Kurocda K, Hashimoto I, Adachi K, et al.Characterization of solide oxide fuel cell using doped lanthanum gallate[J]. Solide State Ionics,2000,132(3):199-208
    [48]Martinez J P, Marrero-Lopez D, Ruiz-Morales J C. Fuel cell studies of perovskite-type materials for IT-SOFC[J]. Journal of Power Sources,2006,150:914-921
    [49]Hidenori Y, Yoshinobu B, Koichi E, et al. High temperature fuel cell with ceria-yttria solid electrolyte[J]. Journal of the Electrochemstry Society,1988,135(8):2077-2080
    [50]Sammes N M, Tompsett G A, Nafe H, et al. Bismuth based oxide electrolytes-structure and ionic conductivity[J]. Journal of the European Ceramics Society,1999,19:1801-1826
    [51]Ishihara T, Matsuda H, Tskita Y, et al. Doped LaGaOj perovskite type oxide as a new oxide ionic conductor[J]. Journal of American Chemical Society,1994,116(9):3801-3803
    [52]Man F, Goodenough J B, Huang K Q. Fuel cells with doped lanthanum gallate electrolyte[J]. Journal of Power Sources,1996,63(1):47-51
    [53]Jiang S P. Development of lanthanum strontium manganite perovskite of solid oxide fuel cells:a review[J]. Journal of Materials Science,2008,43:6799-6833
    [54]Mizusaki J, Mori N, Takai H, et al. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+δ[J]. Solid State Ionics,2000,129:163-177
    [55]Vanroosmalen J A M, Cordfunke E H P, Helmholdt R B, et al. The defect chemistry of LaMnO3±δ.2. Structural aspects of LaMnO3±δ[J]. Journal of Solid State Chemistry,1994,110:100-105
    [56]Vanroosmalen J A M, Cordfunke E H P, Helmholdt R B, et al. The defect chemistry of LaMnO3±δ.3. the density of (La, a)MnO3±δ(a=Ca, Sr, Ba)[J]. Journal of Solid State Chemistry,1994,110:106-108
    [57]Vanroosmalen J A M, Cordfunke E H P, Helmholdt R B, et al. The defect chemistry of LaMnO3±δ.4. Defect model of LaMnO3±δ[J]. Journal of Solid State Chemistry,1994,110:109-112
    [58]Vanroosmalen J A M, Cordfunke E H P, Helmholdt R B, et al. The defect chemistry of LaMnO3±δ.5. Thermodynamics[J]. Journal of Solid State Chemistry,1994,110:113-117
    [59]Baumann F S, Fleig J, Cristiani G, et al. Quantitative comparison of mixed-conducting SOFC cathode materials by means of thin film model electrodes[J]. Jouranl of the Electrochemical Society, 2007,154:B931-B941
    [60]Svarcova S, Wiik K, Tolchard J, et al. Structural instability of cubic perovskite BaxSr1-xCo1-yFeyO3-δ[J]. Solid State Ionics,2008,178:1787-1791
    [61]Yan A Y, Cheng M, Dong Y L, et al. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ based cathode IT-SOFC-I. The effect of CO2 on the cell performance[J]. Applied Catalysis B-Environmental,2006, 66:64-71
    [62]Yan A Y, Maragou V, Arico A, et al. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ based cathode IT-SOFC Ⅱ. The effect of CO2 on the chemical stability[J]. Applied Catalysis B-Environmental,2007, 76:320-327
    [63]Simner S P, Bonnett J F, Canfiel N L, et al. Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs[J]. Electrochemical and Solid State Letters,2002,5:A173-A175
    [64]Simner S P, Bonnett J F, Canfiel N L, et al. Development of lanthanum ferrite SOFC cathodes[J]. Journal of Power Sources,2003,113:1-10
    [65]Chiba R, Yoshimura F, Sakurai Y. An investigation of LaNi1-xFexO3 as a cathode materials for solid oxide fuel cells[J]. Solid State Ionics,1999,124:281-288
    [66]Zhen Y D, Tok A I Y, Jiang S P, et al. La(NiFe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells[J]. Journal of Power Sources,2007,170:61-66
    [67]Aguadero A, Escudero M J, Perez M, et al. Effect of Sr content on the crystal structure and electrical properties of the system La2.xSrxNiO4+s(0    [68]Sayer R, Liu J, Rustumji B, et al. Novel K2NiF4-type materials for solide oxide fuel cells: compatibility with electrolytes in the intermediate teperature range[J]. Fuel Cells,2008,8:338-343
    [69]Solak N, Zinkevich M, Aldinger F. Compatibility of La2Ni04 cathodes with LaGaO3 electrolytes:A computational approach[J]. Solid State Ionics,2006,177:2139-2142
    [70]Zhao H, Mauvy F, Lalanne C, et al. New cathode materials for IT-SOFC:Phase stability, oxygen exchange and cathode propties of La2-xSrxNi04+δ[J]. Solid State Ionics,2008,179:2000-2005
    [71]Taskin A A, Lavrov A N, Ando Y. Achieving fast oxygen diffusion in perovskites by cation ordering[J]. Applied Physics Letters,2005,86(9):091910-1-091910-3
    [72]Tarancon A, Skinner S J, Chater R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry,2007, 17:3175-3181
    [73]Kim J H, Manthiram A. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society,2008,155(4):B385-B390
    [74]Kim J H, Prado F, Manthiram A. Characterization of GdBa1-xSrxCo2O5+δ(0≤x≤1.0) double perovskites as cathodes for solid oxide fuel cells[J]. Journal of the Electrochemical Society,2008, 155(10):B1023-B1028
    [75]Plint S M, Connor P A, Tao S W, et al. Electronic transport in the novel SOFC anode material La1-xSrxCro.5Mno.503±δ[J]. Solid State Ionics,2006,177:2005-2008
    [76]黄贤良,赵海雷,吴卫江,等.固体氧化物燃料电池阳极材料的研究进展,硅酸盐学报,2005,33(11):1407-1413
    [77]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells[M], Elsevier, Amsterdam, The Netherlands,1995, P147
    [78]Spacil H S. Electrical device including nickel-containing stabilized zirconia electrode[P]. US patent 3558360,1970
    [79]Mcintosh S, Vohs J M, Gorte R J. Role of Hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs[J]. Journal of American Ceramics Society,2003,150(4):A470-A476
    [80]Craciun R, Park S, Gorte R J, et al. Novel method for preparing anode cermets for solid oxide fuel cells[J]. Journal of the Electrochemistry Society,1999,146:4019-4022
    [81]Park S D, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000,404:265-267
    [82]Sfeir J. LaCrO3-based anodes:stability considerations[J]. Journal of Power Sources,2003, 18:276-285
    [83]Pudmichg, Boukampba, et al. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells[J]. Solid State Ionics,2000,135:433-438
    [84]Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003,2:320-323
    [85]Sauvet A L, Fouletier J. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature[J]. Journal of Power Sources,2001, 101:259-266
    [86]Zha S W, Tsang P, Cheng Z, et al. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions[J]. Journal of Solid State Chemistry,2005,178:1844-1850
    [87]Sfeir J, Buffat P A, Mockli P. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes[J]. Journal of Catalysis,2001,202:229-244
    [88]Hartley A, Sahibzada M, Weston M, et al. La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells[J]. Catalysis Today,2000, (55):197-204
    [89]Vernoux P, Guillodo M, Fouletier J, et al. Alternative anode material for gradual methane reforming in solid oxide fuel cells[J]. Solid State Ionics,2000,135:425-431
    [90]Weston M, Metcalfe I S. Lao.6Sr0.4Co0.2Fe0.8O3 as an anode for direct methane activation in SOFCs[J]. Solid State Ionics,1998,247:113-115
    [91]Marina O A, Canfield N L, Stevenson J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics,2002,149(12):21-28
    [92]Huang Y H, Dass R I, Xing Z L. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science,2006,312(254):1-24
    [93]Liang K C,Y Du, Nowick A S. Fast high-temperature proton transport in nonstoichiometric mixed perovskites[J]. Solid State Ionics,1994,69(2):117-120
    [94]Bohn H G, Schober T, Mono T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ Electrical conductivity[J]. Solid State Ionics,1999,117 (1-4):219-228
    [95]Nowick A S, Liang K C. Effect of non-stoichiometry on the protonic and oxygen-ionic conductivity of Sr2(ScNb)O6:a complex perovskite[J]. Solid State Ionics,2000, (129):201-207
    [96]Anlistrollg R D, Diagnostic criteria for distilgtuishing between the dissolution Precipitation and the solid state mechanisms of passivatio. Corrosion Science,1971,11(10):693-697
    [97]Alvani C, Bruzzi L, Casadio S, et al. Preparationof Li2ZrO3 by Powder reaction and hydrolysis of metal alkoxides. Journal of the European Ceramic Society,1989,5(5):295-302
    [98]Wu R, Du P Y, Weng W J, et al. The structures and dielectric properties of Ba0.80Sr0.20TiO3/Pb0.82La0.18TiO3 composite thick films with addition of PbO-B2O3 glass. lournal of the European Ceramic Society,2006,26(9):1611-1617
    [99]Chai Y L, Ray D T, Chen G J, et al. Synthesis of La0.8Sr0.2Co0.5Ni0.5O3-δ thin films for high sensitivity CO sensing material using the Pechini process. Jouranl of alloys and Compounds,2002, 333(2):147-153
    [100]Jain S R, Adiga K C, Vemeker V R. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures[J]. Combustion and Glame,1981,40(1):71-76
    [101]Hydrogen. Materials Safety Data Sheet, Praxair, Icn 2007
    [102]Methane. Materials Safety Data Sheet, Praxair, Icn 2007
    [103]Hydrogen sulphide. Materials Safety Data Sheet, Praxair, Icn 2007
    [104]Gong M, Liu X, Tremblay J, et al. Sulfur-tolerant anode materials for solid oxide fuel cell application[J]. Journal of Power Sources,2007,168(2):289-298
    [105]Choi Y M, Compson C, Lin M C, et al. A mechanistic study of H2S decomposition on Ni- and Cu-based anode surfaces in a solid oxide fuel cell[J]. Chemical Physics Letters,2006,421:179-183
    [106]Godickemeier M, Sasaki K, Gauckler L J. Electrechemical characteristics of cathodes in solid oxide fuel cells based on ceria electrolytes[J]. Journal of Electrochemical Society,1997,144(5):1636-1646
    [107]Godickemeier M, Gauckler L J. Engineering of solid oxide fuel cells with ceria-based electrolytes[J]. Journal of the Electrochemical Society,1998,145(2):414-421.
    [108]Kudo T, Obayashi H. Mixed electrical conduction in the fluorite-type Ce1-xGdxO2-x/2[J]. Journal of the Electrochemical Society,1976,123(3):415-419
    [109]Pujare N U, Semkow K W, Sommells AF. A Direct H2S/Air Solid Oxide Fuel Cell. J Electrochem Soc 1987; 134(10): 2639-2640
    [110]Bebelis S, Makri M, Buekenhoudt A, et al. Electrochemical activation of catalytic reactions using anionic, cationic and mixed conductors[J]. Solid State Ionics,2000,129(1-4):33-4.6
    [111]Sotiropouloua D, Yiokaria C, Vayenasa C G, et al. An X-ray photoelectron spectroscopy study of zirconia-supported Mo and Ni-Mo hydrodesulfurization catalysts[J]. Applied Catalysis A:General, 1999,183(1):15-22
    [112]Pasadakis N, Yiokari C, Varotsis N, et al. Characterization of hydrotreating catalysts using the principal component analysis[J]. Applied Catalysis A:General,2001,207(1-2):333-341
    [113]Vayenas C G, Tsiplakides D. On the work function of the gas-exposed electrode surfaces in solid state electrolyte cells[J]. Surface Science,2000,467(1-3):23-34
    [114]Kaloyannis A, Vayenas C G. Non-Faradaic electrochemical modification of catalytic activity:ethane oxidation on Pt[J]. Journal of Catalysis,1997,171 (1):148-159
    [115]Yentekakis I, Vayenas C. Chemical cogeneration in solid oxide fuel cells:The oxidation of H2S to SO2[J]. Journal of the Electrochemical Society,1989,136:996-1002
    [116]Liu M, He P, Luo J, et al. Performance of a solid oxide fuel cell utilizing hydrogen sulfide as fuel[J]. Journal of Power Sources,2001,94:20-25
    [117]Peterson D, Winnick J. Utilization of hydrogen sulfide in an intermediate-temperature ceria-based solid oxide fuel cell[J]. Journal of the Electrochemical Society,1998,145:1449-1453
    [118]Nagel F P, Schildhauer T J, Sfeir J, et al. The impact of sulfur on the performance of a solid oxide fuel cell (SOFC) system operated with hydrocarboneous fuel gas[J]. Journal of Power Sources,2009, 189:1127-1131
    [119]Twigg M V. Catalyst handbook[M], Wolfe Publishing Ltd., Frome, England,1989
    [120]Hennings U, Brune M, Reimert R. Die schwefelproblematik bei der brenn gas bereitstellung fur erdgasbetriebene brennstoffzellen[J]. G W F Gas/Erdas,2004,145:92-97
    [121]Marina O, Pederson L R, Edwards D J, et al. Arsenic and sulfur impurities[C]. in:Proceedings of the 8th Annual SECA Workshop, San Antonio, United States of America,2007
    [122]Arnstein N. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases[D]. Master's Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2005
    [123]Aguilar L, Zha S, Cheng Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels[J]. Journal of Power Sources,2004,135:17-24
    [124]Matsuzaki Y, Isamu Y. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration[J]. Solid State Ionics,2000, 132:261-269
    [125]Brightman E, Ivey D G, Brett D J L, et al. The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes[J]. Journal of Power Sources,2011,196(17):7182-7187
    [126]Kim H, Vohs J M, Gorte R J. Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell[J]. Chemical Communications,2001,2334-2335
    [127]He H, Gorte R J, Vohs J M. Highly sulfur tolerant Cu-ceria anodes for SOFCs[J]. Electrochemical and Solid-State Letters,2005,8:A279-A280
    [128]Geyer J, Kohlmuller H, Landes H, et al. in Proceedings of the 5th International Symposium on Solid Oxide Fuel Cells, Electrochemical Society, Pennington, NJ,1993,97-40:585
    [129]Dees D, Balachandran U, Doris S, et al. The 1st international symposium on solid oxide fuel cells, The Electrochemical Society Proceedings,89(11):317
    [130]Li T S, Wang W G. The mechanism of H2S poisoning Ni/YSZ electrode studied by impedance spectroscopy[J]. Electrochemical and Solid-State Letters,2011,14(3):B35-B37
    [131]Pakulska M M, Grgicak C M, Giorgi J B. The effect of metal and support particle size on NiO/CeO2 and NiO/ZrO2 catalyst activity in complete methane oxidation[J]. Applied Catalysis A,2007, 332:124-129
    [132]Grgicak C M, Pakulska M M, OBrien J S, et al. Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S[J]. Journal of Power Sources,2008,183:26-33
    [133]Yates C, Winnick J. Anode materials for a hydrogen sulfide solid oxide fuel cell[J]. Journal of the Electrochemical Society,1999,146:2841-2844
    [134]Wang S, Jiang Y, Zhang Y, et al. Electrochemical performance of mixed ionic-electronic conducting oxide as anode for solid oxide fuel cell[J]. Solid state Ionics,1999,120(1-4):75-84
    [135]钟理,张腾云,Wei G L,等.H2S燃料电池用质子传导膜及电池性能[J].高校化学工程学报,2004,18(2):208-211
    [136]钟理,陈建军.固体氧化物质子传导膜H2S燃料电池[J].化工学报,2004,10(55):1732-1735
    [137]Zhong L, QI M, WEI G L, et al. An intermediate-temperature H2S fuel cell with a Li2SO4-based proton-conducting membrane[J]. Chinese Journal of Chemical Engineering,2006,14(1):51-55
    [138]Zhong L, Wei G L, Luo J L, et al. Investigation of H2S solid oxide fuel cells with a Li2SO4-based proton-conducting membrane[J]中山大学学报(自然科学版),2005,44(2):61-65
    [139]Chen J J, Zhong L, Wei G L, et al. A solid oxide fuel cell with H2S as the fuel[J]华南理工大学学报(自然科学版),2004,32(3):1-4
    [140]Liu S, Rauch W, Burke A. et al. in Proceedings of the electrochemical society, PV-2002-26,2003, p 113
    [141]Wang S, Liu M, Winnick J. The solubilities of Ni and Co ions are also considerable in the carbonate electrolytes[J]. Journal of Solid State Electrochemistry,2001,5:188-195
    [142]Aguilar L, Zha S, Li S. et al. Sulfur-tolerant materials for the hydrogen sulfide SOFC[J]. Electrochemical and Solid-State Letters,2004,7:A324-A326
    [143]Cheng Z, Zha S, Aguilar L, et al. Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate[J]. Solid State Ionics,2005,176:1921-1928
    [144]Cheng Z, Zha S, Aguilar L, et al. A solid oxide fuel cell running on H2S/CH4 fuel mixtures[J]. Electrochemical and Solid-State Letters,2006,9:A31-A33
    [145]Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high temperature fuel cells[J]. Nature, 2004,3:17-27
    [146]Jiang S P, Chen X J,Chan S H, et al. La0.75Sr0.25Cr0.5Fe0.5O3-δ/YSZ composite anodes for methane oxidantion reaction in solid oxide fuel cells[J]. Solid State Ionics,2006,177:149-157
    [147]Kawano M, Hashino K, Yoshida H, et al. Synthesis and characterizations of composite particles for solid oxide fuel cell anodes by spray pyrolysis and intermediate temperature cell performance[J]. Journal of Power Source,2005,152:196-199
    [148]Zha S, Cheng Z, Liu M. A sulfur-tolerant anode material for SOFCs Gd2Ti1.4Mo0.607[J]. Electrochemical and Solid-State Letters,2005,8:A406-A408
    [149]Mukundan R, Brosha E L, Garzon F H. Sulfur tolerant anodes for SOFCs[J]. Electrochemical and Solid-State Letters,2004,7:A5-A7
    [150]Lu X C, Zhu J H. Amorphous ceramic material as sulfur-tolerant anode for SOFC[J]. Journal of the Electrochemical Society,2008,155:B1053-B1057
    [151]Chen X J, Liu Q L, Chan S H. et al. Sulfur tolerance and hydrocarbon stability of Lao.75Sro.25Cro.5Mn0.5O3/Gd0.2Ce0.8O1.9 composite anode under anodic polarization[J]. Journal of the Electrochemical Society,2007,154:B1206-B1210
    [152]Xu Z R, Luo J L, Chuang K T, et al. LaCrO3-VOx-YSZ anode catalyst for solid oxide fuel cell using impure hydrogen[J]. The Journal of Physical Chemistry C,2007,111:16679-16685
    [153]Danilovic N, Luo J L, Chuang K T, et al. Ce0.9Sr0.1VOx (x=3,4) as anode materials for H2S-containing CH4 fueled solid oxide fuel cells[J]. Journal of Power Sources,2009,192:247-257
    [154]Danilovic N, Luo J L, Chuang K T, et al. Effect of substitution with Cr3+ and addition of Ni on the physical and electrochemical properties of Ce0.9Sr0.1VO3 as a H2S-active anode for solid oxide fuel cells[J]. Journal of Power Sources,2009,194:252-262
    [155]Barbucci A, Carpanese M, Reverberi A P, et al. Influence of electrode thickness on the performance of composite electrodes for SOFC[J]. Journal of Applied Electrochemistry,2008,38:939-945
    [156]Dokiya M. SOFC system and technology[J]. Solid State Ionics,2002,152-153:383-392
    [157]谭文轶.H2S燃料电池阳极/电解质膜的制备及其脱硫过程研究[D].博士学位论文,南京:南京理工大学,2006
    [158]Yokokawa H, Sakai N, Kawada T, et al. Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials[J]. Solid State Ionics,1992,52:43-56
    [159]Anderson H U, Tietz F. High temperature solid oxide fuel cells:fundamentals, design, and applications[M]. Elsevier, Oxford, New York,2003,174
    [160]Eguchi K, Akasaka N, Mitsuyasu H, et al. Process of solid state reaction between doped ceria and zirconia[J]. Solid State Ionics,2000,135(1-4):589-594
    [161]Wu W C, Huang J T, Chiba A. Synthesis and properties of samaria-doped ceria electrolyte for IT-SOFCs by EDTA-citrate complexing method[J]. Journal of Power Sources,2010,195:5868-5874
    [162]Futamata M. A computer-controlled measurement system for electrical conductivity using the van der pauw method at various temperatures[J]. Measurement Science and Technology,1992, 3:919-921
    [163]Zhang T S, Ma J, Chen Y Z, et al. Different conduction behaviors of grain boundaries in Si02-containing 8YSZ and CGO20 electrolytes[J], Solid State Ionics,2006,177:1227-1235
    [164]Takahara I, Chang W C, Mimura N, et al. Promoting effects of CO2 on dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst[J]. Catalysis Today,1998,45:55-59
    [165]鲁尼安W R.半导体测量和仪器[M].上海:上海利科学技术出版社,1980
    [166]Ding X, Liu Y, Gao L, et al, Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method[J]. Journal of Alloys and Compounds,2008,458:346-350
    [167]Kawada T, Yokokawa H. in:Nowotny J, Sorrell C C (Eds.).Key Engineering Materials[M].1996, 125-126:205
    [168]Takahara I, Chang W C, Mimura N, et al. Promoting effects of CO2 on dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst[J]. Catalysis Today,1998,45:55-59
    [169]Stevenson D A, Jiang N, Buchanan R M, et al. Characterization of Gd, Yb and Nd doped barium cerates as proton conductors[J]. Solid State Ionics,1993,62(3-4):279-285
    [170]Kittel C. Introduction to Solid State Physics[C].8th, Wiley, Berkley, CA,2005
    [171]夏正才,唐超群La1-xSrxMnO3|阴极材料的导电机理研究[J].物理学报,1999,48(8):1518-1522
    [172]Weber W J, Griffin C W, Bates L. Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3[J]. Journal of American Ceramic Society,1987,70(4):265-270
    [173]Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J]. Journal of Fluorine Chemistry,2005,126:69-77
    [174]韩维屏,等著.催化化学导论[M].第一版,北京:科学出版社,2003,297-298
    [175]Mitterdorfer A, Gauckler L J. La2Zr2O7 formation and oxygen reduction kinetic of the La0.85Sr0.15MnO3, O2(g)/YSZ system[J]. Solid State Ionics,1998,111:185-218
    [176]哈根穆勒等著,陈立泉等译.固体电解质,一般原理、特征、材料和应用[M].北京:科学出版社,1984
    [177]Murray E P, Barnett S A. (La,Sr)MnO3-δ-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells[J]. Solid State Ionics,2001,143:265-273
    [178]Irvine J T S, Sinclair D C, West A R. Electroceramics:characterization by impedance spectroscopy[J]. Advanced Materials,1990,2:132-138
    [179]于洁.固体氧化物燃料电池钙钛矿型复合氧化物阴极材料的研究[D].博士学位论文.昆明:昆明理工大学,2009
    [180]Kang M, Park E D, Kim J M, Yie J E. Manganese oxide catalysts for NOx redunction with NH3 at low temperatures[J]. Applied Catalysis A,2007,327:261-269
    [181]Yu D, Liu Y, Wu Z, B. Screening study of transition metal oxide catalysts supported on ceria-modified titania for catalytic oxidation of toluene[J]. J Zhejiang Univ-Sci A (Appl Phys & Eng), 2011,12(6):461-469
    [182]白玉兰,徐红彬,张懿,等.FTIR和XPS对含低价Cr混合物物相分析的应用研究[J].光谱学与光谱分析,2007,127(14):675-678
    [183]Yim S D, Nam I S. J. Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene[J]. Journal of Catalysis,2004,221(2):601-611
    [184]Liu B, Terano M. Investigation of the physico-chemical state and aggregation mechanism of surface Cr species on a phillips CrOx/SiO2 catalyst by XPS and EPMA[J]. Journal of Molecular Catalysis A: Chemical,2001,172:227-240
    [185]Rao J M, Sivaprasad A, Rao P S, et al. A comparative study of bulk and supported chromia catalysts for the fluorination of trichloroethylene[J]. Journal of Catalysis,1999,184:105-111
    [186]Liu X, Su W, Lu Z, et al. Mixed valence state and electrical conductivity of La1-xSrxCrO3[J]. Journal of Alloys and Compounds,2000,305:21-23
    [187]Tuller H L. Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: impact and control[J]. Solid State Ionics,1997,94:63-74
    [190]Zhang K, Ge L, Ran R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Materialia,2008,56:4876-4889
    [191]Park J, Zou J, Yoon H, et al. Electrochemical behavior of Bao.5Sr0.5Co0.2-xZnxFe0.8O3-δ (x=0-0.2) perovskite oxides for the cathode of solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2011,36:6184-6193
    [192]杨辉,卢文庆.应用电化学[M].第一版.北京:科学出版社,2001:55-70
    [193]张义煌,江义,卢白桂,等.阳极负载型SOFC阳极基底厚度对性能的影响[J].电化学,2000,6(3):284-290
    [194]单耕.固体氧化物燃料电池阳极结构研究[D].硕十学位论文.大连:大连理工大学,2005
    [195]毛宗强.燃料电池[M].北京:化工出版社,2005
    [196]Wu Z B, Jin R B, Liu Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications,2008,9(13):2217-2220
    [197]Gao X, Jiang Y, Zhong Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials,2010,174(1-3):734-739
    [198]Yu D Q, Liu Y, Wu Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catalysis Communications,2010,11:788-791
    [199]Xu R, Wang X, Wang D S, et al. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO[J]. Journal of Catalysis,2006,237(2):426-430
    [200]Trevino H, Lei G D, Sachtler W M H. CO hydrogenation to higher oxygenates over promoted rhodium:nature of the metal-promoter interaction in Rhmn/NaY[J]. Journal of Catalysis,1995, 154(2):245-252
    [201]Kapteijn F, Vanlangeveld A D, Moulijn J A, et al. Alumina-supported manganese oxide catalysts:1. characterization:effect of precursor and loading[J]. Journal of Catalysis,1994,150(1):94-104
    [202]郑尧.新型固体氧化物燃料电池阴极材料La0.8Sr0.2Sc0.1Mn0.9O3的性能优化与氧还原机理[D].硕十学位论文,南京:南京工业大学,2009
    [203]张晓花.中温H2S固体氧化物燃料电池的制备及其性能研究[D].硕士学位论文.南京:南京理工大学,2009
    [204]Mori M, Sammes N M. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method[J]. Solid State Ionics,2002, 146:301-312
    [205]张磊磊.双钙钛矿固体氧化物燃料电池阳极材料的性能研究[D].博士学位论文.吉林:吉林大学凝聚态物理,2010
    [206]Gu H X, Zheng Y, Ran R, et al. Synthesis and assessment of La0.8Sr0.2ScyMn1-yO3-δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte[J]. Journal of Power Sources,2008, 183:471-478
    [207]张洪,刘银春,黄志高.稀土Mn氧化物中的电子双交换机制[J].化学工程与装备,2007,6:39-43
    [208]孙良成,李德辉,李胜利,等.锂对LaCaCrO3稳定性及热膨胀的影响[J].稀有金属,2007,31(2):201-205
    [209]赵雷洪,刘光宇,罗孟飞,等CexTh1-xO2因溶体的制备和表征[J].中国稀土学报,2004,22(2):288-291
    [210]Zhong ben Yi xiong. Inorgan ic and coordination compounds of in frared and Raman spectroscopy[M]. Part B, Sixth Edition. A JOHN WILEY & SONS, INC., Publication.2009,144
    [211]Heuveln F H, Bouwmeester H J M. Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia Ⅱ electrode kinetics[J]. Journal of the Electrochemical Society,1997,144:134-140
    [212]Leng Y J, Chan S H, Khor K A, et al. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte[J]. International Journal of Hydrogen Energy,2004, 29:1025-1033
    [213]Lv S Q, Long G H, Ji Y, et al. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds,2011, 509(6):2824-2828
    [214]Romeo M, Bak K, Fallah J E, et al. XPS study if the reaction of cerium dioxide[J]. Surface and Interface Analysis,1993,20(20):508-512
    [215]McBride J R, Hass K C, Poindexter B D, et al. Raman and X-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd, Eu, Gd, and Tb[J]. Journal of Applied Physics,1994,76:2435-2441
    [216]Zunica M, Chevallier L, Radojkovic A, et al. Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni-BaCe0.9Y0.1O3-δ anodes[J]. Journal of Alloys and Compounds,2011,509:1157-1162
    [217]1m J M, You H J, Yoon Y S, et al. Synthesis of nano-crystalline Gd0.1Ce0.9O2-x for IT-SOFC by aerosol flame deposition[J]. Ceramics International,2008,34:877-881
    [218]赵学军.中温质子型H2S-SOFC阳极和电解质的制备及性能研究[D].硕十学位论文,南京:南京理工大学
    [219]Souza E C C, Muccillo E N S. Effect of solvent on physical properties of samaria-doped ceria prepared by homogeneous recipitation[J]. Journal of Alloys and Compounds,2009,473:560-566
    [220]Charrier C I, Pagnier T, Lucazeau G. Raman spectroscopy of perovskite-type BaCexZr1-xO3(0    [221]Li J X, Luo J L, Chuang K T, et al. Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2[J]. Electrochimica Acta,2008,53(10):3701-3707
    [222]Yang L, Wang S Z, Blinn K, et al. Enhanced sulfur and coking tolerance of a nixed Ion conductor for SOFCs:BaZr.1Ce0.7Y0.2-xYbxO3-δ[J]. Science,326:126-129
    [223]Chen H, Xu Z R, Peng C. et al. Proton conductive YSZ-phosphate composite electrolyte for H2S SOFC[J]. Ceramics International,2010,36:2163-2167
    [224]Tan W Y, Zhong Q, Miao M S, et al. H2S Solid oxide fuel cell based on a modified barium cerate perovskite proton conductor[J]. Ionics,2009,15:385-388
    [225]张晓花,钟秦SOFC耐硫阳极La0.7Sr0.3Cr1-xFexO3-δ的制备及表征[J].化工进展,2009,28(5):788-792
    [226]Quintana P, West A R. Conductivity of lithium gallium silicates[J]. Solid State Ionics,1987, 23(3):179-182Au C T, Zhang W D, Wan H L. Preparation and characterization of rare earth orthovanadates for propane oxidative dehydrogenation[J]. Catalysis Letters,1996,37:241-246
    [228]Li K T, Chi Z H. Selective oxidation of hydrogen sulfide on rare earth orthovanadates and magnesium vanadates[J]. Applied Catalysis A,2001,206:197-203Bellakki M, Baidya T, Shivakumara C N.et al. Synthesis, characterization, redox and photocatalytic properties of Ce1-xPdxVO4 (0

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700