用户名: 密码: 验证码:
CBTC车地通信系统跨层设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为轨道交通系统的中枢和大脑,列车运行控制系统控制列车运行速度和方向,确保列车间保持安全的间隔,在保证列车行车安全的前提下提高轨道交通系统的效率。随着通信与计算机技术的发展,列车运行控制系统发生了根本变化,逐渐由传统的基于轨道电路的列车控制向基于通信的列车控制(Communication Based Train Control, CBTC)方向发展。
     CBTC系统中的车地通信系统将车载和地面控制设备联系在一起,保障列车高效、安全运行。基于IEEE802.11协议簇的WLAN,由于其在频段开放、安装维护方便、标准开放、商用现成品成熟等方面的优势,已经广泛被城市轨道交通CBTC车地通信系统所采用。然而,由于基于IEEE802.11协议簇的WLAN并不是为移动环境下的数据传输所设计的,其作为CBTC车地通信系统时,当列车离开一个AP(Access Point)的覆盖范围进入另一个AP的覆盖时,将会有一个切换过程。实验和仿真结果都表明,这一切换过程可能导致几百毫秒甚至几秒的通信延迟。这么长的通信延迟将会影响高密度行车时CBTC的服务质量(Qaulity of Service, QoS)。
     本文针对基于WLAN的CBTC车地通信系统中存在的切换异常问题,设计了更加适合于车地通信环境的通信系统协议栈。通过跨层设计方法,首先映射CBTC系统中随机的实际信道条件和高层的服务质量之间的关系,用随机控制优化的方法计算得到车地通信系统中最优的切换决策策略和通信参数自适应策略。最优策略优化了车地通信系统的性能,提高了CBTC的服务质量。同时,本文将CBTC车地通信系统的跨层设计方法运用于城市轨道交通乘客信息系统,通过映射乘客信息系统中传输视频的服务质量与底层的信道条件,随机控制优化得到应用层的参数自适应策略与切换决策策略,最终提高系统中视频的传输质量。
     论文的主要创新点如下:
     1.设计了基于具有MIMO性能WLAN的CBTC车地通信系统协议栈。利用跨层设计的方法,将系统中的切换决策问题和MIMO参数自适应问题建模成一个半马尔科夫决策过程。CBTC车地通信系统的信道被建模成一个有限状态的马尔科夫过程,其中信道的状态转移概率从实际的现场测试数据中获得。
     2.与现有的通信系统跨层设计不同的是,本文将CBTC系统中列车控制器的线性二次型成本函数(Linear Quadratic Cost Function)作为切换过程中的一个性能指标,将优化列车控制系统的性能作为通信系统的优化目标。在基于具有MIMO性能WLAN的CBTC车地通信系统中,根据列车控制的优化目标,MIMO系统中分集增益和复用增益之间的折中得到了优化设计。
     3.设计了基于传输层SCTP和IEEE802.11p的车地通信系统以提高CBTC车地通信的可用性和低延迟特性。利用跨层设计的思想,我们将该车地通信系统中的切换决策问题建模成一个半马尔科夫决策过程。半马尔科夫决策过程的优化目标是求出最优的切换决策策略以最小化SCTP通信延迟以及最大化SCTP的传输带宽。深入的仿真表明,相比于现有的基于UDP与IEEE802.11g的车地通信系统,我们提出的切换机制能显著提高系统切换性能。仿真结果同样表明,我们提出的基于SMDP的切换决策算法能显著提高SCTP带宽。
     4.作为跨层设计方法应用的扩展。本文针对乘客信息系统(Passenger Information System, PIS)中频繁切换造成的对视频传输质量的影响,提出了基于IEEE802.11p的城市轨道交通PIS车地视频传输系统,喷泉编码(Fountain Code)作为该系统应用层的前向纠错编码方案。利用跨层设计的方法,我们将所提出的车地视频传输系统中的切换决策问题和应用层参数自适应问题建模成半马尔科夫决策过程。半马尔科夫决策过程的优化目标是求出最优的切换决策策略和应用层参数自适应策略以减小视频传输失真。深入的仿真结果表明,我们所提出的跨层优化设计算法能显著提高PIS中的视频传输质量。
As the center and brain of a rail transit system, the train control system controls the train's moving speed and direction, and guarantees the safe distance between trains. In the premise of train operation safety, train control systems also improve the rail transit operation efficiency. With the development of communication and computer techniques, train control systems have radically changed. They are gradually developing from Track Based Train Control (TBTC) to Communication Based Train Control (CBTC).
     Train-ground communication systems are primarily designed to connect each com-ponent of CBTC systems, and its performance is essential to guarantee the high safety and efficiency of train operation. Due to the open frequency, open standard, easy instal-lation, low maintenance costs, and sufficient available commercial-off-the-shelf (COTS) equipment, IEEE802.11series based WLAN has been widely adopted as the urban rail transit CBTC train ground communication systems. However, IEEE802.11series stan-dard is not designed for train moving environments. Particularly, when a train moves away from the coverage of a WLAN access point (AP) and enters the coverage of an-other AP along the railway, a handoff procedure occurs. Both experiment and simulation results show that this handoff process may result in long communication latency. This long latency will have a considerable influence on the Quality of Service (QoS) of CBTC systems with high train density.
     Aiming to solve the long latency problem when abnormal handoff happens, in this thesis, we design more suitable communication stacks for train ground communication systems. With the proposed cross-layer design approach, we first map the stochastic channel state to the high layer QoS. The optimal handoff policy and communication pa-rameters adaption policy are obtained from stochastic control optimization. The optimal policy optimizes the train ground communication system performance, and improves the CBTC system QoS. Meanwhile, we apply the cross-layer design approach to urban transit passenger information system. Through mapping the stochastic channel state to the video service quality, the application layer parameters adaption policy and handoff policy are obtained by stochastic control optimization. The obtained policy can improve the video transmission quality.
     The innovations of the thesis are as follows:
     1). We design a CBTC train-ground communication system protocol stack based on MIMO-enabled WLANs. With the cross-layer design approach, the handoff decision and MIMO parameters adaption problem is modeled as a Semi-Markov Decision Process. The wireless channel is modeled as a finite-sate Markov chain, and the channel state transition probability matrix is derived from the data measured in real field test.
     2). Unlike the existing works, linear quadratic cost for the train controller in CBTC systems is considered as the performance measure in the handoff design. We take the control performance as the optimization objective in communication system. In MIMO-enabled WLANs based train ground communication system, with the control perfor-mance optimization objective, the tradeoff between MIMO diversity gain and multiplex-ing gain is optimized according to the train control performance.
     3). We design a seamless handoff train ground communication system based on SCTP and IEEE802.11p to provide high link availability in CBTC systems. With the cross-layer design approach, we formulate the handoff decision problem as a stochas-tic semi-Markov decision process. Maximizing the SCTP throughput and minimizing the handoff latency are the objectives in the SMDP model. Extensive simulation results are presented. Compared with the existing system based on IEEE802.11g and UDP, it is illustrated that the proposed system can significantly improve SCTP throughput and achieve seamless handoff in CBTC systems.
     4). As an extension to our cross-layer design application. We propose an urban rail Passenger Information System (PIS) train-ground video communication network based on IEEE802.11p, and fountain codes are used as the FEC scheme in application layer. With the cross-layer design approach, we formulate the handoff decision and application layer parameters adaption problem as a stochastic semi-Markov decision process. Min-imizing the end-to-end total distortion is the objective in our SMDP model. Extensive simulation results are presented. It is illustrated that the proposed optimization algorithm can significantly improve the end-to-end video quality in urban rail PIS systems.
引文
[1]宁滨.轨道交通系统中的列车运行追踪模型及交通流特性研究[博士学位论文].北京:北京交通大学,2005.
    [2]IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements [S]. IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999),2004.1-45.
    [3]Pascoe R D, Eichorn T N. What is communication-based train control [J]. IEEE Veh. Tech. Magazine,2009,4(4):16-21.
    [4]TianHua X, Tao T, ChunHai G. Dependability analysis of the data communication system in train control system [J]. Science in China,2009,52-9:2605-2618.
    [5]Craven P. Architecture of an ATCS network simulator [C]. Proceedings of Electro/Information Technology,2008.310-315.
    [6]Hasegawa Y. Computer and Radio Aided Train Control System (CARAT) [J]. Japanese Rail-way Engineering,1995,35(2):14-16.
    [7]Hasegawa Y. Development steps in application of CARAT [J]. QR of RTRI,1995,36(36):4-7.
    [8]Lindsey R. Positive train control in North America [J]. Vehicular Technology Magazine, IEEE, 2009,4(4):22-26.
    [9]范丽君ETCS技术在列控系统中应用的探讨[J].中国铁道科学,2003,24:100-102.
    [10]Pascoe R, Eichorn T. What is communication-based train control? [J]. Vehicular Technology Magazine, IEEE,2009,4(4):16-21.
    [11]CBTC Projects [E]. www.tsd.org/cbtc/projects,2005.
    [12]Sullivan T. CBTC radios:What to do? Which way to go? [J]. Railway Age,2005.
    [13]Nishinaga E, Evans J, Mayhew G. Wireless advanced automatic train control [C]. Proceedings of Railroad Conference,1994.31-46.
    [14]IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [S]. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999),2007.1-1184.
    [15]Bellavista P, Cinque M, Cotroneo D, et al. Self-Adaptive Handoff Management for Mobile Streaming Continuity [J]. IEEE Trans. Network and Service Management,2009,6(2):80-94.
    [16]Mishra A, Shin M, Arbaugh W. An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process [J]. SIGCOMM Comput. Commun. Rev.,2003,33(2):93-102.
    [17]Shin S, Forte A G, Rawat A S, et al. Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs [C]. Proceedings of the second international workshop on Mobility manage-ment and wireless access protocols,2004.19-26.
    [18]Ramani I, Ramani I. SyncScan:Practical Fast Handoff for 802.11 Infrastructure Networks[C]. Proceedings of IEEE Infocom'05, Seoul, Korea,2005.675-684.
    [19]Shin M, Mishra A, Arbaugh W A. Improving the latency of 802.11 hand-offs using neighbor graphs[C]. Proceedings of MobiSys'04, Boston, USA,2004.70-83.
    [20]Brik V, Mishra A, Banerjee S. Eliminating handoff latencies in 802.11 WLANs using Multiple Radios:Applications, Experience, and Evaluation [C]. Proceedings of Internet Measurement Conference, Berkeley,USA,2005.299-304.
    [21]Adya A, Bahl P, Padhye J, et al. A multi-radio unification protocol for IEEE 802.11 wireless networks [C]. Proceedings of BROADNETS'04, San Jose, USA,2004.344-354.
    [22]Lin H P, Juang R T, Lin D B. Validation of an improved location-based handover algorithm using GSM measurement data [J]. Mobile Computing, IEEE Transactions on,2005,4(5):530-536.
    [23]EN 50159-1. Railway applications-Communication, signaling and processing systems, part 1:Safety related communication in closed transmission systems [S]. CENELEC,2001.
    [24]EN 50159-2. Railway applications-Communication, signaling and processing systems, part 2:Safety related communication in open transmission systems [S]. CENELEC,2001.
    [25]SUBSET-037 EURORADIO FIS [S]. Unisig,11,2005.
    [26]A Z, G H. Towards modeling and evaluation of ETCS real-time communication and operation [J]. Journal of Systems and Software,2005,77:47-54.
    [27]H H, J D N. A Comparative Reliability Analysis of ETCS Train Radio Communications [R].
    [28]ETCS/GSM-R Quality of Service Operational Analysis, Reference EEIG:04E117[R]. ERTMS UsersGroup,2005.
    [29]徐田华,赵红礼,唐涛.基于有色Petri网的ETCS无线通信可靠性分析[J].铁道学报,2008,1:42-46.
    [30]徐田华,唐涛.基于有色Petri网的ETCS通信系统与列车间隔分析[J].系统仿真学报,2007,19:5038-5041.
    [31]Craven P. A brief look at railroad communication vulnerabilities [C]. Proceedings of IEEE Conference on Intelligent Transportation Systems,2004.245-249.
    [32]Craven P, Craven S. Security of ATCS wireless railway communications [C]. Proceedings of Rail Conference,2005.227-238.
    [33]Craven P V, Oman P. Modeling the NAJPTC network using NS-2 [J]. International Journal of Critical Infrastructure Protection,2008,1:29-36.
    [34]Bantin C, Siu J. Radio CBTC for the Las Vegas Monorail [C]. Proceedings of Urban Transport Ⅺ:Urban Transport and the Environment in the 21st Century,2005.95-103.
    [35]Bantin C C. DCS bandwidth requirements for CBTC and CCTV [J]. Computers in Railways Ⅸ,2004..
    [36]Kuun E. Open Standards for CBTC and CCTV Radio Based Communication [J]. Technical Forums of Alcatel,2004,2(1):99-108.
    [37]Racoms T. What industry and science say about 802.11 in mobile appliations [R].
    [38]Lundberg D, Gunningberg P. Feasibility Study of WLAN Technology for the Uppsala-Stock-holm Commuter Train [R].
    [39]Bai G, Williamson C. The Efects of Mobility on Wireless Media Streaming Performance [C]. Proceedings of Wireless Networks and Emerging Technologies (WNET),2004.
    [40]Vatn J. An Experimental Study of IEEE 802.11 b Handover Performance and Its Effect on Voice Traffic [R].
    [41]Mishra A, Shin M, Arbaush W. Context caching using neighbor graphs for fast handoffs in a wireless network [C]. Proceedings of IEEE Infocom'04, volume 1,2004.351-361.
    [42]Mishra A, Shin M H, Petroni J, et al. Proactive key distribution using neighbor graphs [J]. Wireless Communications, IEEE,2004,11 (1):26-36.
    [43]Pack S, Jung H, Kwon T, et al. A selective neighbor caching scheme for fast handoff in IEEE 802.11 wireless networks [C]. Proceedings of IEEE International Conference on Communica-tions, volume 5,2005.3599-3603.
    [44]Chen Y S, Chuang M C, Chen C K. DeuceScan:Deuce-Based Fast Handoff Scheme in IEEE 802.11 Wireless Networks [J]. Vehicular Technology, IEEE Transactions on,2008,57(2):1126-1141.
    [45]Jooris B, Schoutteet A, Vermeulen F, et al. Access network controlled fast handoff for stream-ing multimedia in WLAN [C]. Proceedings of Mobile and Wireless Communications Summit, 2007.1-5.
    [46]Srivastava V, Motani M. Cross-layer design:a survey and the road ahead [J]. Communications Magazine, IEEE,2005,43(12):112-119.
    [47]Shakkottai S, Rappaport T, Karlsson P. Cross-layer design for wireless networks [J]. Commu-nications Magazine, IEEE,2003,41 (10):74-80.
    [48]Akyildiz I, Xie J, Mohanty S. A Survey on Mobility Management in Next Generation All-IP Based Wireless Systems [J]. IEEE Wireless Comm.,2004,11(4):16-28.
    [49]Zhu F, McNair J. Cross layer design for mobile IP handoff [C]. Proceedings of IEEE confer-ence on Vehicular Technology, volume 4,2005.2255-2259.
    [50]Ma L, Yu F, Leung V, et al. A new method to support UMTS/WLAN vertical handover using SCTP [J]. Wireless Communications, IEEE,2004,11(4):44-51.
    [51]Hsieh R, Zhou Z, Seneviratne A. S-MIP:a seamless handoff architecture for mobile IP [C]. Proceedings of IEEE INFOCOM'03, volume 3,2003.1774-1784.
    [52]Akyildiz I, Wang W. A Predictive User Mobility Profile for Wireless Multimedia Networks [J]. IEEE/ACM Trans. Networking,2004,12(6):1021-1035.
    [53]Buddhikot M, Chandranmenon G, Han S, et al. Design and implementation of a WLAN/cd-ma2000 interworking architecture [J]. Communications Magazine, IEEE,2003,41(11):90-100.
    [54]McNair J, Akyildiz I, Bender M. An inter-system handoff technique for the IMT-2000 system [C]. Proceedings of IEEE Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1,2000.208-216.
    [55]Mohanty S, Akyildiz I. A Cross-Layer (Layer 2+3) Handoff Management Protocol for Next-Generation Wireless Systems [J]. Mobile Computing, IEEE Transactions on,2006,5(10):1347-1360.
    [56]Liu X, Goldsmith A. Wireless communication tradeoffs in distributed control [C]. Proceedings of the 42nd IEEE Conference on Decision and Control, volume 1,2003.688-694.
    [57]Drew M, Liu X, Goldsmith A, et al. Networked Control System Design over a Wireless LAN [C]. Proceedings of the 44th IEEE Conference on Decision and Control,2005.6704-6709.
    [58]Goldsmith A, Chua S G. Variable-rate variable-power MQAM for fading channels [J]. Com-munications, IEEE Transactions on,1997,45(10):1218-1230.
    [59]Keller T, Hanzo L. Adaptive modulation techniques for duplex OFDM transmission [J]. Ve-hicular Technology, IEEE Transactions on,2000,49(5):1893-1906.
    [60]Zhou Z, Vucetic B, Dohler M, et al. MIMO systems with adaptive modulation [J]. Vehicular Technology, IEEE Transactions on,2005,54(5):1828-1842.
    [61]Laneman J, Wornell G. Distributed space-time-coded protocols for exploiting cooperative di-versity in wireless networks [J]. Information Theory, IEEE Transactions on,2003,49(10):2415-2425.
    [62]Zhang P, Jordan S. Cross layer dynamic resource allocation with targeted throughput for WCD-MA data [J]. Wireless Communications, IEEE Transactions on,2008,7(12):4896-4906.
    [63]Xie B, Zhou W, Zeng J. A Novel Cross-Layer Design with QoS Guarantee for WiMAX System [C]. Proceedings of Third International Conference on Pervasive Computing and Applications, volume 2,2008.835-840.
    [64]Wang C, Lin T. A Cross-Layer Link Adaptation Algorithm for IEEE 802.11 WLAN with Multiple Nodes [C]. Proceedings of IEEE Asia-Pacific Services Computing Conference,2008. 1162-1167.
    [65]Akyildiz I, Wang X. Cross-Layer Design in Wireless Mesh Networks [J]. Vehicular Technol-ogy, IEEE Transactions on,2008,57(2):1061-1076.
    [66]Yu Y, Giannakis G. Cross-layer congestion and contention control for wireless ad hoc networks [J]. Wireless Communications, IEEE Transactions on,2008,7(1):37-42.
    [67]Ji Z, Yang P, Zhou J, et al. Exploiting medium access diversity in rate adaptive wireless lans [C]. Proceedings of MobiCom'04, Philadelphia, PA, USA,2004.345-359.
    [68]Aquado M, Jacob E, Saiz P, et al. Railway signaling systems and new trends in wireless data communication [C]. Proceedings of IEEE VTC'2005-Fall, Dallas, TX,2005.
    [69]LI Z, YAN Z. Train-ground communication in CBTC based on 802.11b:Design and per-formance research [C]. Proceedings of WRI Int'l Conf. Commun. and Mobile Computing, Kunming, China,2009.368-372.
    [70]张勇.新型列控系统一移动自动闭塞条件下线路通过能力的理论分析及计算机仿真[博士学位论文].北京:北方交通大学,1998.
    [71]Bantin C. Mobile radio services for urban transport [J]. Urban Transport XII:Urban Transport and the Environment in the 21 st Century,2006,89:743-748.
    [72]Yu F, Krishnamurthy V. Effective bandwidth of multimedia traffic in packet wireless CDMA networks with LMMSE receivers-a cross-layer perspective [J]. IEEE Trans. Wireless Com-mun.,2006,5(3):525-530.
    [73]Tang J, Zhang X. Cross-Layer Resource Allocation Over Wireless Relay Networks for Quality of Service Provisioning [J]. IEEE J. Sel. Areas Commun.,2007,25(4):645-657.
    [74]Tang J, Zhang X. Cross-Layer Modeling for Quality of Service Guarantees Over Wireless Links [J]. IEEE Trans. Wireless Commun.,2007,6(12):4504-4512.
    [75]Yu F R, Sun B, Krishnamurthy V, et al. Application Layer QoS Optimization for Multimedia Transmission over Cognitive Radio Networks [J]. ACM/Springer Wireless Networks,2011, 17(2):371-383.
    [76]IEEE 802.11n Draft 4.0 [S].2008..
    [77]Zheng L, Tse D N C. Diversity and multiplexing:A fundamental tradeoff in multiple-antenna channels [J]. IEEE Trans. Inform. Theory,2003,49(5):1073-1096.
    [78]Park M, Choi S, Nettles S M. Cross-layer MAC design for wireless networks using MIMO [C]. Proceedings of IEEE Globecom'05,2005.
    [79]Toledo A L, Wang X. TCP performance over wireless MIMO channels with ARQ and packet combining [J]. IEEE Trans. Mobile Comput.,2006,5(3):208-223.
    [80]Lee J, Chiang M, Calderbank A R. Price-based distributed algorithms for rate-reliability trade-off in network utility maximization [J]. IEEE J. Sel. Areas Commun.,2006,24(5):962-976.
    [81]Lin Y, Wong V. Cross-Layer Design of MIMO-enabled WLANs With Network Utility Maxi-mization [J]. IEEE Trans. Veh. Tech.,2009,58(5):2443-2456.
    [82]Puterman M. Markov Decision Processes:Discrete Stochastic Dynamic Programming [M]. John Wiley,1994.
    [83]Feinberg E A, Schwartz A, (eds.). Handbook of Markov Decision Processes [M]. Kluwer, 2002.
    [84]Zhao Q, Tong L, Swami A, et al. Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework [J]. IEEE J. Sel. Areas Commun.,2007, 25 (5):589-600.
    [85]Yu F, Krishnamurthy V, Leung V C M. Cross-Layer Optimal Connection Admission Control for Variable Bit Rate Multimedia Traffic in Packet Wireless CDMA Networks [J]. IEEE Trans. Signal Proc.,2006,54(2):542-555.
    [86]Wang X, Poor H. Wireless Communication Systems:Advanced Techniques for Signal Recep-tion. Upper Saddle River:Prentice Hall,2003.
    [87]Tang J, Zhang X. Cross-Layer Design of Dynamic Resource Allocation of Diverse QoS Guar-antees for MIMO-OFDM Wireless Networks [C]. Proceedings of IEEE International Sympo-sium on a World of Wireless, Mobile, and Multimedia Networks, Taormina, Italy,2005.
    [88]Zhou Y, Ng T S. Performance analysis on MIMO-OFCDM systems with multi-code transmis-sion [J]. IEEE Trans. Wireless Commun.,2009,8(9):4426-4433.
    [89]Green D B, Obaidat M S. An accurate line of sight propagation performance model for ad-hoc 802.11 wireless LAN (WLAN) devices [C]. Proceedings of IEEE ICC 02, New York, USA, 2002.3424-3428.
    [90]Babich F, Lombardi G, Valentinuzzi E. Variable order Markov modeling for LEO mobile satellite channels. Electron. Lett.,1999,35(8):621-623.
    [91]Babich F, Lombardi G. A measurement based Markov model for the indoor propagation chan-nel [C]. Proceedings of IEEE VTC'97, volume 1, Phoenix, AZ,1997.77-81.
    [92]Wang H S, Moayeri N. Finite-state Markov channel-a useful model for radio communication channels [J]. IEEE Trans. Veh. Tech.,1995,44(1):163-171.
    [93]Wang H S, Chang P C. On verifying the first-order Markovian assumption for a Rayleigh fading channel model [J]. IEEE Trans. Veh. Tech.,1996,45(2):353-357.
    [94]Pimentel C, Falk T H, Lisboa L. Finite-State Markov Modeling of Correlated Rician-Fading Channels [J]. IEEE Trans. Veh. Tech.,2004,53(5):1491-1501.
    [95]Guan Y L, Turner L F. Generalized FSMC model for radio channels with correlated fading [J]. IEE Proc. Commun.,1999,146(2):133-137.
    [96]Iskander C D, Mathiopoulos P T. Fast simulation of diversity Nakagami fading channels using finite-state Markov models [J]. IEEE Trans. Broadcasting,2003,49(3):269-277.
    [97]Gesbert D, Shafi M, Shiu D, et al. From theory to practice:an overview of MIMO space-time coded wireless systems [J]. IEEE J. Sel. Areas Commun.,2003,21(3):281-302.
    [98]IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements Part 11:Wire-less LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amend-ment 6:Wireless Access in Vehicular Environments [S]. IEEE Std 802.11p-2010,2010.1-51.
    [99]IEEE. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification: Medium Access Control (MAC) Enhancement for Quality of Service (QoS) [S].2003..
    [100]Yu F R, Wong V W S, Song J H, et al. Next generation mobility management:an introduction. Wiley Wireless Commun. and Mobile Comput.,2010. Online.
    [101]Ma L, Yu F R, Leung V C M. Performance Improvements of Mobile SCTP in Integrated Heterogeneous Wireless Networks [J]. IEEE Trans. Wireless Commun.,2007,6(10):3567-3578.
    [102]Stewart R. Stream Control Transport Protocol. IETF RFC4960,2007..
    [103]Wang F Y, Herget C, Zeng D. Guest Editorial Developing and Improving Transportation Sys-tems:The Structure and Operation of IEEE Intelligent Transportation Systems Society [J]. Intelligent Transportation Systems, IEEE Transactions on,2005,6(3):261-264.
    [104]Bohm A, Jonsson M. Handover in IEEE 802.11 p based delay sensitive vehicle-to-infrastructure communication [R]. Research Report, Halmstad University, Sweden,2007..
    [105]Messac A, Melachrinoudis E, Sukam C P. Aggregate Objective Functions and Pareto Fron-tiers:Required Relationships and Practical Implications. Optimization and Engineering,2000, 1(2):171-188.
    [106]Gadallah M H. On Muti-Objective Optimization Problem:Modeling Issues and Numerical Verification [C]. Proceedings of the 34th Int'l Conf. Computers and Industrial Eng., San Fran-cisco, USA,2004.635-640.
    [107]Qiu X, Chawla K. On the performance of adaptive modulation in cellular systems [J]. IEEE Trans. Commun.,1999,47(6):884-895.
    [108]Ali S, Leung V. Dynamic frequency allocation in fractional frequency reused OFDMA net-works. IEEE Trans. Wireless Commun.,2009,8(8):4286-4295.
    [109]Song G, Li Y. Cross-layer optimization for OFDM wireless networks-part Ⅰ:theoretical frame-work [J]. IEEE Trans. Wireless Commun.,2005,4(2):614-624.
    [110]Salkintzis A. Interworking techniques and architectures for WLAN/3G integration toward 4G mobile data networks [J]. Wireless Communications, IEEE,2004,11 (3):50-61.
    [111]Zografos K, Androutsopoulos K, Spitadakis V. Design and Assessment of an Online Passenger Information System for Integrated Multimodal Trip Planning [J]. Intelligent Transportation Systems, IEEE Transactions on,2009,10(2):311-323.
    [112]Girod B, Stuhlmueller K W, Link M, et al. Packet Loss Resilient Internet Video Streaming [C]. Proceedings of SPIE Visual Comm. and Image, San Jose, CA, USA,1999.833-844.
    [113]Cai H, Zeng B, Shen G, et al. Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams [J]. EURASIP J. on Appl. Signal,2006,2006:1-11.
    [114]Conklin G, Greenbaum G, Lillevold K, et al. Video coding for streaming media delivery on the Internet [J]. IEEE Trans. Circ. Syst. for Video Tech.,2001,11(3):269-281.
    [115]Srinivasan M, Chellappa R. Adaptive source-channel subband video coding for wireless chan-nels [J]. IEEE J. Sel. Areas in Comm.,1998,16(9):1830-1839.
    [116]He Z, Cai J, Chen C W. Joint source channel rate-distortion analysis for adaptive mode se-lection and rate control in wireless video coding [J]. IEEE Trans. Circ. Syst. for Video Tech., 2002,12(6):511-523.
    [117]Du H, Liu J, Liang J. Downlink scheduling for multimedia multicast/broadcast over mo-bile WiMAX:connection-oriented multistate adaptation [J]. IEEE Wireless Commun.,2009, 16(4):72-79.
    [118]Luo H, Ci S, Wu D, et al. Quality-driven cross-layer optimized video delivery over LTE [J]. IEEE Commun. Magazine,2010,48(2):102-109.
    [119]Tan A S, Aksay A, Akar G B, et al. Rate-distortion optimization for stereoscopic video stream-ing with unequal error protection [J]. EURASIP J. Appl. Signal Process.,2009,2009:1-14.
    [120]Byers J W, Luby M, Mitzenmacher M, et al. A digital fountain approach to reliable distribution of bulk data [C]. Proceedings of ACM SIGCOMM'98, New York, NY, USA:ACM,1998.56-67.
    [121]Wagner J P, Chakareski J, Frossard P. Streaming of Scalable Video from Multiple Servers using Rateless Codes [C]. Proceedings of IEEE Int'l Conf. on Multimedia and Expo,2006. 1501-1504.
    [122]Luby M, Gasiba T, Stockhammer T, et al. Reliable Multimedia Download Delivery in Cellular Broadcast Networks [J]. IEEE Trans. Broadcasting,2007,53(1):235-246.
    [123]Luby M, Watson M, Gasiba T, et al. Raptor codes for reliable download delivery in wireless broadcast systems [C]. Proceedings of IEEE CCNC, volume 1,2006.192-197.
    [124]Luby M. LT codes [C]. Proceedings of IEEE Symp. Foundations of Computer Science,2002. 271-280.
    [125]Wu D, Ci S, Wang H. Cross-Layer Optimization for Video Summary Transmission over Wire-less Networks [J]. IEEE J. Sel. Areas Commun.,2007,25(4):841-850.
    [126]Xiong H, Sun J, Yu S, et al. Rate control for real-time video network transmission on end-to-end rate-distortion and application-oriented QoS [J]. IEEE Trans. Broadcasting,2005, 51(1):122-132.
    [127]Si P, Ji H, Yu F. Optimal Network Selection in Heterogeneous Wireless Multimedia Networks [J]. ACM/Springer Wireless Networks,2010,16(5):1277-1288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700