用户名: 密码: 验证码:
双层预紧式六维力传感器基础理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的迅速发展,传感器技术已经广泛应用于测量、控制及信息等领域,并且已成为高新技术的核心之一。在各种传感器中,六维力传感器以其能够检测空间六维力和力矩的全部信息而成为非常重要的一类传感器,并在航空航天、机器人、汽车制造、生物医疗等领域都有着广阔的应用前景。本文针对一种双层预紧式六维力传感器,主要对设计理论、标定实验以及传感器应用等方面进行深入的研究,为设计具有自主知识产权高精度的六维力传感器及其实用化奠定理论和实验基础。主要研究内容如下:
     提出一种双层预紧式多分支六维力传感器,应用凸分析理论确定了该传感器结构可行的分支数目;建立了双层预紧式多分支六维力传感器的数学模型,应用螺旋理论推导得到作用在传感器上的六维力与测量分支轴向力之间的静力映射矩阵解析表达式。
     系统推导了双层预紧式多分支六维力传感器静力分配问题。由于传感器为超静定结构,通过引入分支刚度加权广义逆等概念,求解了测量分支反作用力解的唯一形式,并对其物理意义进行讨论;将测量分支轴向力分解为两部分,其中一部分由作用在传感器上的外力产生,另一部分由初始预紧力产生;在此基础上,采用线性变换的方法确定了保证传感器结构稳定测量的初始预紧力大小;最后通过数值算例和实验验证了上述推导的正确性。
     提出一种基于设计量程来确定六维力传感器结构参数的优化方法,建立了传感器在量程范围内受力时最大测量分支轴向力与结构参数之间的关系,并绘制出最大轴向力随结构参数的变化曲线,得到当最大轴向力取得最小值时的结构参数;分别对双层预紧式七分支和八分支六维力传感器进行结构参数优化;依据所优化的结构参数,完成双层预紧式七分支六维力传感器的结构设计,研制出六维力传感器系统样机。
     研制了六维力传感器标定实验台,基于LabVIEW开发了六维力传感器静态标定软件;推导了六维力传感器线性度、重复性和回程误差性能指标的标定算法;采用多点加载法在量程范围内对传感器各维力/力矩进行逐级加载,经过对实验数据的处理,得到了传感器的各静态性能指标。实验结果表明该传感器具有较高的测量精度。
     对并联结构六维力传感器误差来源与提高精度的方法进行研究,分析了并联式六维力传感器测量分支轴向变形对其测量精度的影响;推导了传感器应用中受力端重力对其测量精度的影响及补偿算法;分析预紧力对预紧式六维力传感器测量精度的影响,并提出通过增大预紧力来减小测量误差的方法。
     应用螺旋理论和多自由度系统振动力学理论,建立了双层预紧式多分支六维力传感器的振动力学简化模型,推导得到了系统的运动微分方程;对系统运动微分方程进行求解,得到了系统在初始激励下响应的解析表达式,以及传感器的各阶固有频率值。采用阶跃信号响应法对传感器进行动态标定实验研究,得到了传感器的各阶固有频率,所得实验结果与理论计算、仿真结果一致。
     针对曲面跟踪和轴孔装配两种典型的运动模型,进行六维力传感器应用研究。考虑广义六维力的三种形式,指出六维力传感器实际测量中所存在的局限性;规划了两种运动模型的运动过程,并推导基于六维力传感器检测信息的反馈控制算法;搭建了机器人力控制实验平台,依据力反馈控制算法规划了控制流程并编写运动控制软件;最后完成了曲面跟踪和轴孔装配两种力反馈控制实验。
With the rapid development of science and technology, sensor technology has beenwidely used in the fields of measurement, control and information, and has become oneof the cores of the high-tech. In all kinds of sensors, the six-axis force/torque sensor isone kind of the most important sensors as it can measure the six-dimensional force andmoment information in the space, and has broad application prospects in the field ofaerospace, robotics, automotive manufacturing and biomedical. This paper presents thein-depth research on the design theory, calibration experiments, as well as applications ofa double-layer pre-stressed six-axis force sensor, and builds the theoretical andexperimental basis for the design and application of high-precision six-axis force sensorwith independent intellectual property rights. The main contents of this paper are asfollows:
     A double-layer and pre-stressed six-axis force sensor with multiple limbs isproposed, and the viable number of the measuring limbs of the sensor structure isanalyzed by using the theory of convex analysis. The mathematical model of thedouble-layer and pre-stressed six-axis force sensor is built, and the static mapping matrixbetween the six-axis force/torque applied on the sensor and the axial force on themeasuring limbs is derived out using screw theory.
     The problem of force distribution of the double-layer and pre-stressed six-axis forcesensor is derived systematically. Because the structure of the sensor is staticallyindeterminate, the solution of the reacting force on the measuring limbs is solved byintroducing the concept of weighted generalized inverse of limb’s stiffness, and thephysical meanings of the calculation results are discussed. The forces on the measuringlimbs are decomposed into two parts, one is produced by the external force and the otheris related to the pre-tightening force. On the above basis, the pre-tightening force, whichcan ensure the sensor structure stably measure, is determined by a linear transformationmethod. Finally, the numerical example and experiment verify the correctness of theabove derivation.
     A method to optimize the structure parameters of the six-axis force sensor isproposed based on the design measurement range. The relationship between themaximum axial force of measuring limbs and the structural parameters of the sensorwithin the full scales of force/torque applied is established. The curves of the maximumaxial force and the structural parameters are drawn, and the optimized structureparameters are obtained when the maximum axial force achieves the minimum. Thestructural parameter optimizations of double-layer pre-stressed seven-limb andeight-limb six-axis force sensors are carried out respectively. Based on the optimizedstructure parameters, the structural design of the seven-limb six-axis force sensor iscompleted, and the prototype of the sensor system is manufactured.
     The calibration device for six-axis force sensor is manufactured and the static anddynamic calibration software is developed based on LabVIEW. The linearity,repeatability and hysteresis error of six-axis force sensor are derived. A multi-pointloading method to apply the loading force on each dimension step by step in the fullscales of force and torque is adopted. The static calibration experiments of sensorprototype are carried out, and the static performance indices of the sensor are obtained byprocessing the experimental data. The experimental result shows that the sensorprototype possesses good static performance.
     Sources of measuring error of the parallel six-axis force sensor and the method toimprove the accuracy are studied. The influence of the axial deformation of themeasuring limbs to the measurement accuracy of parallel six-axis force sensor isanalyzed. The influence and compensation algorithm of the gravity of the robot’s endeffector when sensor applications are deduced. The influence of the pre-tightening forceto the measurement accuracy of pre-stressed six-axis force sensor is analyzed and amethod to reduce the measuring error by increasing the pre-tightening force is proposed.
     By using screw theory and multi-degree-of-freedom system vibration mechanics, thevibration system simplified model of the double-layer and pre-stressed six-axis forcesensor is established, and the motion differential equation of the vibration system isdeduced. The response of the system in the initial excitation and the natural frequenciesof the sensor are obtained by solving the differential equations of motion. The dynamic calibration experiments are also carried out using the step signal response method, andthe natural frequency of the sensor is obtained. The experimental results are consistentwith the theoretical calculations and simulation.
     The application research of six-axis force sensor is carried out based on two typicalmotion model of surface tracking and peg-in-hole assembly. The inadequacy of thesensor when measures the six-axis force online is pointed out by considering the threeforms of the generalized six-dimensional force/torque. The trajectories of the two motionmodels are planned, and the feedback control algorithm based on the measuringinformation of six-axis force sensor is deduced. The robot force control experimentalsystem is set up, and the control flow and motion control software based on the feedbackalgorithm are completed. Finally, the force feedback control experiments of surfacetracking and peg-in-hole assembly are carried out.
引文
[1]罗志增,蒋静坪.机器人感觉与多信息融合[M].北京:机械工业出版社,2002:1-9.
    [2]熊有伦.机器人力传感器的各向同性[J].自动化学报,1996,22(1):10-18.
    [3]高国富,谢少荣,罗均.机器人传感器及其应用[M].北京:化学工业出版社,2005,38-39.
    [4]秦海峰,曹亦庆.多分量测力仪的研究[J].新技术新仪器,2007,27(1):14-16.
    [5] http://www.xinhuanet.com/mil/zt/jiaohuiduijie/index.html.
    [6] Wei S, Stephen D H. A Novel Six-axis Force Sensor for Measuring the Loading of the RacingTyre on Track[C]//1st International Conference on Sensing Technology, Palmerston North, NewZealand, November21-23,2005:408-413.
    [7]宋国民,张为公,秦文虎,等.基于车轮力传感器的汽车制动测试系统开发及应用[J].测控技术,2001,20(7):7-9.
    [8] http://www.gkong.com/item/news/2009/11/42443.html.
    [9] http://www.sunsortech.com/html/bigpic/p1.jpg.
    [10] Seibold U, Kuebler B, Hirzinger G. Medical Robotics, Chapter Prototypic force FeedbackInstrument for Minimally Invasive Robotic Surgery[M]. In: Bozovic, Vanja [Hrsg.]: MedicalRobotics, I-Tech Education and Publishing, Vienna, Austria,2008:377-400.
    [11] Watson P C, Drake S H. Pedestal and Wrist Force Sensors for Automatic Assembly[C]//Proceedings of the5th International Symposium on Industrial Robots, Chicago,1975:501-511.
    [12] Folchi G A, Shelton G L, Wang S S, et al. Six Degree of Freedom Force Transducer for aManipulator System[P]. US,3948093,1975-06-30.
    [13] Schott J. Tactile Sensor with Decentralized Signal Conditioning[C]//The9th IMEKO WorldCongress, Berlin,1982.
    [14] Coiffet P, Chirouze M. An Introduction to Robot Technology[M]. London: Kogan page ltd,1983.
    [15] Brussel H V, Belien H, Thielemans H. Force Sensing for Advanced Robot Control[C]//The5thInternational Conference on Robot Vision and Sensory Controls, Amsterdam, Neth,1985:59-68.
    [16] Kroll E, Weill R. Decoupling Load Components and Improving Robot Interfacing with anEasy-to-use6-axis Wrist Force Sensor[C]//The7th World Congress Theory on Machines andMechanisms, Sevilla, Spain,1987:1155-1158.
    [17] Yoshikawa T, Miyazaki T. A Six-axis Force Sensor with Three-dimension Cross-shapeStructure[C]//IEEE International Conference on Robotics and Automation, Scottsdale, USA,1989:249-255.
    [18] Liu S A, Tzo H L. A Novel Six-component Force Sensor of Good Measurement Isotropy andSensitivities[J]. Sensors and Actuators A: Physical,2002,100:223-230.
    [19] Sakano T, Kawasaki. Six-axis Force Sensor[P]. Patent No. US2006/0213287A1,2006-09-28.
    [20] Sakano T, Kawasaki. Six-axis Force Sensor[P]. Patent No. US7437954,2008-10-21.
    [21] Dario P. Sensors and Sensory Systems for Advanced Robots[M]. Germany:Springer-VerlagBerlin Geidelberg,1988:429-445.
    [22] Uchiyama M, Bayo E, Palma-Villalon E. A Systematic Design Procedure to Minimize aPerformance Index for Robot Force Sensors[J]. Trans. ASME, Journal of Dynamic Systems,Measurement, and Control,1991,113(l):388-394.
    [23] Bayo E, Stubbe J R. Six-axis Force Sensor Evaluation and a new Type of Optimal Frame TrussDesign for Robotic Applications[J]. Journal of Robotic Systems,1989,6(2):191-208.
    [24] Kang C G. Performance Improvement of a6-Axis Force-torque Sensor via Novel Electronicsand Cross-shaped Double-hole Structure[J]. International Journal of Control, Automation, andSystems,2005,3(3):469-476.
    [25] Kim G S. Design of a Six-axis Wrist Force/moment Sensor Using FEM and its Fabrication foran Intelligent Robot[J]. Sensors and Actuators A: Physical,2007,133(1):27-34.
    [26] Kim G S, Shin H J, Yoon J. Development of6-axis Force/moment Sensor for a HumanoidRobot’s Intelligent Foot[J]. Sensors and Actuators A: Physical,2008,141(2):276-281.
    [27]刘正士.机器人多维腕力传感器静、动特性若干基本问题的研究[D].合肥:合肥工业大学机械制造学科博士学位论文,1996:1-12.
    [28]葛运建.多维力传感器的研究现状[J].机器人情报,1993,2:27-30.
    [29]黄心汉,胡建元,王健.一种非径向三梁结构六维腕力传感器弹性体及其优化设计[J].机器人,1992,14(5):1-7.
    [30]陈雄标,姚英学,袁哲俊.六维力传感器干扰及其标定方法[J].传感器技术,1995,(2):37-40.
    [31]陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究[J].机器人,1997,19(1):7-12.
    [32]高晓辉,刘宏,蔡鹤皋,等.机器人手指尖六维力/力矩传感器的研制[J].高技术通讯,2002,(3):67-69;95.
    [33] Zhao J, Wang X Y, Zhang L, et al. Finite Element Analysis of Six-dimension Stiff Force/TorqueSensor Elastomer for Robots[C]//Proceedings of the Second International Symposium onInstrumentation Science and Technology, Jinan, China,2002,3:272-275.
    [34]王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题[J].机器人,1997,19(6):474-478.
    [35]徐科军,江敦明,王国泰.腕力传感器三维自适应动态补偿方法[J].中国机械工程,1997,8(6):40-42;55.
    [36]徐科军,殷铭.基于FLANN的腕力传感器动态建模方法[J].仪器仪表学报,2000,21(1):92-94.
    [37]徐科军,李成,朱志能,等.机器人腕力传感器动态响应的实时补偿[J].自动化学报,2001,27(5):705-709.
    [38] Xu K J, Li C, Zhu Z N. Dynamic Modeling and Compensation of Robot Six-axis WristForce/torque Sensor[J]. Instrumentation and Measurement,IEEE Transactions on,2007,56(5):2094-2100.
    [39]刘正士.机器人六分量腕力传感器加载试验台系统误差分析[J].计量学报,1998,19(1):44-50.
    [40]干方建,刘正士,任传胜,等.一种应变式六维力传感器的动态设计[J].中国机械工程,2007,18(8):967-970.
    [41]许德章,葛运建,吴仲城.多维力/力矩传感器动态实验台的一种实现方法[J].电子测量与仪器学报,2005,19(1):56-60.
    [42]秦海峰,曹亦庆.多分量测力仪的研究[J].新技术新仪器,2007,27(1):14-16.
    [43]韩玉林,贾春.正交串联弹性体式六维力传感器[P].中国发明专利:200810025591.2,2008-4-29.
    [44]杨卫超,余永,邓小红,等.一种基于双E型膜片的微小六维力传感器的设计[J],传感器技术学报,2008,21(7):1137-1142.
    [45]郑红梅.机器人多维腕力传感器静、动态性能标定系统的研究[D].合肥:合肥工业大学机械制造及其自动化学科博士学位论文,2007:6-12.
    [46]郑红梅,刘正士.机器人六维腕力传感器动态性能标定系统的研究[J].电子测量与仪器学报,2006,20(3):88-92.
    [47]姜力,刘宏,蔡鹤皋.多维力/力矩传感器静态解耦的研究[J].仪器仪表学报,2004,25(3):284-287.
    [48]李海滨,隋春平,王洪光,等.基于Stewart平台六维力传感器的分区静态标定方法[J].传感技术学报,2006,19(1):132-136.
    [49]李海滨,段志信,高理富,等.基于神经网络的六维力传感器静态标定方法研究[J].内蒙古工业大学学报:自然科学版,2006,25(2):85-89.
    [50] Li Y J, Zhang J, Jia Z Y, et al. Research on Force-sensing Element’s Spatial Arrangement ofPiezoelectric Six-component Force/torque Sensor[J]. Mechanical Systems and SignalProcessing,2009,23:2687-2698.
    [51] Li Y J, Sun B Y, Zhang J, et al. A Novel Parallel Piezoelectric Six-axis Heavy Force/torqueSensor[J]. Measurement,2009,42:730-736.
    [52] Li Y J, Zhang J, Jia Z Y, et al. A Novel Piezoelectric6-component Heavy Force/moment Sensorfor Huge Heavy-load Manipulator’s Gripper[J]. Mechanical Systems and Signal Processing,2009,23:1644-1651.
    [53] Liu W, Li Y J, Jia Z Y, et al. Research on Parallel Load Sharing Principle of PiezoelectricSix-dimensional Heavy Force/torque Sensor[J]. Mechanical Systems and Signal Processing,2011,25:331-343.
    [54]张军,李寒光,李映君,等.压电式轴上六维力传感器的研制[J].仪器仪表学报,2010,31(1):73-77.
    [55]贾振元,李映君,张军,等.并联式轴用压电六维力/力矩传感器[J].机械工程学报,2010,46(11):62-68.
    [56]房庆华,张军,李映君,等.轴用压电式六维大力值测力仪分载研究[J].仪器仪表学报,2011,32(2):439-444.
    [57]茅晨,宋爱国,马俊青.新型六维腕力传感器[J].南京信息工程大学学报,2011,3(5):402-407.
    [58] Liang Q K, Zhang D, Song Q J, et al. Design and Fabrication of a Six-dimensional WristForce/torque Sensor Based on E-type Membranes Compared to Cross Beams[J]. Measurement,2010,43:1702-1719.
    [59] Merlet J P. Parallel Robots (Second Edition II)[M]. Berlin: Springer,2006:265-266.
    [60] Gaillet A, Reboulet C. An Isostatic Six Component Force and Torque Sensor[C]//Proceedingsof the13th International Symposium on Industrial Robots,1983.
    [61] Kerr D R. Analysis, Properties and Design of a Stewart-platform Transducer[J]. Mech. Transm.Autom. Design,1989,1(11):25-28.
    [62] Dai J S, Kerr D R. A Six-component Contact Force Measurement Device Based on the StewartPlatform[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2000,214:687-697.
    [63] Romiti A, Sorli M. Force and Moment Measurement on a Robotic Assembly Hand[J], Sensorsand Actuators A: Physical,1992,32(1):531-538.
    [64] Sorli M and Zhmud N. Investigation of Force and Moment Measurement System for a RoboticAssembly Hand[J]. Sensors and Actuators A: Physical,1993,32(1):651-657.
    [65] Sorli M, Pastorelli S. Six-axis Reticulated Structure Force/torque Sensor with AdaptablePerformances[J]. Mechatronics,1995,5(5):585-601.
    [66] Kang C G, Closed-form Force Sensing of a6-axis Force Transducer Based on the StewartPlatform[J]. Sensors and Actuators A: Physical,2001,90(1):31-37.
    [67] Dwarrakanath T A, Dasgupta B, Mruthyunjaya T S. Design and Development of StewartPlatform Based Force-torque Sensor[J]. Mechatronics,2001,11(7):793-809.
    [68] Dwarakanath T A, Venkatesh D. Simply Supported,‘Joint less’ Parallel Mechanism BasedForce-torques Sensor[J]. Mechatronics,2006,16(9):565-575.
    [69] Dwarakanath T A, Bhutani G. Beam Type Hexapod Structure Based Six ComponentForce-torque Sensor[J]. Mechatronics,2011,21:1279-1287.
    [70] Ranganath R, Nair P S, Mruthyunjaya T S, et al. A Force-torque Sensor Based on a StewartPlatform in a Near-singular Configuration[J]. Mechanism and Machine Theory,2004,39(9):971-998.
    [71] Krouglicof N, Alonso L, Keat W D. Development of a Mechanically Coupled, Sixdegree-of-freedom Load Platform for Biomechanics and Sports Medicine[C]//IEEEInternational Conference on Systems, Man and Cybernetics, Hague, Netherlands,2004:4426-4431.
    [72] Gao Z, Zhang D. Design, Analysis and Fabrication of a Multidimensional Acceleration SensorBased on Fully Decoupled Compliant Parallel Mechanism[J]. Sensors and Actuators A: Physical,2010,163:418-427.
    [73] Mura A. Six d.o.f. Displacement Measuring Device Based on a Modified Stewart Platform[J].Mechatronics,2011,21:1309-1316.
    [74] Park Y K, Kumme R, Kang D I. Dynamic Investigation of a Binocular Six-componentForce-moment Sensor[J]. Measurement Science and Technology,2002,13(8):1311-1318.
    [75] Howard C Q, Hansen C H. Six-axis Vibrational Power Transducer for Active VibrationIsolation[C]//Proceedings of Acoustics,9-11November2005, Busselton, Western Australia,2005:85-92.
    [76] Fujii Y. Toward dynamic force calibration[J]. Measurement,2009,42(7):1039-1044.
    [77]陈滨.机器人的手腕测力装置[J].机械工程学报,1988,24(2):63-70.
    [78]高峰,王洪瑞,金振林.一种具有弹性铰链的六维力与力矩传感器[P].中国发明专利:99102421.4,1999-09-29.
    [79] Gao F, Zhang Y, Zhao X C, et al. The Design and Applications of F/T Sensor Based on StewartPlatform[C]//The12th IFToMM World Congress, Besancon, France, June,2007.
    [80]高峰,金振林,刘辛军,赵现朝.并联解耦结构六维力与力矩传感器[P].中国发明专利:99119320.2,2000-09-27.
    [81] Jin Z L, Gao F, Zhang X H. Design and Analysis of a Novel Isotropic Six-componentForce/torque Aensor[J]. Sensors and Actuators A: Physical,2003,109(1):17-20.
    [82] Wang H R, Gao F, Huang Z. Design of6-axis Force/Torque Sensor Based on Stewart PlatformRelated to Isotropy[J]. Chinese Journal of Mechanical Engineering (English Edition),1998,11(3):217-222.
    [83]王洪瑞,陈贵林,高峰,等.基于Stewart平台的6维力传感器各向同性的进一步分析[J].机械工程学报,2000,36(4):49-52.
    [84] Gao F, Zhang J J, Chen Y L, et al. Development of a New Type of6-DOF Parallel Micro-manipulator and Its Control System[C]//Proceedings of the2003IEEE InternationalConference on Robotics, Intelligent Systems and Signal Processing, Changsha, China,2003,2:715-720.
    [85]王宣银,尹瑞多.基于Stewart机构的六维力/力矩传感器[J].机械工程学报,2008,44(12):118-130.
    [86]姚裕,吴洪涛,张召明.基于Kane方法的Stewart传感器动力学及固有频率分析[J].动力学与控制学报,2004,2(2):84-87.
    [87]姚裕,吴洪涛,张召明.并联风洞天平应用研究[J].南京航空航天大学学报,2007,39(1):84-87.
    [88]姚裕,吴洪涛,张召明.并联天平动特性研究[J].机械科学与技术,2006,25(5):549-552.
    [89]王洪光,赵明扬,房立金,等.一种Stewart结构六维力/力矩传感器参数辨识研究[J].机器人,2008,30(6):548-553.
    [90] Zhao Y S, Hou Y L, Yan Z W, et al. Research and Design of a Pre-Stressed Six-ComponentForce/Torque Sensor Based on the Stewart Platform[C]//Proceedings of IDETC/CIE2005,ASME, California, USA, September24-28,2005,7B:573-581.
    [91]侯雨雷.超静定并联式六维力与力矩传感器基础理论与实验研究[D].秦皇岛:燕山大学机械电子工程学科博士学位论文,2007:14-16;100-111.
    [92]赵铁石.并联6-UPUR六维测力平台[P].中国发明专利:200610012602,2006-09-06.
    [93]刘丽欢.大量程柔性铰并联六维力传感器结构设计[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2009:29-41.
    [94] Jia Z Y, Lin S, Liu W. Measurement Method of Six-axis Load Sharing Based on the StewartPlatform[J]. Measurement,2010,43:329-335.
    [95]林盛.基于Stewart结构并联分载式六维大力传感器研究[D].大连:大连理工大学机械电子工程学科博士学位论文,2010:19-35.
    [96]戈瑜,吴仲城,葛运建.面向应用需求的力/力矩传感器技术发展动向[J].机器人,2003,25(2):188-192.
    [97]殷跃红,尉忠信,黄晓曦.智能机器系统力觉及力控制技术[M].北京:国防工业出版社.2001:26-28.
    [98] Peirs J, Clijnen J, Reynaerts D, et al. A Micro Optical Force Sensor for Force Feedback DuringMinimally Invasive Robotic Surgery[J]. Sensors and Actuators A: Physical,2004,115:447-455.
    [99] Jacqa C, Lüthi B, Maeder T, et al. Thick-film Multi-DOF Force/torque Sensor for WristRehabilitation[J]. Sensors and actuators A: physical,2010,162:361-366.
    [100] Lopes A, Almeida F. A Force-impedance Controlled Industrial Robot Using an Active RoboticAuxiliary Device[J]. Robotics and Computer-Integrated Manufacturing,2008,24:300-308.
    [101]张锟,韦庆,常文森.一种基于力/位混合控制进行插孔作业的策略[J].机器人.2002,24(1):44-48.
    [102]丁希仑,解玉文,战强.接触式物体位姿测量装置[P].中国发明专利: CN02294636.5,2003-12-10
    [103]王全玉,王晓东.机器人柔性腕力传感器及其检测系统[J].传感器技术,2004,23(6):30-33.
    [104]李彦明,刘成良,苗玉彬.带有并联结构六维力传感的精密装配机械手[P].中国发明专利:200810044902.5,2008-1-16.
    [105]赵永生.整体预紧平台式六维力传感器[P].中国发明专利: CN99102526.1,1999-02-06.
    [106]赵永生,姚建涛,王航,等.整体预紧双层上下非对称七杆并联结构六维力传感器[P].中国发明专利:200810055347.0,2008-07-02.
    [107]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:135-137.
    [108]胡毓达,孟志青.凸分析与非光滑分析[M].上海:上海科学技术出版社,2000:6-15.
    [109] Murray R M, Li Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation[M].Boca Raton: CRC press,1994:223-233.
    [110]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:195-201.
    [111]王永茂.矩阵分析[M],北京:机械工业出版社,2005:139-140.
    [112] Wang G R, Wei Y M, Qiao S Z. Generalized Inverses: Theory and Computations[M]. Beijing/New York: Science Press.,2004:26-32.
    [113] Hibbeler R C. Mechanics of Materials (seven edition)[M]. New Jersey: Pearson Prentice Hall,2007:715-719.
    [114] Uchiyama M, Hakomori K A. Few Considerations on Structure Design of Force Sensor[C]//Proceedings of the Third Annual Conference on Japan Robotics Society,1985:17-18.
    [115] Hou Y L, Yao J T, Lu L, et al. Performance Analysis and Comprehensive Index Optimization ofa New Configuration of Stewart Six-component Force Sensor[J]. Mechanism and MachineTheory,2009,44:359-368.
    [116] Yao J T, Hou Y L, Wang H, et al. Spatially Isotropic Configuration of Stewart Platform-basedForce Sensor[J]. Mechanism and Machine Theory,2011,46:142-155.
    [117]王航,姚建涛,侯雨雷,等.面向任务的并联结构六维力传感器设计[J].机械工程学报,2011,47(11):7-13.
    [118]周铁玲.大量程超静定并联六维力传感器及标定台结构设计与研究[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2008:21-36.
    [119]谢晓伟.整体预紧双层并联式六维力传感器样机研制与性能分析[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2011:19-26.
    [120]宋文绪,杨帆.传感器与检测技术[M].北京:高等教育出版社,2004:382-388.
    [121]姚建涛.大量程并联式六维力传感器基础理论与实验研究[D].秦皇岛:燕山大学机械电子工程学科博士学位论文,2009:99-101.
    [122]李映君.新型轴用并联压电式六维力大力传感器的研究[D].大连:大连理工大学机械电子工程学科博士学位论文,2010:101-115.
    [123]赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[D].秦皇岛:燕山大学机械电子工程学科博士学位论文,2009:102-118.
    [124]岂兴明,周建兴,矫津毅. LabVIEW8.2中文版入门与典型实例[M].北京:人民邮电出版社,2008:4-6.
    [125]叶冬.整体预紧双层并联式六维力传感器标定研究[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2012:29-30.
    [126]宋文绪,杨帆.自动检测技术[M].北京:高等教育出版社,2004:12-16.
    [127]邓海龙.传感器与检测技术[M].北京:中国纺织出版社,2008:4-5.
    [128]侯雨雷,康凯佳,曾达幸,等.新型预紧式六维力传感器及其位姿误差分析[J].光学精密工程,2008,16(7):1258-1265.
    [129]赵延治,赵铁石,温锐,等.基于结构变形的大型并联六维力传感器精度研究[J].机械设计,2007,24(9):22-25.
    [130]黄真.空间机构学[M].北京:机械工业出版社,1989:97-112.
    [131] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of theStewart platform manipulator[J]. Mechanism and Machine Theory,1998,33(8):1135-1152.
    [132]师汉民.机械振动系统——分析测试建模对策(上册)[M].武汉:华中科技大学出版社,2004:113-115;117.
    [133]李惠彬.振动理论与工程应用[M].北京:北京理工大学出版社,2006:44-58.
    [134]邓习树,吴运新.基于ADAMS的振动压路机动态特性分析研究[J].建筑机械,2005,10:63-66.
    [135]吴大林,马吉胜,董自卫.基于ADAMS的自行火炮悬挂装置振动分析[J].振动与冲击,2005,24(5):39-45.
    [136]李军,邢俊文,覃文洁. ADAMS实例教程[M].北京:北京理工大学出版社,2002:190-220.
    [137]朱春霞,朱立达,刘永贤,等.基于ADAMS的并联机器人振动特性仿真及结构优化[J].系统仿真学报,2008,20(14):3721-3725.
    [138]张永德,汪洋涛,王沫楠,等.基于ANSYS与ADAMS的柔性体联合仿真[J].系统仿真学报,2008,20(7):4501-4504.
    [139]王志军.整体预紧并联结构六维力传感器结构设计与性能分析[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2009:52-56.
    [140]殷跃红,朱剑英.智能机器力觉及力控制研究综述[J].航空学报,1999,20(1):1-7.
    [141]熊有伦.机器人学[M].北京:机械工业出版社,1993,40-44;241-251.
    [142]刘海波,席振鹏.力反馈主手研究现状及其力控制方法研究[J].自动化技术与应用,2009,28(3):1-5.
    [143]殷跃红,尉忠信,朱剑英.机器人柔顺控制研究[J].机器人,1998,20(3):232-240.
    [144]邬铭铭,曹立中,李登奎,等.被动腕关节曲面跟踪的模糊柔顺控制[J].轻工机械,2011,29(2):60-63.
    [145]邵建新,邱自学,袁江,等.大量程自由曲面的自适应跟踪测量方法研究[J].中国机械工程,2009,20(9):1045-1047.
    [146]魏秀权,李海超,高洪明,等.基于机器人力控制表面跟踪的遥控焊接虚拟环境标定[J].机器人,2008,30(2):102-106.
    [147]吴遥,基于六维力传感器的柔顺装配理论与实验研究[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2012:9-20;45-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700