用户名: 密码: 验证码:
低温共烧陶瓷基片集成波导滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基片集成波导(SIW)滤波器不但具有与传统金属波导滤波器类似的品质因素高、损耗低、功率容量大等特点,而且更易于加工和平面集成。特别是低温共烧陶瓷(LTCC)技术与基片集成波导技术的结合,使得实现小型化和高性能的基片集成波导滤波器成为可能。本文基于基片集成波导的理论和技术,结合LTCC技术的三维布局特点,提出一系列多层结构的小体积、高集成度和高选择性的基片集成波导滤波器。本文的主要工作如下:
     首先,本文系统地叙述了低温共烧陶瓷基片集成波导滤波器的设计和工艺基础。包括基片集成波导滤波器的谐振腔特点、过渡结构和腔间耦合方式,以及LTCC技术的特点、材料和工艺流程,并着重对滤波器加工过程中的几个关键工序,进行了分析和优化,为LTCC基片集成波导滤波器研究的开展奠定基础。
     其次,本文研究了多种耦合拓扑结构,提出了一系列新颖的多层基片集成波导滤波器。首先基于经典交叉耦合拓扑,通过多层矩形腔基片集成波导滤波器的设计和制备,验证了基片集成波导滤波器在多层LTCC结构中的可行性。在此基础上,提出了六边形基片集成波导谐振器,该结构兼具矩形和圆形谐振腔的特点,并通过设计和制备平面和多层六边形基片集成波导滤波器验证了该谐振器结构的实用性。然后,为了减小滤波器体积并改善其选择特性,本文还对多传输路径的耦合拓扑进行了研究,分别提出了一种新型的多层改进双胞基片集成波导滤波器,即通过将两个谐振器分别垂直放置在输入/输出波导段的上方和下方,该滤波器可以方便的实现和调整的耦合性质和强度,具有灵活的频率选择特性;以及提出一种多层二阶折叠对称基片集成波导滤波器,即通过在源和负载之间引入直接耦合,该滤波器可获得与阶数相同的传输零点;最后基于多层改进三胞结构,提出一种源/负载与谐振器交叉耦合的滤波器,并研究了级联多层改进三胞结构的基片集成波导滤波器,该滤波器具有体积小、集成度高和带外选择性好的优点。
     然后,为了在不增加谐振器数目的前提下获得更多的信号传输路径和传输零点,进一步提高多层基片集成波导滤波器的带外选择性,本文利用叉指型槽线结构将混合耦合引入到谐振腔之间的耦合中,提出并验证了一系列新型的基于LTCC多层结构的混合电磁耦合基片集成波导滤波器。包括混合电磁耦合多层改进双胞基片集成波导滤波器,混合电磁耦合多层折叠对称基片集成波导滤波器和混合电磁耦合多层改进三胞基片集成波导滤波器。该系列滤波器通过在源和负载之间引入混合耦合,可以额外增添了一条信号传输路径,从而可在带外增加一个传输零点,在改善滤波器选择特性的同时,依然保持小型化和高集成度的特点。
     最后,本文还对结构简单但却拥有多个传输路径的基片集成波导双模滤波器进行了研究。首先介绍了双模谐振器的特点、谐振模式、激励方式和设计综合方法。提出了单腔源/负载混合耦合双模基片集成波导滤波器,该滤波器只需一个谐振腔就能实现带外三个传输零点,具有插入损耗小、带外选择性高等优点。此外,利用低温共烧陶瓷技术设计了多层双腔基片集成波导双模滤波器,测试与仿真结果基本吻合,证实了采用多层技术设计的双腔双模基片集成波导滤波器比传统平面结构的双模基片集成波导滤波器具有更好的选择特性,更小的体积和更高的集成度。
Substrate integrated waveguide (SIW) filters not only have high quality factor, lowinsertion loss and high power capability which are similar to the conventional metalwaveguide, but also have the characteristics of easy integration and fabrication.Particularly, the application of low-temperature co-fired ceramic (LTCC) technologymakes the realization of multilayered SIW filters with compact size, light weight andhigh performance possible, owing to its three dimensional integration characteristic,low-tolerance in manufacturing process, and low loss of high-frequency ceramicmaterials. Based on the basic theory of SIW technology and the LTCC3D structure, thisdissertation presents a series design of multilayer SIW filter with the features ofcompact size, high integration and high selectivity. It is summarized as follows:
     Firstly, the elementary principles of design and process on the LTCC multilayerSIW filters is systematically illustrated, which including resonator cavities, transitions,coupling manners of SIW, and features, materials and processes of LTCC. In addition,the analyses and optimizations of several key procedures during the manufacturingprocess are emphasized to lay the foundation for later design and fabrication ofmultilayer SIW filters.
     Secondly, several novel SIW filters with LTCC multilayer structures are proposedin this dissertation. Based on the canonical cross-coupled topology, multilayerrectangular SIW filters are designed and fabricated to verify the feasibility of multilayerSIW filters in LTCC structure. Subsequently, the hexagonal SIW resonators which cancombine flexibility of rectangular cavities and performance of circular cavities, arepresented for the first time. Then the practicability of the proposed hexagonal SIWresonators is proved by constructing planar and multilayer hexagonal SIW filters.Whereafter, to reduce the sizes of the SIW filters and improve their selectivities, thecoupling topologies of multi-transmission channels are investigated in this dissertation.Then three types of SIW filters with these topologies are proposed as follows. A SIWfilter with multilayer modified doublet (MMD) is proposed. The MMD comprises two resonators that are not coupled to each other, whereas the two resonators are placedbelow and above the I/O SIW, respectively. The proposed filter has two transmissionzeros which can be controlled flexibly by adjusting the coupling strength and modifyingcoupling manner. Besides, a compact SIW symmetric filter with source-load coupling ispresented. The number of its transmission zeros is same with the order of the filter.Moreover, multilayer modified trisection (MMT) and its applications to SIW filters arepresented. In virtue of flexible coupling manner of multilayer structure, the proposedfilters exhibit the merits of both miniature size and high selectivity.
     Thirdly, to obtain more signal transmission paths and zeros for improving stopbandcharacteristics without increasing the sizes of SIW filters, several novel SIW filters withan interdigital slot-line (ISL) to introduce mixed coupling into two cavities are proposed.Those filters with mixed coupling structures, including the SIW filter with MMD, thesymmetric SIW filter, and the SIW filter with MMT, are studied and discussed,respectively. An additional signal path can be achieved by introducing mixed couplinginto SIW filters, which can add a transmission zero in the passpand without increasingthe sizes of the filters.
     Finally, the SIW dual-mode filters with simple structure and high performance areproposed. The characteristics, resonator modes, feeding structures, and the synthesismethods of the SIW dual-mode filters are analyzed and discussed. A novel dual-modeSIW filter with mixed source-load coupling is presented. The proposed filter with singlecavity could have three transmission zeros to obtain low insertion loss and highselectivity. Furthermore, a LTCC multilayer SIW dual-mode filter is designed andfabricated. The measured results show good agreement with the simulated ones andvalidate the structure of the proposed filter. Compared with the conventional planar andsingle-layer structure, the multilayer dual-mode SIW filter exhibits the features withbetter selectivity, smaller size, and higher integration.
引文
[1] R. E. Collin. Foundations of Microwave Engineering[M], McGraw Hill,1992,8-129.
    [2] L. Rayleigh. On the passage of electric waves through tubes, or the vibration of dielectriccylinders[J]. Phil. Mag., February1897,43:125-132.
    [3] G. C. Southworth. Forty Years of Radio Research[M]. New York: Gordon and Breach,1897,10-56.
    [4] W. L. Barrow. Transmission of electromagnetic waves in hollow tubes of metal[J]. Proc. IEEE,October1964,72(8):1064-1076.
    [5] D. D. King. Circuit components in dielectric imagelines[J]. IEEE Trans. Microw. Theory Tech.,1955,3(6):35-39.
    [6] F. J. Tischer. Properties of the H-guide at microwave and millimeter-wave regions[J]. Proc. Inst.Elec. Eng.,1959,106(13):47-53.
    [7] T. Yoneyama, S. Nishida. Nonradiative dielectric waveguide for millimeter-wave integratedcircuits[J]. IEEE Trans. Microw. Theory Tech.,1981,29(11):1188-1192.
    [8] A. Sanchez, A. A. Oliner. A new leaky waveguide for millimeter waves using nonradiativedielectric (NRD) waveguide-part I: accurate theory[J]. IEEE Trans. Microw. Theory Tech.,1980,35(8):737-747.
    [9] H. Yoshinaga, T. Yoneyama. Design and fabrication of a nonradiative dielectric waveguidecirculator[J]. IEEE Trans. Microw. Theory Tech.,1988,36(11):1526-1529.
    [10] K. Wu. A combined efficient approach for analysis of nonradiative dielectric (NRD) waveguidecomponents[J]. IEEE Trans. Microw. Theory Tech.,1994,42(4):672-677.
    [11] S. J. Xu, K. Wu, T. Yoneyama. Scattering properties of discontinuities in NRD guide[J]. IEEProc-Microw. Antennas Propag.,1994,141(3):205-210.
    [12] D. D. Grieg, H. F. Engelmann. Microstrip-a new transmission technique for the kilomegacyclerange[J]. Proc. IRE.,1952,40(12):1644-1650.
    [13] R. M. Barrett. Microwave printed circuits-a historical survey[J]. IEEE Trans. Microw. TheoryTech.,1955,3(2):1-9.
    [14] L. Han, K. Wu, R. G. Bosisio. An integrated transition of microstrip to noradiative dielectricwaveguide for microwave and millimeter-wave circuit[J]. IEEE Trans. Microw. Theory Tech.,1996,44(7):1091-1096.
    [15] Y. Cassivi, K. Wu. Low cost microwave oscillator using substrate integrated waveguidecavity[J]. IEEE Microw. Wireless Comp. Lett.,2003,13(2):48-50.
    [16] D. Deslandes, K. Wu. Single-substrate integration technique of planar circuits and waveguidefilters[J]. IEEE Trans. Microw. Theory Tech.,2003,51(2):593-596.
    [17] D. Deslandes, K. Wu. Substrate integrated waveguide dual-mode filters for broadband wirelesssystems[J]. IEEE Radio and Wireless Conf.,2003,385-388.
    [18] K. Wu. Integration and interconnect techniques of planar and nonplanar structures formicrowave and millimeter-wave circuits-current status and future trend[C]. in Proc.Asia-Pacific Microwave Conf.,2001,411-416.
    [19] D. Deslandes, K. Wu. Accurate modeling, wave mechanisms, and design considerations of asubstrate integrated waveguide[J]. IEEE Trans. Microw. Theroy Tech.,2006,54(6):2516-2526.
    [20] A. Piloto, K. Leahy, B. flanick, et al. Waveguide filters having a layered dielectric structures[P].U.S. Patent5382931, Jan.17,1995.
    [21] J. Hirokawa, M. Ando. Sing-layer feed waveguide consisting of posts for plane TEM waveexcitation in parallel plates[J]. IEEE Trans. Antennas Propag.,1998,46(5):625-630.
    [22] H. Uchimura, T. Takenoshita, M. Fujii. Development of a ‘laminated waveguide’[J]. IEEETrans. Microw. Theory Tech.,1998,46(12):2438-2443.
    [23] Y. Cassivi, L. Perregrini, P. Arcioni, et al. Dispersion chararistic of substrate integratedrectangular waveguide[J]. IEEE Microw. Wireless Comp. Lett.,2002,12(9):333-335.
    [24] F. Xu, Y. L. Zhang, W. Hong, et al. Finite-difference frequency-domain algorithm for modelingguided-wave properties of substrate integrated waveguide[J]. IEEE Trans. Microw. TheoryTech.,2003,51(11):2221-2227.
    [25] H. Li, W. Hong, T. J. Cui, et al. Propagation Characteristics of substrate integrated waveguidebased on LTCC[C]. in IEEE MTT-S Int. Microw. Symp.,2003,2045-2048.
    [26] Y. L. Zhang, W. Hong, F. Xu, et al. Analysis of guided-wave problems in substrate integratedwaveguides numerical simulations and experimental results[C]. in IEEE MTT-S Int. Microw.Symp. Dig.,2003,2049-2052.
    [27] F. Xu, K. Wu. Guided-Wave and Leakage characteristics of substrate integrated waveguide[J].IEEE Trans. Microw. Theory Tech.,2005,53(1):66-73.
    [28] D. Deslandes, K. Wu. Integrated transition of coplanar to rectangular waveguides[C]. in IEEEMTT-S Int. Microw. Symp.Dig.,2001:619-622.
    [29] D. Deslandes, K. Wu. Integrated microstrip and rectangular waveguide in planar form[J]. IEEEMicrow. Wireless Comp. Lett.,2001,11(2):68-70.
    [30] T. Swierczynski, D. A. McNamara, M. Clenet. Via-walled cavities as vertical transitions inmultilayer millimeter-wave circuits[J]. Electron. Lett.,2003,39(25):1829-1831.
    [31] A. Suntives, R. Abhari. Transition structures for3-D integration of substrate integratedwaveguide interconnects[J]. IEEE Microw. Wireless Compon. Lett.,2007,17(10):697-699.
    [32] Y. Ding, K. Wu. Substrate integrated waveguide-to-microstrip transition in multilayersubstrate[J]. IEEE Trans. Microw. Theroy Tech.,2007,55(12):2839-2844.
    [33] J. H. Lee, S. Pinel, J. Papapolymerou, et al. Comparative study of feeding techniques forthree-dimensional cavity resonators at60GHz[J]. IEEE Trans. Advan. Package,2007,30(1):115-123.
    [34] X. P. Chen, K. Wu. Low-loss ultra-wideband transition between conductor-backed coplanarwaveguide and substrate integrated waveguide[C]. IEEE MTT-S Int. Microw. symp.,2009,349-352.
    [35] C. L. Zhong, J. Xu, Z. Y. Zhi, et al. Broadband substrate integrated waveguide to rectangularwaveguide transition with fin-line[J]. Electron. Lett.,2009,45(4):205-206.
    [36] X. Chen, W. Hong, T. Cui, et al. Substrate integrated waveguide elliptic filter with transmissionline inserted inverter[J]. Electron. Lett.,2005,41(15):123-124.
    [37] F. Mira, J. Mateu, S. Cogollos, et al. Design of ultra-wideband substrate integratedwaveguide(SIW) filters in zigzag topology[J]. IEEE Microw. Wireless Comp. Lett.,2009,19(5):281-283.
    [38] F. Mira, J. Mateu, M. Bozzi. Substrate integrated waveguide predistorted filter at20GHz[J].IET Microw. Antennas Propag.,2011,5(8):928–933.
    [39] X. P. Chen, K. Wu. Self-equalised pseudo-elliptical filter made of substrate integratedwaveguide[J]. Electron. Lett.,2009,45(2):121-122.
    [40] N. Grigoropoulos, B. S. Izquierdo, P. R. Young. Substrate integrated folded waveguide (FSIW)and filter[J]. IEEE Microw. Wireless Comp. Lett.,2005,15(12):829-831.
    [41] S. K. Alotaibi, J. S. Hong. Novel substrate integrated folded waveguide filter[J]. Microw. Opt.Tech. Lett.,2007,51(11):1111-1114.
    [42] L. S. Wu, X. L. Zhou, W. Y. Yin. Evanescent-mode bandpass filters using folded and ridgesubstrate integrated waveguides (SIWs)[J]. IEEE Microw. Wireless Comp. Lett.,2009,19(3):161-163.
    [43] L. S. Wu, X. L. Zhou, W. Y. Yin. A novel multilayer partial H-plane filter implemented withfolded substrate integrated waveguide (FSIW)[J]. IEEE Microw. Wireless Comp. Lett.,2009,19(8):494-496.
    [44] G. S. Huang, C. H. Chen. Nonuniformly folded waveguide resonators and their filterapplications[J]. IEEE Microw. Wireless Comp. Lett.,2010,20(3):136-138.
    [45] Y. Q. Wang, W. Hong, Y. D. Dong, et al. Half mode substrate integrated waveguide (HMSIW)bandpass filter[J]. IEEE Microw. Wireless Comp. Lett.,2007,17(4):265-267.
    [46] Y. J. Cheng, W. Hong, K. Wu. Half mode substrate integrated waveguide (HMSIW) directionalfilter[J]. IEEE Microw. Wireless Comp. Lett.,2007,17(7):504-506.
    [47] X. C. Zhang, J. Xu, Z. Y. Yu, et al. C-band half mode substrate integrated waveguide (HMSIW)filter[J]. Microw. Opt. Tech. Lett.,2008,50(2):275-277.
    [48] H. J. Tang, W. HONG, Z. C. Hao, et al. Optimal design of compact millimetre-wave SIWcircular cavity filters[J]. Electron. Lett.,2005,41(19):1068-1069.
    [49] H. M. Hizan, I. C. Hunter, A. I. Abunjaileh. Integrated dual-band radiating bandpass Filter usingdual-mode circular cavities[J]. IEEE Microw. Wireless Comp. Lett.,2011,21(5):246-248.
    [50] Y. D. Dong, W. Hong, H. J. Tang, et al. Millimeter-wave dual-mode filter using circularhigh-order mode cavities[J]. Microw. Opt. Technol. Lett.,2009,51(7):1743-1745.
    [51] B. Potelon, J. C. Bohorquez, J. F. Favennec, et al. Design of Ku-Band filter based onsubstrate-integrated circular cavities (SICCs)[C], IEEE MTT-S Int. Microw. Symp. Dig.,2006:1237-1240.
    [52] H. J. Tang, W. Hong, J. X. Chen, et al, Development of millimeter-wave planar diplexers basedon complementary characters of dual-mode substrate integrated waveguide filters with circularand elliptic cavities[J]. IEEE Trans. Microw. Theory Tech.,2007,55(2):776-782.
    [53] Q. F. Wei, Z. F. Li, L. S. Wu, et al. A novel multilayered cross-coupled substrate-integratedwaveguide (SIW) circular cavity filter in LTCC[J]. Microw. Opt. Techn. Lett.,2009,51(7):1686-1689.
    [54] T. S. Yun, H. Nam, J. Y. Kim, et al. Harmonics suppressed substrate-integrated waveguidefilter with integration of lowpass filter[J]. Microw. Opt. Tech. Lett.,2008,50(2):447-450.
    [55] W. Shen, W. Y. Yin, X. W. Sun. Compact substrate integrated waveguide transversal filterwith microstrip dual-mode resonator[J]. J. of Electromagn. Waves and Appl.,2010,24(14):1887-1896.
    [56] X. Zhang, Z. Yu, J. Xu. Novel band-pass substrate integrated waveguide filter based oncomplementary split ring resonators[J]. Progr. Electromagn. Res.,2007,72:39-46.
    [57] W. Che, C. Li, K. Deng, L. Yang. A novel bandpass filter based on complementary split ringsresonators and substrate integrated waveguide[J]. Microw. Opt. Technol. Lett.,2008,50(3):699-701.
    [58] Y. D. Dong, T. Yang, T. Itoh. Substrate integrated waveguide loaded by complementarysplit-ring resonators and its applications to miniaturized waveguide filters[J]. IEEE Trans.Microw. Theory Tech.,2009,57(9):2211-2222.
    [59] L. S. Wu, X. L. Zhou, Q. F. Wei, et al. An extended doublet substrate integrated waveguide(SIW) bandpass filter with a complementary split ring resonator (CSRR)[J]. IEEE Microw.Wireless Compon. Lett.,2009,19(12):777-779.
    [60] Y. L. Zhang, W. Hong, K. Wu, et al. Novel substrate integrated waveguide cavity filter withdefected ground structure[J]. IEEE Trans. Microw. Theory Tech.,2005,53(4):1280-1287.
    [61] W. Shen, X. W. Sun, W. Y. Yin. Compact substrate integrated waveguide (SIW) filter withdefected ground dtructure[J]. IEEE Microw. Wirel. Compon. Lett.,2011,21(2):83-85.
    [62] W. Shen, W. Y. Yin, X. W. Sun. Compact coplanar waveguide-incorporated substrate integratedwaveguide (SIW) filter[J]. J. of Electromagn. Waves and Appl.,2010,24(7):871-879.
    [63] V. Sekar, M. Armendariz, K. Entesari. A1.2–1.6-GHz substrate-integrated-waveguide RFMEMS tunable filter[J]. IEEE Trans. Microw. Theory Tech.,2011,59(4):866-876.
    [64] Y. Zheng, M. Sazegar, H. Maune, et al. Compact substrate integrated waveguide tunable filterbased on ferroelectric ceramics[J]. IEEE Microw. Wireless Comp. Lett.,2011,21(9):477-479.
    [65] H. Y. Chien, T. M. Shen, T. Y. Huang, et al. Miniaturized bandpass filters with double-foldedsubstrate integrated waveguide resonators in LTCC[J]. IEEE Trans. Microw. Theory Tech.,2009,57(7):1774-1782.
    [66] J. Gu, Y. Fan, Y. H. Zhang, et al. A novel3-D half-mode SICC resonator for microwave andmillimeter-wave applications[J]. J. of Electromagn. Waves and Appl.,2009,23(11):1429-1439.
    [67] Z. Wang, X. Zeng, B. Yan, et al. A millimeter-wave E-plane band-pass filter using multilayerlow temperature co-fired ceramic (LTCC) technology[J]. J. of Electromagn. Waves and Appl.,2010,24(1):71-79.
    [68] L. S. Wu, X. L. Zhou, W. Y. Yin, et al. A Substrate-integrated evanescent-Mode waveguide filterwith nonresonating node in low-temperature co-Fired ceramic[J]. IEEE Trans. Microw. TheoryTech.,2010,58(10):2654-2662.
    [69] T. M. Shen,, T. Y. Huang, C. F Chen, et al. A laminated waveguide magic-T with bandpassfilter response in multilayer LTCC[J]. IEEE Trans. Microw. Theory Tech.,2011,59(3):584-592.
    [70] S. Germain, D. D. Deslandes, K. Wu. Development of substrate integrated waveguide powerdividers[C]. IEEE Electr. Comp. Engin. Conf.,2003,3:1921-1924.
    [71] K. Song, Y. Fan, Y. Zhang. Radial cavity power divider based on substrate integrated waveguidetechnology[J]. Electron. Lett.,2006,42(19):1100-1101.
    [72] C. Wang, W. Q. Che, C. Li, et al. Multiway microwave planar power divider/combiner based onsubstrate-integrated rectangular waveguide directional couplers[J]. Microw. Opt. Tech. Lett.,2008,50(6):1600-1605.
    [73] K. Song, Y. Fan, X. Zhou. X-band broadband substrate integrated rectangular waveguide powerdivider[J]. Electron. Lett.,2008,44(3):211-213.
    [74] K. J. Song, Y. F, Y. H. Zhang. Eight-way substrate integrated waveguide power divider with lowinsertion loss[J]. IEEE Trans. Microw. Theory Tech.,2008,56(6):1473-1477.
    [75] K. Song, Y. Fan. Broadb travelling-wave based on power divider substrate integratedrectangular waveguide[J]. Electron. Lett.,2009,45(12):631-632.
    [76] K. Sarhadi, M. Shahabadi. Wideband substrate integrated waveguide power splitter with highisolation[J]. IEEE. Microw. Antennas propag.,2010,4(7):817-821.
    [77] A. Suntives, N. A. Smith, R. Abhari. Analytical design of a half-mode substrate integratedwaveguide wilkinson power divider[J]. Microw. Opt. Tech. Lett.,2010,52(5):1066-1069.
    [78] D. Wu, Y. Fan, M. Zhao, et al. Vertical transition and power divider using via walled circularcavity for multilayer millimeter wave module[J]. J. of Electromagn. Waves and Appl.,2009,23(5):729-735.
    [79] Q. Li, X. W. Shi, F. Wei, et al. A novel planar180°out-of-phase power divider for UWBapplication[J]. J. of Electromagn. Waves and Appl.,2011,25(1):161-167.
    [80]李皓,陈安定,洪伟,等.基片集成波导定向耦合器的仿真与实验研究[J].微波学报,2004,20(4):54-63.
    [81] X. Y. Xu, R. G. Bosisio, K. Wu. A new six-port junction based on substrate integratedwaveguide technology[J]. IEEE Trans. Microw. Theory Tech.,2005,53(7):2267-2272.
    [82] Z. C. Hao, W. Hong, J. X. Chen, et al. Sing-layer substrate integrated waveguide directionalcouplers[J]. IEE. Microw. Antennas Propag.,2006,153(5):426-431.
    [83] B. Liu, W. Hong, Y. Zhang, et al. Half mode substrate integrated waveguide180°3-dBdirectional couplers[J]. IEEE Trans. Microw. Theory Tech.,2007,55(12):2586-2591.
    [84] B. Liu, W. Hong, Y. Q. Wang, et al. Half mode substrate integrated waveguide (HMSIW)3-dBcoupler[J]. IEEE Microw. Wireless Comp. Lett.,2007,17(1):22-24.
    [85] B. Liu, W. Hong, Y. Q. Wang, et al. Half mode substrate integrated waveguide (HMSIW)double-slot coupler[J]. Electron. Lett.,2007,43(2):113-114.
    [86] T. Djerafi, K. Wu. Super-compact substrate integrated waveguide cruciform directionalcoupler[J]. IEEE Microw. Wireless Comp. Lett.,2007,17(11):757-759.
    [87] G. H. Zhai, W. Hong, K. Wu, et al. Folded half mode substrate integrated waveguide3dBcoupler[J]. IEEE Microw. Wireless Comp. Lett.,2008,18(8):512-514.
    [88] A. Ali, H. Aubert, N. Fonseca, et al. Wideband two-layer SIW coupler: design andexperiment[J]. Electron. Lett.,2009,45(13):687-689.
    [89] L. Yan, W. Hong, G. Hua, et al. Simulation and experiment on SIW slot array antennas[J]. IEEEMicrow. Wireless. Compon. Lett.,2004,14(9):446-448.
    [90] D. Deslandes, K. Wu. Substrate integrated waveguide leaky-wave antenna: concept and designconsiderations[C]. Asia-Pacific Microw. Conf. Proc.,2005,1-4.
    [91] F. Xu, K. Wu, X. Zhang. Periodic leaky-wave antenna for millimeter wave applications basedon substrate integrated waveguide[J], IEEE Trans. Antennas Propag.,2010,58(2):340-347.
    [92] Y. J. Cheng, W. Hong, K. Wu. Design of a monopulse antenna using a dual V-type linearlytapered slot antenna (DVLTSA)[J]. IEEE Trans. Antennas Propag.,2008,56(9):2903-2909.
    [93] J. C. Bohorquez, H. A. F. Pedraza, I. C. H. Pinzon, at al. Planar substrate integrated waveguidecavity-backed antenna. IEEE Antennas Wireless Propag. Lett.,2009,8:1139-1142.
    [94] H. Wang, D. G. Fang, B. Zhang, et al. Dielectric loaded substrate integrated waveguide(SIW)-plane horn antennas[J]. IEEE Trans. Antennas Propag.,2010,58(3):640-647.
    [95] X. Feng, Ke Wu. Periodic leaky-wave antenna for millimeter wave applications based onsubstrate integrated waveguide[J]. IEEE Trans. Antennas Propag.,2010,58(2):340-347.
    [96] Luo, G. Q., W. Hong, H. J. Tang, et al. Filtenna consisting of horn antenna and substrateintegrated waveguide cavity FSS[J]. IEEE Trans. Antennas Propag.,2007,55(1):92-98.
    [97] Y. Chen, W. Hong, Z. Q. Kong, et al. Ku-band linearly polarized omnidirectional planarfiltenna[J]. IEEE Antennas Wireless Propag. Lett.,2012,11:310-313.
    [98] Y. Cassivi, K. Wu. Low cost microwave oscillator using substrate integrated waveguidecavity[J]. IEEE Microw. Wirel. Compon. Lett.,2003,13(2):48-50.
    [99] C. Zhong, J. Xu, Z. Yu, Z. Yong. Ka-band substrate integrated waveguide Gunn oscillator[J].IEEE Microw. Wirel. Compon. Lett.,2008,18(7):461-463.
    [100] C. Zhong, J. Xu, Z. Yu, et al. Parallel type substrate integrated waveguide Gunn oscillator[J].Microw. Opt. Technol. Lett.,2008,50(10):2525-2527.
    [101] Z. Cao, X. H. Tong, K. W. Qian. Ka-band substrate integrated waveguide voltage-controlledgunn oscillator[J]. Microw. Opt. Tech. Lett.,2010,52(6):1232-1235.
    [102] A. Collado, S. Via, A. Georgiadis, et al. Optimized design of substrate integrated waveguidecavity based oscillators[C]. Appl. Comput. Electroma. Conf.,2010,26-29.
    [103] A. Georgiadis, S. Via, A. Collado, et al. Push oscillator design based on a substrate integratedwaveguide (SIW) resonator[C]. Euro. Microw. Conf.,2009,1231-1234.
    [104] M. Abdolhamidi, M. Shahabadi. X-band substrate integrated waveguide amplifier[J]. IEEEMicrow. Wirel. Compon. Lett.,2008,18(12):815-817.
    [105] F. F. He, K. Wu, W. Hong, et al. Suppression of second and third harmonics using1/4low-impedance substrate integrated waveguide bias line in power amplifier[J]. IEEE Microw.Wirel. Compon. Lett.,2008,18(7):479-481.
    [106] H. Jin, G. Wen, X. Jing, et al. A novel spatial power combiner amplifier based on SIW andHMSIW[J]. IEICE Trans. Electron.,2009, E92-C(8):1098-1101.
    [107] F. Xu, K. Wu. Guided-Wave and leakage characteristics of substrate integrated waveguide[J].IEEE Trans. Microw. Theory Tech.,2005,53(1):66-73.
    [108] W. Che, K. Deng, D. Wang, et al. Analytical equivalence between substrate-integratedwaveguide and rectangular waveguide[J]. IEE Microw. Antennas Propag.,2008,2(1):35-41.
    [109] Y. Cassivi, L. Perregrini, P. Arcioni, at al. Dispersion chararistic of substrate integratedrectangular waveguide[J]. IEEE Microw. Wireless Comp. Lett.,2002,12(9):333-335.
    [110]李荣强.基于基片集成波导的微波无源电路研究[D].[博士学位论文].成都:电子科技大学,2011年,10-65.
    [111] L. Xia, R. Xu, B. Yan, et al. Broadband transition between air-filled waveguide and substrateintegrated waveguide[J]. Electron. Lett.,2006,42(24):1403-1404.
    [112] J. Li, G. Wen, F. Xiao. Broadband transition between rectangular waveguide and substrateintegrated waveguide[J]. Electron. Lett.,2010,46(3):223-224.
    [113] D. Deslandes. Design equations for tapered microstrip-to-substrate integrated waveguidetransitions[C]. in IEEE MTT-s Int. Microwave symp. Dig.,2010,704-707.
    [114] D. Deslandes, K. Wu. Integrated microstrip and rectangular waveguide in planar form[J].IEEE Microw. Wireless Comp. Lett.,2001,11(2):68-70.
    [115] D. Deslandes, K. Wu. Analysis and design of current probe transition from grounded coplanarto substrate integrated rectangular waveguides[J]. IEEE Trans, Microw. Theory Tech.,2005,53(8):2487-2494.
    [116] E. Mortazy, F. Xu, M. Meunier, et al. Millimeter-wave transition of coplanar line to substrateintegrated LiNbO3waveguide for traveling-wave electro-optical modulaator[J]. Microw. Opt.Tech. Lett.,2008,51(4):1105-1107.
    [117] S. Lee, S. Jung, H. Y. Lee. Ultra-wideband CPW-to-substrate integrated waveguide transitionusing an elevated-CPW section[J]. IEEE Microw. Wireless Comp. Lett.,2008,18(11):746-748.
    [118] J. H. Lee, S. Pinel, J. Papapolymerou, et al. Comparative study of feeding techniques forthree-dimensional cavity resonators at60GHz[J]. IEEE Trans. Adv. Packag.,2007,30(1):115-123.
    [119] U. Rosenberg. New ‘planar’ waveguide cavity elliptic function filters[C]. Proc.25th Eur.Microw. Conf.,1995,524-527.
    [120] I. Yoshihiko. Multilayered low temperature co-fired ceramics (LTCC) technology[M]. Boston:Springer Science and Business Media, Inc,2005,19-108.
    [121] R. J. Cameron. General coupling matrix synthesis methods for chebyshev filteringfunctions[J]. IEEE Trans, Microw. Theory Tech.,1999,47(4):443-442.
    [122] S. Amari. Synthesis of cross-coupled resonator filters using an analytical gradient-basedoptimization technique[J]. IEEE Trans. Microw. Theory Tech.,2000,48(9):1559-1564
    [123] J. S. Hong and M. J. Lancaster. Microstrip Filter for RF/Microwave Applications[M]. NewYork: Wiley,2001,103-185.
    [124]魏启甫.基于LTCC的多层基片集成波导滤波器的研究[D].[博士学位论文].上海:上海交通大学,2008年,35-70.
    [125] A. E. Atia, A. E.Williams. Newtypes of bandpass filters for satellite transponders[J].COMSAT Tech. Rev.,1971,1:21-43.
    [126] A. E. Atia, A. E. Williams, R. W. Newcomb. Narrow-band multiple-coupled cavitysynthesis[J]. IEEE Trans. Circuits Syst.,1974,21:649-655.
    [127] R. J. Cameron. Adanced coupling matrix synthesis techniques for microwave filters[J]. IEEETrans. Microw. Theory Tech.,2003,51(1):1-10.
    [128] S. Amari, U. Rosenberg. The doublet: a new building block for modular design of ellipticfilters[C]. in Proc. Eur. Microwave Conf.,2002,405-407.
    [129] S. Amari, U. Rosenberg. A universal building block for advanced modular design ofmicrowave filters[J]. IEEE Microwave Wireless Comp. Lett.,2003,13(3):541-543.
    [130] U. Rosenberg, S. Amari. Novel coupling schemes for microwave resonator filters[J]. IEEETrans. Microwave Theory Tech.,2002,50(12):2896-2902.
    [131] S. Amari, U. Rosenberg. New building blocks for modular design of elliptic andself-equalized microwave filters[J]. IEEE Tran. Microwave Theory Tech.,2004,52(2):721-736.
    [132] S. Amari, U. Rosenberg, J. Bornemann. Adaptive synthesis and design of resonator filterswith source/load-multiresonator coupling[J]. IEEE Trans. Microw. Theory Tech.,2002,50(8):1969-1978.
    [133] S. Amari, U. Rosenberg. On the sensitivity of coupled resonator filters without some directcouplings[J]. IEEE Trans. Microw. Theory Tech.,2003,51(6):1767-1773.
    [134] U. Rosenberg, W. H gele. Advanced multi-mode cavity filter design usingsource/load-resonance circuit cross couplings[J]. IEEE Microwave Guided Wave Lett.,1992,2:508-510.
    [135] S. Amari. Direct synthesis of folded symmetric resonator filters with source-load coupling[J].IEEE Microw. Wireless Compn. Lett.,2001,11(6):262-265.
    [136] R. Q. Li, H. X. Tang, F. Xiao. Design of substrate integrated waveguide transversal filter withhigh selectivity[J]. IEEE Microw. Wireless Compon. Lett.,2010,20(6):328-330.
    [137] C. K. Liao, P. L. Chi, C. Y. Chang. Microstrip realization of generalized Chebyshev filterswith box-like coupling schemes[J]. IEEE Trans. Microw. Theory Tech.,2007,55(1):147-153.
    [138] U. Rosenberg. New ‘planar’ waveguide cavity elliptic function filters[C]. in Proc.25th Eur.Microw. Conf.,1995:524-527.
    [139] X. P. Chen, K. Wu. Substrate integrated waveguide cross-coupled filter with negativecoupling structure[J]. IEEE Trans. Microw. Theroy Tech.,2008,56(1):142-149.
    [140] J. R. Montejo-Garai. Synthesis of N-even order symmetric filters with N transmission zerosby means of source-load cross coupling[J]. Electron. Lett.,2000,36(3):232-233.
    [141] S. Amari. Direct synthesis of folded symmetric resonator filters with source-load coupling[J].IEEE Microw. Wireless Comp. Lett.,2001,11(6):262-265.
    [142] R. J. Cameron. General prototype network synthesis methods for microwave filters[J]. ESA.J.,1982,6:193-206.
    [143] S. Amari, U. Rosenberg. New building blocks for modular design of elliptic andself-equalized microwave filters[J]. IEEE Tran. Microwave Theory Tech.,2004,52(2):721-736.
    [144] R. Q. Li, H. X. Tang, F. Xiao. A substrate integrated waveguide filter with source-loadcoupling[C]. IEEE Int. Conf. Microw. Millim. Tech.,2010,699-701.
    [145] A. Ismail, M. S. Razalli, M. A. Mahdi, et al. X-band trisection substrate-integrated waveguidequasi-elliptic filter[J]. Prog. Electromagn. Res.,2008,85:133-145.
    [146] J. R. Montejo-Garai. Synthesis of filters with transmission zeros at real frequency by meansof trisections including source/load to resonator coupling[J]. Electron. Lett.,2000,36:1629-1630.
    [147] H. J. Orchard, C. T. Gabor. Filter design using transformed variables[J]. IEEE Trans. CircuitTheory,1968,15(4):385-408.
    [148] S. Amari, G. Tadeson, J. Cihlar. New parallel λ/2-microstrip line filters with transmissionzeros at finite frequencies[C]. IEEE MTT-S Int. Microw. Symp. Dig.,2003,1,543-546.
    [149] R. Levy. New cascaded trisections with resonant cross-couplings (CTR sections) applied tothe design of optimal filters[C]. IEEE MTT-S Int. Microw. Symp. Dig.,2004,2,447-450.
    [150] K. Ma, J. G. Ma, K. S. Yeo, et al. A compact size coupling controllable filter with separateelectric and magnetic coupling paths[J]. IEEE Tran. Microwave Theory Tech.,2006,54(3):1113-1113.
    [151] J. T. Kuo, C. L. Hsu, E. Shih. Compact planar quasi-elliptic function filter with inlinestepped-impedance resonators[J]. IEEE Tran. Microwave Theory Tech.,2007,55(8):1747-1755.
    [152] Q. X. Chu, H. Wang. A compact open-loop filter with mixed electric and magneticcoupling[J]. IEEE Trans. Microw. Theory Tech.,2008,56(2):431-439.
    [153] H. Wang, Q. X. Chu. An EM-coupled triangular open-loop filter with transmissionzeros very close to passband[J]. IEEE Microw. Wireless Compon. Lett.,2009,19(2):71-73.
    [154] H. Wang, Q. X. Chu. An inline coaxial quasi-elliptic filter with controllable mixed electricand magnetic coupling[J]. IEEE Trans. Microw. Theory Tech.,2009,57(3):667-673.
    [155] W. Shen, L. S. Wu, X. W. Sun, et al. Novel substrate integrated waveguide filters with mixedcross coupling (MCC)[J]. IEEE Microw. Wireless Compon. Lett.,2009,19(11):701-703.
    [156] I. Wolff. Microstrip bandpass filter using degenerate modes of a microstrip ring resonator[J].Electron. Lett.,1972,8(12):302-303.
    [157] J. S. Hong, M. J. Lancaster. Microstrip bandpass filter using degenerate modes of a novelmeander loop resonator[J]. IEEE Microw. Guided Wave. Lett.,1995,5(11):371-372.
    [158] J. S. Hong, M. J. Lancaster.Bandpass characteristics of new dual-mode microstrip square loopresonators[J]. IEE Electron. Lett.,1995,31(11):891-892.
    [159] J. S. Hong, S. Li. Theory and experiment of dual-mode microstrip triangular patch resonatorsand filters[J]. IEEE Trans. Microw. Theory Tech.,2004,52(4):1237-1243.
    [160] J. S. Hong, H. Shaman, Y. H. Chun. Dual-mode microstrip open-loop resonators and filters[J].IEEE Trans. Microw. Theory Tech,2007,55(8):1764-1769.
    [161] J. R. Lee, J. H. Cho, S. W. Yun. New compact bandpass filter using microstrip λ/4resonatorswith open stub inverter[J]. IEEE Microw. Guide Wave Lett.,2000,10(12):526-527.
    [162] M. Matsuo, H. Yabuk, M. Makimoto. Dual-mode step-impedance ring resonator for bandpassfilter applications[J]. IEEE Trans. Microw. Theory Tech,2001,49(7):1235-1240.
    [163] B. T. Tan, S. T. Chew, M. S. Leong, Lancaster.. A dual-mode bandpass filter with enhancedcapacitive perturbation[J]. IEEE Trans. Microw. Theory Tech,2003,51(8):1906-1910.
    [164] L. Zhu, W. Menzel. Compact microstrip bandpass filter with two transmission zeros using astub-tapped half-wavelength line resonator[J]. IEEE Microw. Wireless Compon. Lett.,2003,13(1):16-18
    [165] W. H. Tu, K. Chang. Miniaturized dual-mode bandpass filter with harmonic control[J]. IEEEMicrow. Wireless Comp. Lett.,2005,15(12):838-840.
    [166] C. K. Liao, P. L. Chi, C. Y. Chang. Microstrip realization of generalized Chebyshev filterswith box-like coupling schemes[J]. IEEE Trans. Microw. Theory Tech.,2007,55(1):147-153.
    [167] G. M. Eryilmaz, C. Karpuz, A. Gorur. Dual-mode microstrip filters with adjustabletransmission zeros[J]. IEE Microw. Antennas Propag.,2008,2(8):839-847.
    [168] X. C. Zhang, Z. Y. Yu, J. Xu. Design of microstrip dual-mode filters based on source-loadcoupling[J]. IEEE Microw. Wireless Compon. Lett.,2008,18(10):677-679.
    [169] J. P. Wang, J. L. Li, S. S. Zhao, et al. Design of miniaturized microstrip dual-mode filter withsource-load coupling[J]. IEEE Microw. Wireless Comp. Lett.,2010,20(6):319-321.
    [170] A. E. Atia, A. E. Williams, A solution for narrow-band coupled cavities[J]. COMSATLaboratories Tech. Memo,1970, CL-39-70.
    [171] A. E. Atia, A. E. Williams, Narrow-bandpass waveguide filters[J]. IEEE Trans. Microw.Theory Tech.,1972,20(4):258-265.
    [172] A. E. Atia, A. E. Williams, Nonminimum-phase optimum-amplitude bandpass waveguidefilters[J]. IEEE Trans. Microw. Theory Tech.,1974,22:425-431.
    [173] H. C. Chang, K. A. Zaki. Evanescent-mode coupling of dual-mode rectangular waveguidefilters[J]. IEEE Trans. Microw. Theory Tech.,1991,39(8):1307-1312.
    [174] S. Amari, M. Bekheit. A new class of dual-mode dual-band waveguide filters[J]. IEEE Trans.Microw. Theory Tech.,2008,56(8):1938-1944.
    [175] A. E. Williams, A. E.Atia. Dual-mode canonical waveguide filters[J]. IEEE Trans. Microw.Theory Tech.,1977,25(12):1021-1028.
    [176] M. Gugliclmi, R. Molina, A. Melcon. Dual-mode circular waveguide filters without tuningscrew[J]. IEEE Trans. Microw. Theory Tech.,1992,2:457-458.
    [177] K. L. Wu. An optimal circular-waveguide dual-mode filter without tuning screws[J]. IEEETrans.Microw.Theory Tech.,1999,47(3):271-276.
    [178] M. Guglielmi, P. Jarry, E. Kerherve, et al. A new family of all-inductive dual-mode filters[J].IEEE Trans. Microw. Theory Tech.,2001,49(10):1764-1769.
    [179] H. C. Chen, C. C. Tzuang. All-planar dual-mode asymmetric filters at Ka-band[J]. IEEEMicrow. Wireless Compon. Lett.,2003,13(3):111-113.
    [180] X. P. Chen, Z. C. Hao, W. Hong, et al. Planar asymmetric dual-mode filters based on substrateintegrated waveguide (SIW)[C]. IEEE MTT-S Int. Micro. Symp. Dig.,2005,949-952.
    [181] W. Shen, W. Y. Yin, X. W. Sun. Compact substrate integrated waveguide transversal filterwith microstrip dual-mode resonator[J]. J. of Electromagn. Waves and Appl.,2010,24(14-15):1887-1896.
    [182] G. Hu, C. J. Liu, L. Yan, et al. Novel dual mode substrate integrated waveguide band-passfilters[J]. J. of Electromagn. Waves and Appl.,2010,24(11-12):1661-1672.
    [183] H. J. Tang, W. Hong, J. X. Chen, et al. Development of millimeter-wave planar diplexersbased on complementary characters of dual-mode substrate integrated waveguide filters withcircular and elliptic cavities[J]. IEEE Trans. Microw. Theory Tech.,2007,55(4):776-782.
    [184] D. P. Wang, W. Q. Chen, P. Russer. Tunable substrate integrated waveguide (SIW) dual-modesquare cavity filter with metal cyclinders[C]. IEEE MTT-S Int. Microw. Symp.,2008,128-131.
    [185] T. H. Huang, C. S. Chang, H. J. Chen, et al. Simple method for a K-band SIW filter withdual-mode quasi-elliptic function response[J]. Microw. Opt. Tech. Lett.,2007,49(6):1246-1249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700