用户名: 密码: 验证码:
基于NURBS技术的电大复杂目标RCS预估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
战争的发展从冷兵器战争开始到机械化战争,现如今已步入信息化、电子化战争,掌握了科技的脉搏,才能在未来战争中立于不败之地,强大的国防才能保障国泰民安。知己知彼,百战不殆,如何准确评估我方军事设备在雷达探测下的生存能力,如何提高我方雷达对来犯敌方的探测能力?这都有待于电大复杂目标电磁特性分析平台的支持。
     本文针对电大复杂目标电磁散射特性搭建了与计算机辅助设计软件有良好接口的分析平台,完成复杂目标从模型到输出RCS (Radar Cross section,雷达散射截面积)的预估过程。
     论文针对网格模型及实体模型采用点云重构NURBS (Non-Uniform Rational B-Spline,非均匀有理B样条)曲面模型的技术完成目标的电磁建模;针对CAM及CAD软件设计中常用的NURBS曲面模型,通过IGES(Initial Graphics Exchange Specification,基本图形转换规范)文件提取目标NURBS参数。通过这两种NURBS参数提取技术,构成RCS预估软件与现在绝大多数CAD/CAM软件的接口,实现RCS预估与外形设计的数据交流,可用以与CAD软件互动完成电大复杂目标的外形设计联调。
     NURBS曲面建模与传统建模方法相比有着不可比拟的优势,是论文搭建平台所采用的电磁建模技术。由于传统NURBS计算采用迭代求解,计算速度受到限制,本文将迭代求解这种自顶向下的求解过程转换成自下而上的直接求解,同时通过对B样条基函数的研究,大量减少了NURBS曲面的计算消耗。论文亦将这种方法推广至NURBS曲面切矢、法矢以及两阶偏导的求解过程,通过所设计算例的验证,证明了该方法及所推公式的准确性,为基于NURBS建模技术的电磁散射分析提供优良的电磁建模手段。
     论文研究了复杂目标散射的三种主要散射机理,实现了基于NURBS建模的电磁目标散射分析。鉴于物理光学法对于处理作为威胁电大复杂目标的主要散射机理之一的直接散射类问题适用范围相对较广,论文采用PO(Physical Optics,物理光学)方法完成NURBS曲面片的直接散射计算。对于双参数形式的曲面积分,论文所搭建平台使用Ludwig积分完成基于NURBS表面的物理光积分。为了修正物理光学法的结果,论文采用物理绕射理论计算基于NURBS曲面棱边的边缘绕射场,以改善物理光学法的结果。在论文中,详细研究了电磁散射计算中的基于NURBS模型的遮挡消隐算法,通过引入并修正计算机图形学中Z-Buffer技术,完成基于NURBS建模的电磁目标遮挡消隐,为了进一步提高Z-Buffer技术对于掠入射问题的处理能力,文中提出了辅助Z-Buffer技术,结合NURBS建模特点,实现目标遮挡的准确判断。
     腔体结构是威胁军事目标生存的一大隐患,军事目标的腔体一般为电大腔体,而且往往涂覆介质层,论文采用了腔体散射技术中适用范围较广的SBR (Shooting and Bouncing Ray,射线弹跳法)技术完成腔体的散射计算。论文针对军事目标腔体结构中常见的矩形腔体及圆柱形腔体详细讨论了其射线追踪及口径积分特点,利用SBR方法推导了可用以计算电大理想导体矩形腔体以及电大涂覆介质层矩形腔体的RCS公式,经过算例验证,表明该公式具有不低于原SBR方法的精度,同时,由于采用公式形式求解,其占用资源及消耗时间大为减少,原则上说,对于矩形腔体,论文所推导的公式适用于原SBR方法适用的任何场合,不仅限于电大,但是对于电大腔体,原SBR方法分析难度非常大。论文也针对圆柱形腔体的特点,给出了其射线追踪的一组公式,可以有效地完成腔体内的射线追踪,节省原SBR方法在腔体内射线追踪消耗的资源及计算时间。对于更为常见的端接非平面的矩形腔体及圆柱形腔体,论文将求解区域分为腔体及终端两个区域,终端区域采用NURBS描述其外形,通过公式求解入射线以及终端反射线在腔体内的射线追踪,通过数值方法完成终端区域入射线的射线追踪以及口径面上的远场积分,最终实现腔体的RCS计算。对于更为复杂的腔体形式,采用NURBS描述腔体内壁及终端结构,采用文中提出的射线与NURBS曲面、曲线求交点的方法完成射线追踪、场强追踪,最终通过数值方法实现口径面积分,从而得到腔体的RCS。
     论文将基于NURBS建模的电大复杂目标RCS预估问题分解为5个功能模块,结合3个外围模块,集成为一个完整的电大目标散射分析平台。文中对模块及平台的搭建做了详细的讨论,并利用某飞行器RCS实测完成对该平台的检验,实测表明本文所搭建的基于NURBS建模技术的复杂电大目标RCS预估平台可以有效地完成给定目标的RCS预估。
From cold weapon war to the mechanization war, nowadays the information war age is coming. Each war will bring about changes in world pattern. How to improve the survivability of our military equipment under the radar detection? how to find the weakness of enemy's weapon? They are all need to be supported by the electromagnetic properties analysis platform for the complex electrically large targets.
     In this dissertation, the analysis platform for scattering properties of complex electrically large targets is constructed with a good interface to computer aided design software (CADS), and the radar cross section (RCS) prediction of complex targets is realized.
     The interface module is constructed as the base layer for the platform to exchange data with CAD/CAM software. The electromagentic models in the platform are got in two access. The existing grid models and solid models are completed by reconstruction technique with point cloud data to get the parameters of non-uniform rational B-spline (NURBS). For the models designed by NURBS, the interface between RCS prediction software and CAD/CAM software is constructed by Initial Graphics Exchange Specification (IGES), which can be used in the modeling design adjustment of electrically large complex target with the CAD software.
     NURBS modeling is much better than traditional modeling method, however, because of the use of iterative method, the computing speed is limited. This dissertation changes the iterative top-down solution process to directive bottom-up process, the computing consume of NURBS modeing is greatly reduced. Such method is also extended to NURBS surface tangential vector, normal vector and the solution of two-order partial derivatives. By the given examples, the method and formulas are proved to be accurate.
     The physical optics method (PO) is used in the dissertation to complete the direct scattering computation of NURBS modeling. Because the shape parameters of the target is described in the NURBS, the scattering should be computed based on NURBS modeling techniques. The analysis platform in the dissertation completes the physical optics integrals based on NURBS modeling by using Ludwig integral. In order to correct the PO results, the edge diffraction field based on NURBS curved edge is computed by physical theory of diffraction (PTD). In the dissertation, the shadowing problem is also discussed in electromagnetic scattering computing. The Z-buffer technology in introduced to complete the shadowing process, and a assistant buffer is proposed to improve the traditional Z-Buffer technique in NURBS modeling.
     Cavity structure is a threat to the survival of military targets. Cavity for military targets is electrically large cavity in the general, and is often coated by dielectric layer. The dissertation analyze the scattering from cavity with shooting and bouncing ray method (SBR). The ray tracing and aperture integration features of rectangular cavity and cylindrical cavity commonly used as the military cavity targets are discussed in detail. The RCS formulas are derived with SBR, which can be used to calculate the perfectly electrically large conducting or coated rectangular cavity. It is proved by examples that such formula has the accuracy not less than the accuracy of original SBR method. At the same time, due to the adoption of the formula form to solve, the memory requirement and time consume are both reduced greatly. The dissertation gives a group of formulas for the characteristics of a cylindrical cavity to effectively predicte the ray tracing in a cavity, which save the original SBR ray-tracing consumption and computing time. For the more common terminated non-planar rectangular and cylindrical cavity, dissertation divides the solving region into regular cavity region and terminal region which molded in NURBS. The ray tracing in regular cavity is solved by formulas proposed in paper, and the ray-tracing of ray tracing in terminal region is completed by numerical methods. For more complex cavity, NURBS is used to describe the cavity, the numerical methods are used in ray tracing, field tracking and aperture surface integral.
     Electromagnetic modeling and scattering computation are gathered in the final part of the dissertation to be a complete scattering analysis platform for electrically large targets. By using the principle of locality of high-frequency field, the PO scattering and cavity scattering are combined to complete the RCS prediction of electrically large complex objects. The effectiveness of proposed analysis platform is verified by the experiment datas of an aircraft.
引文
[1]Grant, R. The Radar Game[M]. IRIS Independent Research,1998.
    [2]Knott, E. F.,Knott, E. F. A Progression of High-Frequency Rcs Prediction Techniques a Progression of High-Frequency Rcs Prediction Techniques[J]. Proceedings of the IEEE,1985, 73(2):252-64.
    [3]Taflove, A.,Umashankar, K. R. Review of Fd-Td Numerical Modeling of Electromagnetic Wave Scattering and Radar Cross Section[J]. Proceedings of the IEEE,1989,77(5):682-99.
    [4]Youssef, N. N. Radar Cross Section of Complex Targets[J]. Proceedings of the IEEE,1989,77(5): 722-34.
    [5]Perez, J.,Perez, J.,Catedra, M. F. Rcs of Electrically Large Targets Modelled with Nurbs Surfaces Rcs of Electrically Large Targets Modelled with Nurbs Surfaces[J]. Electronics Letters,1992, 28(12):1119-21.
    [6]Rius, J. M.,Ferrando, M.,Jofre, L. High-Frequency Rcs of Complex Radar Targets in Real-Time[J]. Antennas and Propagation, IEEE Transactions on,1993,41(9):1308-19.
    [7]Elking, D. M., Elking, D. M., Roedder, J. M.,et al. A Review of High-Frequency Radar Cross Section Analysis Capabilities at Mcdonnell Douglas Aerospace a Review of High-Frequency Radar Cross Section Analysis Capabilities at Mcdonnell Douglas Aerospace[J]. Antennas and Propagation Magazine, IEEE,1995,37(5):33-42.
    [8]Tan, Y.,Tan, Y.,Qi, L. Computation of the High-Frequency Rcs Using a Parametric Geometry Computation of the High-Frequency Rcs Using a Parametric Geometry[C]. Computational Electromagnetics and Its Applications,1999. Proceedings. (ICCEA'99) 1999 International Conference on,1999:486-89.
    [9]Lee, R.,Tse-Tong, C. Analysis of Electromagnetic Scattering from a Cavity with a Complex Termination by Means of a Hybrid Ray-Fdtd Method[J]. Antennas and Propagation, IEEE Transactions on,1993,41(11):1560-69.
    [10]Tse-Tong, C.,Burkholder, R. J.,Lee, R. The Application of Fdtd in Hybrid Methods for Cavity Scattering Analysis[J]. Antennas and Propagation, IEEE Transactions on,1995,43(10):1082-90.
    [11]Erdemli, Y. E.,Yolakis, J. L. Fdtd Scattering Analysis of Cavities with Dielectric Protrusions[C]. Antennas and Propagation Society International Symposium,1996. AP-S. Digest,1996,3: 1660-63 vol.3.
    [12]Penney, C.,Luebbers, R. Scattering from a Rectangular Cavity Using Fdtd[C]. Antennas and Propagation Society International Symposium,1993. AP-S. Digest,1993:1780-82 vol.3.
    [13]Jian-Ming, J.,Ni, S. S.,Shung-Wu, L. Hybridization of Sbr and Fern for Scattering by Large Bodies with Cracks and Cavities[J]. Antennas and Propagation, IEEE Transactions on,1995,43(10): 1130-39.
    [14]Jin, J. M.,Volakis, J. L. A Fem/Bem Formulation for a Cg-Fft Solution of 3-D Scattering by a Cavity[C]. Antennas and Propagation Society International Symposium,1990. AP-S. Merging Technologies for the 90's. Digest.,1990:1726-29 vol.4.
    [15]Villegas, F. J.,Rahmat-Samii, Y.,Jackson, D. R. A Hybrid Mom Solution of Scattering from Finite Arrays of Cylindrical Cavities in a Ground Plane[J]. Antennas and Propagation, IEEE Transactions on,2003,51(9):2369-80.
    [16]Villegas, F. J.,Rahmat-Samii, Y.,Jackson, D. R. A Hybrid Mom Formulation for Scattering from Dielectrically Covered Arrays of Cylindrical Cavities in a Ground Plane[C]. Antennas and Propagation Society International Symposium,2001. IEEE,2001,4:306-09 vol.4.
    [17]Smith, J. R., Jr.,Mirotznik, M. S. Analytical Simplification of the 2-D Method of Moments Impedance Integral[J]. Antennas and Propagation, IEEE Transactions on,2004,52(12):3288-94.
    [18]Mroczka, J. Method of Moments in Light Scattering Data Inversion in the Particle Size Distribution Function[C]. Instrumentation and Measurement Technology Conference,1992. IMTC '92.,9th IEEE,1992:485-88.
    [19]Elshafiey, T. M. F.3-D Full Wave Analysis Using Spectral Domain Method of Moments for a Ferrite Cross-Patch Antenna[C]. Radio Science Conference,2007. NRSC 2007. National,2007: 1-8.
    [20]Barrick, D. E.,Barrick, D. E. Relationship between Slope Probability Density Function and the Physical Optics Integral in Rough Surface Scattering Relationship between Slope Probability Density Function and the Physical Optics Integral in Rough Surface Scattering[J]. Proceedings of the IEEE,1968,56(10):1728-29.
    [21]Rusch, W.,Rusch, W. The Physical Optics of Focused Scatterers Using Source Multipole Expansions the Physical Optics of Focused Scatterers Using Source Multipole Expansions[J]. Antennas and Propagation, IEEE Transactions on [legacy, pre-1988],1974,22(2):236-41.
    [22]Bojarski, N.,Bojarski, N. A Survey of the Physical Optics Inverse Scattering Identity a Survey of the Physical Optics Inverse Scattering Identity[J]. Antennas and Propagation, IEEE Transactions on [legacy, pre-1988],1982,30(5):980-89.
    [23]Kildal, P. S.,Kildal, P. S. On the Accuracy of Physical Optics on the Accuracy of Physical Optics[J]. Antennas and Propagation, IEEE Transactions on [legacy, pre-1988],1982,30(3):509-12.
    [24]Gordon, W. B.,Gordon, W. B. High Frequency Approximations to the Physical Optics Scattering Integral High Frequency Approximations to the Physical Optics Scattering Integral[J]. Antennas and Propagation, IEEE Transactions on,1994,42(3):427-32.
    [25]Brown, A. C., Jr.,Brown, A. C., Jr.,Kahn, W. K. Comparison of Various Image Induction (Ii) Methods with Physical Optics (Po) for the Far-Field Computation of Flat-Sectioned Segmented Reflectors Comparison of Various Image Induction (Ii) Methods with Physical Optics (Po) for the Far-Field Computation of Flat-Sectioned Segmented Reflectors [J]. Antennas and Propagation, IEEE Transactions on,1996,44(8):1133-41.
    [26]Maci, S., Maci, S., Ufimtsev, P. Y.,et al. Equivalence between Physical Optics and Aperture Integration for Radiation from Open-Ended Waveguides Equivalence between Physical Optics and Aperture Integration for Radiation from Open-Ended Waveguides[J]. Antennas and Propagation, IEEE Transactions on,1997,45(1):183-85.
    [27]Burkholder, R. J.,Burkholder, R. J.,Teh-Hong, L. Adaptive Sampling for Fast Physical Optics Numerical Integration Adaptive Sampling for Fast Physical Optics Numerical Integration[J]. Antennas and Propagation, IEEE Transactions on,2005,53(5):1843-45.
    [28]Vico, F., Vico, F., Ferrando, M.,et al. A New 3d Fast Physical Optics Method a New 3d Fast Physical Optics Method[C]. Antennas and Propagation Society International Symposium 2006, IEEE,2006:1849-52.
    [29]Vico, F., Vico, F., Ferrando, M.,et al. A New 2d Fast Physical Optics Method a New 2d Fast Physical Optics Method[C]. Antennas and Propagation Society International Symposium 2006, IEEE,2006:227-30.
    [30]Manyas, A.,Manyas, A.,Gurel, L. Memory-Efficient Multilevel Physical Optics Algorithm for Fast Computation of Scattering from Three-Dimensional Complex Targets Memory-Efficient Multilevel Physical Optics Algorithm for Fast Computation of Scattering from Three-Dimensional Complex Targets[C]. Computational Electromagnetics Workshop,2007,2007:26-30.
    [31]Weinmann, F. Ray Tracing with Po/Ptd for Rcs Modeling of Large Complex Objects[J]. Antennas and Propagation, IEEE Transactions on,2006,54(6):1797-806.
    [32]Roczniak, A.,Petriu, E. M.,Costache, G. I.3-D Electromagnetic Field Modeling Based on near Field Measurements[C]. Instrumentation and Measurement Technology Conference,1996. IMTC-96. Conference Proceedings.'Quality Measurements:The Indispensable Bridge between Theory and Reality'., IEEE,1996,2:1124-27 vol.2.
    [33]Perez, J.,Perez, J.,Catedra, M. F. Rcs of Targets Modelled with Nurbs Surfaces Rcs of Targets Modelled with Nurbs Surfaces[C]. Antennas and Propagation Society International Symposium, 1992. AP-S.1992 Digest. Held in Conjuction with:URSI Radio Science Meeting and Nuclear EMP Meeting., IEEE,1992:965-68 vol.2.
    [34]Bansal, R.,Dicarlo, E.,Jordan, D. Developing Experimental Models for Propagation and Scattering of Em Waves in Electrically Large Ducts[J]. Electronics Letters,1991,27(21):1951-53.
    [35]Tango, G. J. Numerical Models for Vlf Seismic-Acoustic Propagation Prediction:A Review[J]. Oceanic Engineering, IEEE Journal of,1988,13(4):198-214.
    [36]Perez, J.,Catedra, M. F. Application of Physical Optics to the Rcs Computation of Bodies Modeled with Nurbs Surfaces[J]. Antennas and Propagation, IEEE Transactions on,1994,42(10):1404-11.
    [37]Perez, J.,Perez, J.,Catedra, M. F. Application of Physical Optics to the Rcs Computation of Bodies Modeled with Nurbs Surfaces Application of Physical Optics to the Rcs Computation of Bodies Modeled with Nurbs Surfaces[J]. Antennas and Propagation, IEEE Transactions on,1994,42(10): 1404-11.
    [38]Catedra, M. F., Torres, R. P., Rivas, F.,et al. Rcs Analysis Code for Complex Targets Modelled with Nurbs Surfaces[C]. European Microwave Conference,1993.23rd,1993:383-85.
    [39]Chang-Yeol, J. Development of a Nurbs-Based Wing Design Optimization System[C]. Science and Technology,2003. Proceedings KORUS 2003. The 7th Korea-Russia International Symposium on, 2003,1:249-54 vol.1.
    [40]Yan, Z., Yan, Z., Le, X.,et al. Modeling with Nurbs Surfaces Used for Rcs Computation of Electrically Large Objects Modeling with Nurbs Surfaces Used for Rcs Computation of Electrically Large Objects[C]. Electromagnetic Compatibility,2007. EMC 2007. International Symposium on,2007:543-46.
    [41]Catedra, M. F., Catedra, M. F., Torres, R.P.,et al. Rcs Analysis Code for Complex Targets Modelled with Nurbs Surfaces Rcs Analysis Code for Complex Targets Modelled with Nurbs Surfaces[C]. European Microwave Conference,1993.23rd,1993:383-85.
    [42]Jernejcic, R.O.,Terzuoli, A. J., Jr.,Schindel, R. F. Electromagnetic Backscatter Predictions Using Xpatch[C]. Antennas and Propagation Society International Symposium,1994. AP-S. Digest,1994, 1:602-05 vol.1.
    [43]Bhalla, R.,Hao, L.3d Scattering Center Extraction from Xpatch[C]. Antennas and Propagation Society International Symposium,1995. AP-S. Digest,1995,4:1906-09 vol.4.
    [44]Castelloe, M. W.,Munson, D. C., Jr.3-D Sar Imaging Via High-Resolution Spectral Estimation Methods:Experiments with Xpatch[C]. Image Processing,1997. Proceedings., International Conference on,1997,1:853-56 vol.1.
    [45]Andersh, D., Moore, J., Kosanovich, S.,et al. Xpatch 4:The Next Generation in High Frequency Electromagnetic Modeling and Simulation Software[C]. Radar Conference,2000. The Record of the IEEE 2000 International,2000:844-49.
    [46]Sundararajan, P.,Niamat, M. Y. Fpga Implementation of the Ray Tracing Algorithm Used in the Xpatch Software[C]. Circuits and Systems,2001. MWSCAS 2001. Proceedings of the 44th IEEE 2001 Midwest Symposium on,2001,1:446-49 vol.1.
    [47]Hastriter, M. L.,Weng Cho, C. Comparing Xpatch, Fisc, and Scaleme Using a Cone-Cylinder[C]. Antennas and Propagation Society International Symposium,2004. IEEE,2004,2:2007-10 Vol.2.
    [48]Bhalla, R.,Lin, L.,Andersh, D. A Fast Algorithm for 3d Sar Simulation of Target and Terrain Using Xpatch[C]. Radar Conference,2005 IEEE International,2005:377-82.
    [49]Moore, J. T.,Yaghjian, A. D.,Shore, R. A. Shadow Boundary and Truncated Wedge Ildcs in Xpatch [Radar Applications][C]. Antennas and Propagation Society International Symposium,2005 IEEE, 2005,1A:10-13 Vol.1A.
    [50]Turner, S. D. Respect:Rapid Electromagnetic Scattering Predictor for Extremely Complex Targets[J]. IEE Proceedings,1990,137(4):214-20.
    [51]Elking, D. M., Roedder, J. M., Car, D. D.,et al. A Review of High-Frequency Radar Cross Section Analysis Capabilities at Mcdonnell Douglas Aerospace[J]. Antennas and Propagation Magazine, IEEE,1995,37(5):33-42.
    [52]Rius, J. M.,ferrando, M.,L, J. Greco:Graphic Electromagnrtic Computing for Rcs Predicion in Real Time[J]. IEEE Antenna and propation Magazine,1993,35(2):7-17.
    [53]Domingo, M., Domingo, M., Rivas, F.,et al. Computation of the Rcs of Complex Bodies Modeled Using Nurbs Surfaces Computation of the Rcs of Complex Bodies Modeled Using Nurbs Surfaces[J]. Antennas and Propagation Magazine, IEEE,1995,37(6):36-47.
    [54]Ling, H.,Chou, R.,Lee, S. Shooting and Bouncing Rays:Calculating Rcs of an Arbitrary Cavity [C]. Antennas and Propagation Society International Symposium,1986,1986,24:293-96.
    [55]Ling, H.,Chou, R. C.,Lee, S. W. Shooting and Bouncing Rays:Calculating the Rcs of an Arbitrarily Shaped Cavity[J]. Antennas and Propagation, IEEE Transactions on,1989,37(2): 194-205.
    [56]Shyh-Kang, J., Jianming, J., Sean, N.,et al. Combination of Po/Sbr and the Finite Element Method for Scattering from a Large Pec Target with a Small Cavity[C]. Antennas and Propagation Society International Symposium,1994. AP-S. Digest,1994,3:1386-89 vol.3.
    [57]Jian-Ming, J.,Ni, S.,Lee, S. W. Hybridization of Sbr and Fem for Scattering by Large Bodies with Cracks and Cavities[C]. Antennas and Propagation Society International Symposium,1995. AP-S. Digest,1995,3:1476-79 vol.3.
    [58]Baldensperger, P.,Jian, L.,Jian-Ming, J. A Hybrid Sbr/Fe-Bi Technique for Computing the Rcs of Electrically Large Objects with Deep Cavities[C]. Antennas and Propagation Society International Symposium,2001. IEEE,2001,4:726-29 vol.4.
    [59]Pippi, A.,Della Casa, S.,Maci, S. A Line-Integral Asymptotic Representation of the Po Radiation from Nurbs Surfaces[C]. Antennas and Propagation Society International Symposium,2004. IEEE, 2004,4:4511-14 Vol.4.
    [60]Saeedfar, A.,Saeedfar, A.,Barkeshli, K. Shape Reconstruction of Three-Dimensional Conducting Curved Plates Using Physical Optics, Nurbs Modeling, and Genetic Algorithm Shape Reconstruction of Three-Dimensional Conducting Curved Plates Using Physical Optics, Nurbs Modeling, and Genetic Algorithm[J]. Antennas and Propagation, IEEE Transactions on,2006, 54(9):2497-507.
    [61]Jin-Lin, H., Jin-Lin, H., Shi-Ming, L.,et al. Computation of Po Integral on Nurbs Surface and Its Application to Rcs Calculation Computation of Po Integral on Nurbs Surface and Its Application to Rcs Calculation[J]. Electronics Letters,1997,33(3):239-40.
    [62]Ming, C, Ming, C., Meng, W.,et al. Parallel Nurbs Po Method Based on the Ludwig Algorithm and Its Application to the Rcs Computation Parallel Nurbs Po Method Based on the Ludwig Algorithm and Its Application to the Rcs Computation[C]. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings,2005,4:3 pp.
    [63]Piegl, L.,Tiller, W. Curve and Surface Construction Using Rational B-Splines[J]. Computer aided Design,1987,19(9):485-98.
    [64]Catedra, M. F.,Rivas, F.,Valle, L. Combining the Moment Method with Geometrical Modelling by Nurbs Surfaces and Bezier Patches[J]. IEEE Transactions on Antennas and Propagation,1994, 42(3):373-81.
    [65]Gonzalez, I., Garcia, E., De Adana, F. S.,et al. Monurbs:A Parallelized Fast Multipole Multilevel Code for Analyzing Complex Bodies Modeled by Nurbs Surfaces[J]. Applied Computational Electromagnetics Society Journal,2008,23(2):134-42.
    [66]Chen, M.,Wang, N.,Liang, C.-H. Analysis of Antenna around Electrically Large Nurbs Surface with Iterative Mom-Po Method[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica,2007,35(3): 392-95.
    [67]Chen, M., Zhao, X. W., Zhang, Y.,et al. Analysis of Antenna around Nurbs Surface with Iterative Mom-Po Technique[J]. Journal of Electromagnetic Waves and Applications,2006,20(12): 1667-80.
    [68]Zhang, H.-B.,Du, J.-C.,Nie, Z.-P. Analyzing Antenna-Plateform System with Hybrid Mom-Po Methodc[J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology,2006, 28(9):1731-34.
    [69]De Adana, F. S., Nieves, S., Garcia, E.,et al. Calculation of the Rcs from the Double Reflection between Planar Facets and Curved Surfaces[J]. IEEE Transactions on Antennas and Propagation, 2003,51(9):2509-12.
    [70]Saez de Adana, F., Diego, I. G., Blanco, O. G.,et al. Method Based on Physical Optics for the Computation of the Radar Cross Section Including Diffraction and Double Effects of Metallic and Absorbing Bodies Modeled with Parametric Surfaces[J]. IEEE Transactions on Antennas and Propagation,2004,52(12):3295-303.
    [71]施法中.计算机辅助几何设计与非均匀有理b样条(Cagd&Nurbs)[M]北京:高等教育出版社,2001.
    [72]赵岩Nurbs曲面建模及其在rcs计算中的应用[D].西安:电子工程学院,2008.
    [73]Xiang, F.,Donglin, S.,Yan, L. Graphical Electromagnetic Computing Method Combined with Iges Files Import[C],2007:558-61.
    [74]Liu, D.-Z.,Dong, J.-X.,He, Z.-J. Design of Iges Pre- and Post-Processor Based on Surface Model[J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design & Computer Graphics,1999,11(2):100-03.
    [75]Kim, S., Lim, K., Kim, J.,et al. Geometric Data Exchange Iges:A Practical Point of View[C],1995, 1:175-80.
    [76]Ma, L.,He, Z.,Dong, J. Advanced Curve and Surface Design in Cad System Using Step[C],1993: 581-84.
    [77]Liu, Y.,Meng, L. Dxf Method of Parts Drawing Importation in Stamping Die Cad System[J]. Duanya Jishu/Forging & Stamping Technology,1997,22(5):55-56.
    [78]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,2001.
    [79]de Buda, R. Stationary Phase Approximations of Fm Spectra[J]. Information Theory, IEEE Transactions on,1966,12(3):305-11.
    [80]Hyde, G. Studies of the Focal Region of a Spherical Reflector:Stationary Phase Evaluation[J]. Antennas and Propagation, IEEE Transactions on,1968,16(6):646-56.
    [81]Ikuno, H. Calculation of Far-Scattered Fields by the Method of Stationary Phase[J]. Antennas and Propagation, IEEE Transactions on,1979,27(2):199-202.
    [82]Conde, O. M.,Perez, J.,Catedra, M. P. Stationary Phase Method Application for the Analysis of Radiation of Complex 3-D Conducting Structures[J]. Antennas and Propagation, IEEE Transactions on,2001,49(5):724-31.
    [83]Trott, K. D. Stationary Phase Derivation for Rcs of an Ellipsoid[J]. Antennas and Wireless Propagation Letters, IEEE,2007,6:240-43.
    [84]Wang, M.,Wang, N.,Liang, C. Problem of Singularity in Ludwig's Algorithm[J]. Microwave and Optical Technology Letters,2007,49(2):400-03.
    [85]Ludwig, A. Computation of Radiation Patterns Involving Numerical Double Integration[J]. Antennas and Propagation, IEEE Transactions on [legacy, pre-1988],1968,16(6):767-69.
    [86]Chen, M.,Zhang, Y.,Liang, C. H. Calculation of the Field Distribution near Electrically Large Nurbs Surfaces with Physical-Optics Method[J]. Journal of Electromagnetic Waves and Applications,2005,19(11):1511-24.
    [87]Wang, N.,Zhang, Y.,Liang, C. H. Creeping Ray-Tracing Algorithm of Utd Method Based on Nurbs Models with the Source on Surface[J]. Journal of Electromagnetic Waves and Applications,2006, 20(14):1981-90.
    [88]陈铭,张玉,王楠,et al.基于nurbs建模技术的物理光学方法的遮挡判断[J].西安电子科技大学学报,2006,33(3):430-32+37.
    [89]王萌,陈铭,梁昌洪Ludwig算法的改进与应用[J].电波科学学报,2006,21(6):935-38.
    [90]王楠,张玉,梁昌洪.Nurbs-Utd方法的反射射线寻迹算法研究[J].电波科学学报,2006,21(6):834-37.
    [91]Chen, M., Zhang, Y., Zhao, X.-W.,et al. Analysis of Antenna around Nurbs Surface with Hybrid Mom-Po Technique[J]. IEEE Transactions on Antennas and Propagation,2007,55(2):407-13.
    [92]Chen, X. J.,Shi, X. W. Backscattering of Electrically Large Perfect Conducting Targets Modeled by Nurbs Surfaces in Half-Space[J]. Progress in Electromagnetics Research,2007,77:215-24.
    [93]Wang, N.,Liang, C.,Yuan, H. Calculation of Pattern in Utd Method Based on Nurbs Modeling with the Source on Surface[J]. Microwave and Optical Technology Letters,2007,49(10):2492-98.
    [94]陈铭,王楠,梁昌洪.基于nurbs建模技术的迭代mom-Po方法分析电大尺寸平台天线方向图[J].电子学报,2007,35(3):392-95.
    [95]王楠,梁昌洪,张玉.源在曲面上的nurbs-Utd方法的爬行波射线寻迹算法研究[J].电子学报,2007,35(12):2307-11.
    [96]王楠,梁昌洪,张玉,et al. Nurbs-Utd方法的爬行波射线寻迹算法[J].西安电子科技大学学报,2007,34(4):600-04+68.
    [97]Zhao, Y.,Shi, X. W.,Xu, L. Modeling with Nurbs Surfaces Used for the Calculation of Rcs[J]. Progress in Electromagnetics Research,2008,78:49-59.
    [98]Xu, Y. X., Guan, Y., Cha, F. T.,et al. Analysis of Shadowing Processing Technique Based on Modeling Using Nurbs[J]. Progress in Electromagnetics Research,2009,89:325-38.
    [99]陈晓洁.电大平台的雷达隐身技术研究[D].西安:电子工程学院,2008.
    [100]Keller, J. B. One Hundred Years of Diffraction Theory[J]. IEEE Transactions on Antennas and Propagation,1985, AP-33(2):123-26.
    [101]Knott, E. F.,Senior, T. B. A. Comparison of Three High-Frequency Diffraction Techniques[J]. Proceedings of the IEEE,1974,62(11):1468-74.
    [102]Galindo-Israel, V.,Veruttipong, T.,Imbriale, W. Gtd, Physical Optics, and Jacobi-Bessel Diffraction Analysis of Beam Waveguide Ellipsoids[C],1986:643-46.
    [103]Burge, R. E., Yuan, X. C., Carroll, B. D.,et al. Microwave Scattering from Dielectric Wedges with Planar Surfaces:A Diffraction Coefficient Based on a Physical Optics Version of Gtd[J]. IEEE Transactions on Antennas and Propagation,1999,47(10):1515-27.
    [104]Buyukdura, O. M. Gtd Solution with Higher Order Terms to the Diffraction by an Edge:Towards a Uniform Solution[J]. IEE Proceedings:Microwaves, Antennas and Propagation,1996,143(1): 43-50.
    [105]Hussar, P. E. Uniform Gtd Treatment of Surface Diffraction by Impedance and Coated CylindersfJ]. IEEE Transactions on Antennas and Propagation,1998,46(7):998-1008.
    [106]Savov, S. V.,Whitteker, J. H. Comparison of Different Order Gtd Solutions of Double-Edge Diffraction Problem[J]. Electronics Letters,1997,33(18):1534-35.
    [107]Tiberio, R.,Pelosi, G.,Manara, G. Uniform Gtd Formulation for the Diffraction at a Wedge with Two Face Impedances[C],1984,1:215-18.
    [108]Uslenghi, P. L. E. Exact Geometrical Optics Scattering by a Right-Angle Wedge Made of Double-Negative Material[J]. IEEE Transactions on Antennas and Propagation,2006,54(8): 2301-04.
    [109]Lee, S. W., Sheshadri, M. S., Jamnejad, W.,et al. Refraction at a Curved Dielectric Interface: Geometrical Optics Solution[J]. IEEE Transactions on Microwave Theory and Techniques,1982, MTT-30(1):12-19.
    [110]Mittra, R.,Rushdi, A. Efficient Approach for Computing the Geometrical Optics Field Reflected from a Numerically Specified Surface[J]. IEEE Transactions on Antennas and Propagation,1979, AP-27(6):871-77.
    [111]Lee, S.-W. Electromagnetic Reflection from a Conducting Surface:Geometrical Optics Solution[J]. IEEE Transactions on Antennas and Propagation,1975, AP-23(2):184-91.
    [112]Inada, H.,Plonus, M. A. Geometric Optics Contribution to the Scattering from a Large Dense Dielectric Sphere[J]. IEEE Transactions on Antennas and Propagation,1970, AP-18(1):89-99.
    [113]Rouviere, J.-F.,Douchin, N.,Combes, P. F. Diffraction by Lossy Dielectric Wedges Using Both Heuristic Utd Formulations and Fdtd[J]. IEEE Transactions on Antennas and Propagation,1999, 47(11):1702-08.
    [114]Anderson, H. R. Building Corner Diffraction Measurements and Predictions Using Utd[J]. IEEE Transactions on Antennas and Propagation,1998,46(2):292-93.
    [115]Manara, G.,Nepa, P.,Ottaviano, G. M. Utd Solution for Surface and Leaky Wave Diffraction at the Edge of a Metallic Wedge with a Material Coating[C],1996,1:482-85.
    [116]Markhefka, R. J. Utd Diffraction Coefficient for Dielectric Plate Junctions[C],1995,1:2-5.
    [117]Rojas, R. G.,Pathak, P. H. Utd Analysis of the Diffraction by a Thin Dielectric/Ferrite Half-Plane (Oblique Incidence Case)[C],1985:447-50.
    [118]Buyukdura, O. M.,Kouyoumjian, R. G. Improved Utd Solution for Wedge Diffraction[C],1985: 439-42.
    [119]Zvyagintsev, A. A.,Ivanov, A. I.,Kakov, D. V. Pulse Plane Wave Diffraction on a Curvilinear Impedance Wedge:Uat Analysis[C],2004:187-89.
    [120]Ahluwalia, D. S. Uniform Asymptotic Theory of Diffraction by the Edge of a Threedimensional Body[J]. SIAM Journal on Applied Mathematics,1970,18(2):287-301.
    [121]Lee, S.-W.,Deschamps, G. A. Uniform Asymptotic Theory of Electromagnetic Diffraction by a Curved Wedge[J]. IEEE Transactions on Antennas and Propagation,1976, AP-24(1):25-34.
    [122]Lee, S.-W. Comparison of Uniform Asymptotic Theory and Ufimtsev's Theory of Electromagnetic Edge Diffraction[J]. IEEE Transactions on Antennas and Propagation,1977, AP-25(2):162-70.
    [123]Ufimtsev, P. Y. Uniform Asymptotic Theory of Diffraction by a Finite Cylinder[J]. SIAM Journal on Applied Mathematics,1979,37(3):459-66.
    [124]Sanyal, S.,Bhattacharyya, A. K. Radar Cross-Section of Curved Plate Using Uniform Asymptotic Theory of Diffraction[C],1983,1:34-37.
    [125]Stamnes, J. J. Uniform Asymptotic Theory of Diffraction by Apertures[J]. Journal of the Optical Society of America,1983,73(1):96-109.
    [126]Tan, C. B.,Khoh, A.,Yeo, S. H. Higher Order Asymptotic Analysis of Impedance Wedge Using Uniform Theory of Diffraction[J]. Electromagnetics,2007,27(1):23-39.
    [127]Umul, Y. Z. Uniform Version of the Modified Theory of Physical Optics Based Boundary Diffraction Wave Theory[J]. Journal of Modern Optics,2008,55(17):2797-804.
    [128]Ufimtsev, P. Y. Improved Physical Theory of Diffraction:Removal of the Grazing Singularity [J]. IEEE Transactions on Antennas and Propagation,2006,54(10):2698-702.
    [129]Johansen, P. M. Time-Domain Version of the Physical Theory of Diffraction [J]. IEEE Transactions on Antennas and Propagation,1999,47(2):261-70.
    [130]Johansen, P. M. Uniform Physical Theory of Diffraction Equivalent Edge Currents for Truncated Wedge Strips[J]. IEEE Transactions on Antennas and Propagation,1996,44(7):989-95.
    [131]Michaeli, A. Incremental Diffraction Coefficients for the Extended Physical Theory of Diffraction[J]. IEEE Transactions on Antennas and Propagation,1995,43(7):732-34.
    [132]Altintas, A.,Buyukdura, O. M.,Pathak, P. H. Extension of the Physical Theory of Diffraction Concept for Aperture Radiation Problems[J]. Radio Science,1994,29(6):1403-07.
    [133]Griesser, T.,Balanis, C. A. Double Reflections in the Physical Theory of Diffraction[C],1986: 41-44.
    [134]Guiraud, J. L. Spectral and Physical Theory of Diffraction[C],1983:509-14.
    [135]Ryan, J. C.,Peters, J. L. Evaluation of Edge-Diffracted Fields Including Equivalent Currents for Caustic Regions[J]. IEEE Transactions on Antennas and Propagation,1969, AP-17(3):292-99.
    [136]Sikta, F. A., Burnside, W. D., Chu, T.-T.,et al. First-Order Equivalent Current and Corner Diffraction Scattering from Flat Plate Structures[J]. IEEE Transactions on Antennas and Propagation,1983, AP-31(4):584-89.
    [137]Michaeli, A. Equivalent Currents for Second-Order Diffraction by the Edges of Perfectly Conducting Polygonal Surfaces[J]. IEEE Transactions on Antennas and Propagation,1987, AP-35(2):183-90.
    [138]Shen, W.,Wu, X.-L. Uniform Theory of Diffraction Equivalent Edge Currents Method and Its Application in Parabolic Equation[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica,2007,35(3): 563-66.
    [139]阮颖铮.雷达截面与隐身技术[M].国防工业出版社,1998年6月.
    [140]昂海松,舒永泽.复杂目标rcs计算的新方法—曲面像素法[J].电子与信息学报,200l(10):8.
    [141]Anastassiu, H. T. A Review of Electromagnetic Scattering Analysis for Inlets, Cavities, and Open Ducts[J]. Antennas and Propagation Magazine, IEEE,2003,45(6):27-40.
    [142]Pathak, P. H.,Burkholder, R. J. Modal, Ray, and Beam Techniques for Analyzing the Em Scattering by Open-Ended Waveguide Cavities[J]. Antennas and Propagation, IEEE Transactions on,1989, 37(5):635-47.
    [143]Dachuan, Y.,Min, Z. Comparison of Various Full-Wave Methods in Calculating the Rcs of Inlet[C]. Microwave and Millimeter Wave Technology,2008. ICMMT 2008. International Conference on, 2008,2:1018-21.
    [144]Dumanian, A. J.,Burt, E. C.Kemp, B. A. A Component Model Approach for the Rcs Validation of an Electrically Large Open-Ended Cylindrical Cavity[C]. Antennas and Propagation International Symposium,2007 IEEE,2007:2471-74.
    [145]Tao, W.,Jinping, X.,Mo, C. Scattering at Rectangular Waveguide to Quasi-Optical Cavity Junction[C]. Microwave Conference Proceedings,2005. APMC 2005. Asia-Pacific Conference Proceedings,2005,2:3 pp.
    [146]Van, T.,Wood, A. W. Finite Element Analysis of Electromagnetic Scattering from a Cavity[J]. Antennas and Propagation, IEEE Transactions on,2003,51(1):130-37.
    [147]Chan, K. K.,Wong, S. Modal Approach to Rcs Computation of Electrically Large Inlets[C]. Antennas and Propagation Society International Symposium,2002. IEEE,2002,3:114-17.
    [148]Ross, D. C.,Volakis, J. L.,Anastassiu, H. T. Hybrid Finite Element-Modal Analysis of Jet Engine Inlet Scattering[J]. Antennas and Propagation, IEEE Transactions on,1995,43(3):277-85.
    [149]Kim, H.,Ling, H. Modal Propagation Algorithm for Rcs Prediction of Inlet Ducts[C]. Antennas and Propagation Society International Symposium,1993. AP-S. Digest,1993:1412-15 vol.3.
    [150]Xu, J. D. Numerical Analysis for the Scattering by a Waveguide Cavity with Complex Configuration[J]. Antennas and Propagation Society International Symposium,1991. AP-S. Digest,1991:914-17 vol.2.
    [151]Jin, J. M.,Volakis, J. L. A Hybrid Finite Element Method for Scattering and Radiation by Microstrip Path Antennas and Arrays Residing in a Cavity[J]. Antennas and Propagation, IEEE Transactions on,1991,39(11):1598-604.
    [152]Lee, C.,Lee, S.,Chou, R. Rcs Reduction of a Cylindrical Cavity by Dielectric Coating[C]. Antennas and Propagation Society International Symposium,1986,1986,24:305-08.
    [153]Christian, J.,Fich, S.,Goubau, G. Cavity Method for Experimental Determination of Scatter Characteristics[C]. Antennas and Propagation Society International Symposium,1975,1975,13: 329-32.
    [154]Witt, H. R.,E.L.Price. Scattering from Hollow Conducting CylindersfJ]. IEE Proceedings,1968, 115:94-99.
    [155]Moll, J. M.,Seecamp, R. G. Calculation of Radar Reflecting Properties of Jet Engine Intakes Using a Waveguide Model[J]. IEEE Transactions on Aerospace and Electronic Systems,1970, AES-6(5): 675-83.
    [156]Huang, C. C. Simple Formula for the Rcs of a Finite Hollow Circular Cylinder[J]. Electronics Letters,1983,19(20):854-56.
    [157]Chan, K. K.,Wong, S. Modal Approach to Rcs Computation of Electrically Large Inlets[C],2002, 3:114-17.
    [158]Ross, D. C., Volakis, J. L., Anastassiu, H. J.,et al. Overlapping Modal and Geometric Symmetries for Computing Jet Engine Inlet Scattering[C],1995,2:1142-42.
    [159]Ross, D. C.,Volakis, J. L.,Anastassiu, H. T. Hybrid Finite Element-Modal Analysis of Jet Engine Inlet Scattering[J]. IEEE Transactions on Antennas and Propagation,1995,43(3):277-85.
    [160]Ross, D. C.,Volakis, J. L.,Anastassiu, H. T. Overlapping Modal and Geometric Symmetries for Computing Jet-Engine Inlet Scattering[J]. IEEE Transactions on Antennas and Propagation,1995, 43(10):1159-63.
    [161]Kim, H.,Ling, H. Modal Propagation Algorithm for Rcs Prediction of Inlet Ducts[C],1993,3: 1412-15.
    [162]Yee, H. Y.,Felsen, L. B. Ray-Optical Analysis of Electromagnetic Scattering in Waveguides[J]. IEEE Transactions on Microwave Theory and Techniques,1969, MTT-17(9):671-83.
    [163]C.A.Chuang,P.H.Pathak. Ray Analysis of Modal Reflection for Three Dimensional Open-Ended Cavities [J]. IEEE Transactions on Antennas and Propagation,1989,37:339-46.
    [164]Wang, X. B., Zhou, X. Y., Cui, T. J.,et al. High-Resolution Inverse Synthetic Aperture Radar Imaging Based on the Shooting and Bouncing Ray Method[C],2008:Southeast University; Microwave Society of CIE; Dongguk University, MINT; YRP R and D Promotion Committee, NiCT; MilliLab, TKK.
    [165]Liu, H.,Binhong, L. I.,Dongsheng, Q. I. Novel Parallel Acceleration Technique for Shooting-and-Bouncing Ray Launching Algorithm[J]. IEICE Transactions on Electronics,2004, E87-C(9):1463-66.
    [166]Savides, T.,Dwolatzky, B. Radar Simulation Using the Shooting and Bouncing Ray Technique[C], 2003,1:307-10.
    [167]Yun, Z.,Iskander, M. F.,Zhang, Z. Development of a New Shooting-and-Bouncing Ray (Sbr) Tracing Method That Avoids Ray Double Counting[C],2001,1:464-67.
    [168]Li, J.,Ma, D.,Wu, Z. Study on Electromagnetic Scattering Characteristics for Complex Target Using Shooting and Bouncing Rays[J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics,2000,26(5):573-76.
    [169]Hazlett, M., Andersh, D. J., Lee, S. W.,et al. Xpatch:A High-Frequency Electromagnetic Scattering Prediction Code Using Shooting and Bouncing Rays[C],1995,2469:266-75.
    [170]Christensen, M. C.,Lee, S. W.,Andersh, D. J. Scattering from Dielectric Loaded Cavities Using Shooting and Bouncing Rays[C],1995,2:1111-11.
    [171]Bhalla, R.,Ling, H. Fast Algorithm for Signature Prediction and Image Formation Using the Shooting and Bouncing Ray Technique[C],1994,3:1990-93.
    [172]Andersh, D. J., Lee, S. W., Beckner, F. L.,et al. Xpatch. A High Frequency Electromagnetic Scattering Prediction Code Using Shooting and Bouncing Rays[C],1994,2:424-24.
    [173]Ling, H.,Chou, R.,Lee, S. W. Shooting and Bouncing Rays:Calculating Rcs of an Arbitrary Cavity[C],1986:293-96.
    [174]Chou, R.,Lee, S. W. Versatile Reflector Antenna Pattern Computation Method:Shooting and Bouncing Rays[J]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),1988,1:120-23.
    [175]Ling, H.,Chou, R.-C.,Lee, S.-W. Shooting and Bouncing Rays:Calculating the Rcs of an Arbitrarily Shaped Cavity[J]. IEEE Transactions on Antennas and Propagation,1989,37(2): 194-205.
    [176]Marzougui, A. M.,Franke, S. J. Scattering from Rough Surfaces Using the 'Shooting and Bouncing Rays'(Sbr) Technique and Comparison with the Method of Moments Solutions[C],1990,4: 1540-43.
    [177]Obelleiro-Basteiro, F.,Rodriguez, J. L.,Burkholder, R. J. Iterative Physical Optics Approach for Analyzing the Electromagnetic Scattering by Large Open-Ended Cavities[J]. IEEE Transactions on Antennas and Propagation,1995,43(4):356-61.
    [178]Senior, T. B. A. Electromagnetic Field Penetration into a Cylinderical Cavity[J]. IEEE Transactions on Electromagnetic Compatibility,1976,18:71-73.
    [179]Shung-Wu, L.,Mittra, R. Fourier Transform of a Polygonal Shape Function and Its Application in Electromagnetics[J]. Antennas and Propagation, IEEE Transactions on,1983,31(1):99-103.
    [180]Ling, H.,Lee, S. W.,Chou, R. C. High-Frequency Rcs of Open Cavities with Rectangular and Circular Cross Sections[J]. Antennas and Propagation, IEEE Transactions on,1989,37(5):648-54.
    [181]胡楚锋.雷达目标rcs测试系统及微波成像诊断技术研究fDl.西安:电磁场与微波技术,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700