用户名: 密码: 验证码:
全瓷冠修复体的破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全瓷材料因其稳定的生物相容性和良好的美学特征被广泛地应用于口腔修复中,然而它们是脆性材料易遭受拉伸破坏,临床成功率并不理想,研究全瓷冠的破坏机理对提高其使用寿命具有重要意义。由于当前测试方法的限制,在半透明全瓷冠中无法观察裂纹起始和扩展过程。本博士论文首先提出了独特的实验和数值分析方法,然后系统地研究了全瓷材料、粘接剂老化、粘接剂种类和树脂基体对全瓷冠承载能力的影响,旨在为临床选材提供指导。主要内容包括:
     1、开发了研究全瓷冠修复体破坏机理的实验和数值方法。提出了2mm厚切片试件的制作方法,通过Hertz接触理论和对比实验论证了2mm厚切片试件模拟全瓷冠修复体的有效性。利用DIC实现了在加载过程中检测各瓷层的裂纹扩展过程。基于逆向工程技术建立了右下第一磨牙全瓷冠三维数值模型,并验证了模型的收敛性。
     2、研究了全瓷冠IPS e.max系统和Zirconia系统的破坏载荷和破坏方式。DIC分析获得了饰瓷亚表面的屈服损伤行为,起裂于亚表面的裂纹可穿透IPS e.max Press核瓷,导致IPS e.max Press核瓷发生整体破坏,但裂纹不能穿透Zirconia核瓷,导致Zirconia系统饰面瓷脱离。结果表明:裂纹不能由低弹性模量、低断裂韧性的饰瓷Vita VM9扩展到高弹性模量、高断裂韧性的核瓷Zirconia。通过三维轴对称接触模型分析得出剪应力引起剪切滑移裂纹,并在拉应力的驱动下扩展。全瓷材料的三维数值模拟表明,高弹性模量的核瓷能承担更多的咬合力,可有效地保护饰瓷和基牙。
     3、研究了疲劳载荷对核瓷断裂韧性的影响。对IPS e.max Press和Zirconia瓷块进行疲劳加载,然后进行压痕实验测试断裂韧性,结果表明:IPS e.max Press断裂韧性显著降低(P=0.001),而Zirconia断裂韧性几乎不受疲劳载荷的影响(P>0.05)。这说明Zirconia的抗疲劳性能比IPS e.max Press的强。经疲劳载荷作用后,静态触压抗折能力实验也表明:IPS e.max系统受疲劳载荷影响承载能力显著下降,而Zirconia系统的承载能力下降不具有统计学意义。两者的实验结论一致。
     4、研究了树脂粘接剂老化对全瓷冠承载能力和破坏方式的影响。分别在干燥和在水中存放老化的全瓷冠试件的颊尖施加静态触压载荷。结果发现:干燥的试件主要发生饰瓷崩瓷破坏;而经水老化的试件在小载荷作用颈部肩台处出现明显脱粘,并且IPS e.max试件发生核瓷下表面放射状裂纹破坏,承载能力显著地下降(P=0.000);Zirconia系统仍以饰瓷崩瓷破坏为主,承载能力下降不具有统计学意义(P>0.05)。数值模拟分析表明,粘接剂老化会导致核瓷下表面的拉应力集中系数增大,增加放射状裂纹破坏的风险。此研究成果合理地解释了实验室测试与临床结果的差异。
     5、研究了粘接剂弹性模量(Panavia F E=18.3GPa和Variolink IIE=8.3GPa)对全瓷冠承载能力的影响。静态触压破坏实验表明,两种粘接系统的IPS e.max试件的承载能力具有显著差异(P<0.05),高弹性模量的粘接剂可提高全瓷冠的承载能力。数值模拟分析表明,弹性模量大的粘接剂可降低全瓷冠拉应力水平。同时研究了粘接剂4种厚度模型(60、90、120、150μm)的应力分布水平,结果表明90μm厚模型的全瓷冠应力水平最低。
     6、研究了树脂基体模量(Z100E=16.6GPa和Surefil E=9.3GPa)对全瓷冠承载能力的影响。静态触压破坏实验表明,弹性模量大的树脂基体可提高全瓷冠的承载能力。数值模拟结果显示,弹性模量大的树脂基体降低全瓷冠的拉应力水平。
All-ceramic crowns have been widely used in prosthodontics because oftheir stable biocompatibility and aesthetic characteristics. However, asthey are brittle materials and vulnerable to tensile failure, the surviverate is not satisfied. It is important to study the failure mechanisms ofall-ceramic crowns to improve the service life. Due to limitations oflaboratory test methods, the initiation and propagation of cracksoccurring in opaque stressed all-ceramic crowns was unable to beexamined. This doctorial dissertation proposed a unique experimanentaland numerical method and then studied the influences of all-ceramicmaterials, cement aging, cement types and resin substrate on theload-bearing capacity of all-ceramic crowns with intention to provideguidance for clinical applications. The main contributions of the studyare listed as follows:
     1. The experimental and numerical methods for studying failuremechanism of all-ceramic crown restorations have been proposed.Sectioned all-ceramic crowns with2mm thickness have been designedand fabricated to study the failure mechanisms of all-ceramic crowns. DIC was carried out to detect the crack initiation and propagation inlayer structures during loading. The3D numerical model is developedbased on the geometry of the first mandible molar using reverseengineering technology. The convergence of the model was verified.
     2. The fracture modes and critical fracture loads of all-ceramiccrowns for IPS e.max and Zirconia have been studied. Sub-surface yielddamge occurring in veneer was detected by DIC analysis during thequasistatic contact loading. Cracks initiated from subsurface penetratedinto the IPS e.max Press core and led to bulk fracture in IPS e.maxspecimens,while deflected in Zirconia core and caused chipping in theveneer layer. It is found that cracks are unlikely to propagate fromveneer with low-modulus and low-toughness ceramic (Vita VM9) to theceramics with high-modulus and high toughness ceramic (Zirconia).Results of the three-dimensional axisymmetric contact model showedthat cracks were caused by shear stress and were driven by tensile stress.The three-dimensional numerical simulation of all-ceramic crownsshowed that the core ceramics with high elastic modulus can bear largebite forces and protect veneer and dental substrate.
     3. The effect of fatigue on fracture toughness of ceramics has beenstudied. The laboratory studies indicated that the fracture toughness ofIPS e.max Press reduced significantly with fatigue loads, while noappreciable variation was found in Zirconia. The fatigue resistance ofZirconia is much stronger than that of IPS e.max Press. The quasistaticcontact tests also suggested that the load-bearing capacity of IPS e.maxspecimens can be significantly affected by fatigue loads. Bothexperimental results were consistent.
     4. The influence of cement aging on load-bearing capacities andfracture modes of all-ceramics has been studied. Quasi-static contactload is applied on buccal cusp bridge of dry and water aging specimens.Chipping was the dominant failure mode for dry specimens regardless ofthe ceramic types. An apparent debonding between the core andsubstrate was detected at a low loading level in water aging specimens.The load-bearing capacity for IPS e.max crowns were significantlyreduced with bulk failure due to cement aging, while zirconia specimens still underwent chipping with a slight drop of the load-bearing capacity.Numerical results indicated that cement aging could lead to tensile stressconcentration on the lower surface of the core and increase the risk ofradial cracks, which was detrimental to low-strength dental ceramics.The results of this study rationally explained the differences in thelaboratory tests and clinical examinations.
     5. The effect of the elastic modulus of cements (Pavavia F E=18.3GPaand Variolink II E=8.3GPa) on load-bearing capacities and fracturemodes of all-ceramic has been studied. Quasi-static contact tests showedthat there was a significant difference in load-bearing capacities in thetwo types of adhesive specimens. The cement with high elastic moduluscould improve load-bearing capacity of all-ceramic crowns. Numericalresults demonstrated that the high elastic modulus of cement coulddecrease the tensile stress level in core ceramics. The optimal cementthickness of90μm was suggested from the four enumerated thicknesses(60,90,120and150μm). 6. The effect of elastic modulus of the resin substrate (Z100E=16.6GPa和Surefil E=9.3GPa) on load-bearing capacity and fracture mode ofall-ceramic crowns has been studied. Quasi-static contact tests showedthat there was a significant difference in load-bearing capacities in thetwo types of resin substrates. Numerical results demonstrated that thehigh elastic modulus of the resin substrate could decrease tensile stresslevels in core ceramics.
引文
[1]徐君伍,口腔修复学,人民卫生出版社,2002,11,第四版
    [2] Chan C and Weber H. Plaque retention on teeth restored withfull-ceramic crowns: a comparative study. J Prosthet Dent1986;56:666-71.
    [3] Anusavice KJ. Degradability of dental ceramics. Adv Dent Res1992;6:82-9.
    [4] Josset Y, Oum’Hamed Z, Zarrinpour A, et al. In vitro reactions ofhuman osteoblasts in culture with Zirconia and alumina ceramics. JBiomed Mater Res1999;47(4):481-93.
    [5] Morena R, Lockwood PE and Fairhurst CW. Fracture toughness ofcommercial dental porcelains. Dent Mater1986;2:58-62.
    [6] Scherrer SS, Kelly JR, Quinn GD, et al. Fracture toughness (KIC) ofa dental porcelain etermined by fractographic analysis. Dent Mater1999;15:342-8.
    [7] Albakry M, Guzzato M and Swain MV. Fracture toughness andhardness evaluation of three pressable all-ceramic dental materials. JDent2003;31:181–8.
    [8] Rekow ED, Zhang GM, Thomspon V, et al. Effects of geometry onfracture initiation and propagation in all-ceramic crowns. J BiomedMater Res B: Applied Biomaterials2008;88:436-46.
    [9] Nagai T, Kawamoto Y, Kakeh ashi Y, et al. Adhesive bonding of alithium disilicate ceramic material with resin-based luting agents. J OralRehabil2005;32:598-605
    [10] Kelly JR. Clinically relevant approach to failure testing offull-ceramic restorations. J Prosthet Dent.1999;81:652–61.
    [11]孟玉坤,全瓷冠桥修复材料的临床选择,国际口腔医学杂志,2010;37:1-6
    [12] Mesaros AJ, Evans DB and Schwartz RS. Influence of a dentinbonding agent on the fracture load of Dicor. Am J Dent1994;7:137-40.
    [13] Burke FJ. The effect of variations in bonding procedure on fractureresistance of dentin-bonded all-ceramic crowns. Quintessence Int1995;26:293-300.
    [14] Clelland NL, Ramirez A, Katsube N, et al. Influence of bondquality on failure load of leucite-and Lithia disilicate–based ceramics. JProsthet Dent2007;97:18-24.
    [15] Kamposiora P, Papavasilious G, Bayne SC, et al. Finite elementanalysis estimates of cement microfracture under complete veneercrowns. J Prosthet Dent1994;71:435-441.
    [16]鲁成林,张东升,张修银,等,牙冠修复体受触压载荷破坏的实验研究,应用力学学报2008;25:308-11
    [17] Fradeani M, D’Amelio M, Redemagni M, et al. Five-year follow-upwith Procera all-ceramic crowns. Quintessence Int2005;36:105-13.
    [18] Fradeani M and Redemagni M. An11-year clinical evaluation ofleucite-reinforced glass-ceramic crowns: a retrospective study.Quintessence Int2002;33:503-10.
    [19] Malament KA and Socransky SS. Survival of Dicor glass-ceramicdental restorations over16years. Part III. Effect of luting agent andtooth or tooth-substitute core structure. J Prosthet Dent2001;86:511.
    [20] Ortorp A, Kihl ML and Carlsson GE. A5-year retrospective studyof survival of zirconia single crowns fitted in a private clinical setting. JDent2012;40:527-30.
    [21] Manos N and Budny R. Exploring dentistry’s roots can help usshape the profession’s future. Inside Dental Technology.2011,2.
    [22] Denry IL. Recent advances in ceramics for dentistry. Crit Rev OralBiol Med.1996;7(2):134-43.
    [23] Land CH. A new system of restoring badly decayed teeth by meansof an enameled coating. Independent Pract.1886;7:407.
    [24] Weinstein M, Katz S and Weinstein AB. Fused porcelain-to-metalteeth. US Patent, No.3052982. Sept.1962
    [25] Walton TR. A10-year longitudinal study of fixed prosthodontics:clinical characteristics and outcome of single-unit metal-ceramic crowns.Inter J Prosthodont.1999;12:519-26.
    [26] Burke FJT, Lucarotti PSK. Ten-year outcome of crowns placedwithin the general dental services in England and Wales. Journal ofDentistry.2009;37:12-24.
    [27] Rosenblum MA, Schulman A. A review of all-ceramic restorations.J Am Dent Assoc.1997;128:297-307.
    [28] Bergman M, Bergman B and Sremark R. Tissue accumulation ofnickel released due to electrochemical corrosion of non-precious dentalcasting alloys. J Oral Rehabil.1980;7:325-30.
    [29] Nakajima H, Okabe T. Titanium in dentistry: development andresearch in the U.S.A. Dent Mater.1996;15:77-90.
    [30] Wassermann A, Kaiser M and Strub JR. Clinical long-term resultsof VITA in-ceram classic crowns and fixed partial dentures: a systematicliterature review. Inter J Prosthodont2006;19:355–63.
    [31] Olsson KG, Furst B, Andersson B, Carlsson GE. A long-termretrospective and clinical follow-up study of In-Ceram Alumina FPDs.Inter J Prosthodont.2003;16:150–6.
    [32] Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxidepartially-stabilized Zirconia all-ceramic bridges after veneering andmechanical fatigue testing. Dent Mater.2005;21:476–82.
    [33] Manicone P, Iommetti P, Raffaelli L. An overview of Zirconiaceramics: base properties and clinical application. J Dentist.2007;35:819–26.
    [34] McLean JW, Hughes TH. The reinforcement of dental porcelainwith ceramic oxides. Br Dent J.1965;119:251-67.
    [35] Oh SC, Dong JK, Luthy H, et al. Strength and microstructure of IPSEmpress2glass-ceramic after different treatments. Int JProsthodont.2000;13:468-72.
    [36] IPS e.max Press scientific documentation. Ivoclar Vivadent2007.
    [37] Haselton DR,Diaz-Arnold AM and Hillis SL. Clinical assessmentof high-strength all-ceramic crowns. J Prosthet Dent2000;83:396-401.
    [38] Magne P, Belser U. Esthetic improvements and in vitro testing ofIn-Ceram Alumina and Spinell ceramic.Int JProsthodont.1997,10:459-66.
    [39]张斌,陈吉华,李秦新, TZP陶瓷的性能研究,中国陶瓷工业,2002;4:102-12.
    [40]巢永烈,孟玉坤,廖运茂,等, GI-II型粉浆涂塑渗透陶瓷试件的弯曲强度测试,口腔材料器械杂志,998;7:63-5.
    [41]王富,陈吉华,高婧,等.晶化热处理对新型牙科玻璃陶瓷微观结构和性能的影响.功能材料2009;40:455-8.
    [42]李国华,陈吉华,施长溪,牙科纳米氧化锆的性能及微观结构,中国美容医学,2003,12:126-7.
    [43] Sjogren G, Lantto R, Granberg A, et al. Clinical examination ofleucite reinforced glass–ceramic crowns (Empress) in general practise: aretrospective study. Int J Prosthodont.1999;12:122–8.
    [44] Lehner C, Struder S and Scha¨rer P. Seven year results of leucitereinforced glass–ceramic crowns. J Dent Res.1998;77:802. Abstr.No.1369.
    [45] Malament KA and Socransky SS. Survival of Dicor glass–ceramicdental restorations over14years: Part I. Survival of Dicor completecoverage restorations and effect of internal surface acid etching, toothposition, gender, and age. J Prosthet Dent.1999;81:23–32.
    [46] Deng Y, Lawn BR and Lloyd IK. Characterization of damagemodes in dental ceramic bilayer structures. J Biomed Mater Res2002;63:137-45.
    [47] Dong JK, Luthy H, Wohlwend A, et al. Heat-pressed ceramics:technology and strength. Int J Prosthodont.1992;5:9-16.
    [48] Oh SC, Dong JK, Luthy H, et al. Strength and microstructure of IPSEmpress2glass-ceramic after different treatments. Int JProsthodont.2000;13:468-72.
    [49] Andersson M, Oden A. A new all-ceramic crown: A dense-sintered,high-purity alumina coping with porcelain. Acta Odontol Scand.1993;51:59-64.
    [50] Studart AR, Filser F, Kocher P, et al. Fatigue of Zirconia undercyclic loading in water and its implications for the design of dentalbridges. Dent Mater2007;23:106-14.
    [51] Chan HM. Layered ceramics: processing and mechanical behavior.Annu Rev Mater Sci1997;27:249-82.
    [52]骆小平,赵云凤,牙科全瓷冠修复体的研究进展,中华口腔医学杂志,2000;35:158-60.
    [53]王富,牙科二硅酸锂玻璃陶瓷的制备及热压铸工艺的研究,第四军医大学,博士论文,2009
    [54] McMeeking RM, Evans AG. Mechanics of t ransformation2toughening in brittle materials. J Am Ceram Soc1982;65:242-6.
    [55] Kelly PM, Francis Rose LR. The martensitic transformation inceramics-its role in transformation toughening. Prog MaterSci,2002,47(5):463-557.
    [56] Kelly JR. Dental ceramics: current thinking and trends Dent ClinNorth Am2004;48:513-30.
    [57] ISO6872: Dentistry–ceramic materials. Geneva: InternationalOrganization for Standardization.2008.
    [58] Morena R, Lockwood PE, Fairhurst CW. Fracture toughness ofcommercial dental porcelains. Dental Materials1986;2:58-62.
    [59] Frank FC, Lawn BR. On the theory of Hertzian fracture. Proc.R.Soc.London,1967;291-306.
    [60] Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation ofindentation techniques for measuring fracture toughness: I, direct crackmeasurements. J. Am. Ceram. Soc.1981;64:533-38.
    [61] Chantikul P, Anstis GR, Lawn BR, et al. A critical evaluation ofindentation techniques for measuring fracture toughness: II, strengthmethod. J. Am. Ceram. Soc.1981;64:539-43.
    [62] Steinbrech RW, Knehans R and Schaarwachter W. Increase ofcrack resistance during slow crack growth in AIO bend specimens. JMater Sci1983;18:265-70.
    [63] Albakry M, Guzzato M, Swain MV. Fracture toughness andhardness evaluation of three pressable all-ceramic dental materials. JDent2003;31:181–8.
    [64] He LH, Swain MV. Nanoindentation derived stress-strain propertiesof dental materials. Dent Mater2007;23:814-21.
    [65] Rekow D, Thompson. Engineering long term clinical success ofadvanced ceramic prostheses. J Mater Sci:Mater Med2007;18:47-56.
    [66] Cehreli MC, Kokat AM, Akca K. CAD/CAM Zirconia vs. slipcastglass-infiltrated alumina/Zirconia all-ceramic crowns:2-year results of arandomized controlled clinical trial.Journal of Applied Oral Science2009;17:49–55.
    [67] Ortorp A, Kihl ML, Carlsson GE. A3-year retrospective andclinical follow-up study of Zirconia single crowns performed in a privatepractice. Journal of Dentistry2009;37:731–6.
    [68] Lawn BR, Wilshaw TR. Indentation fracture: principles andapplications. J Mater Sci.1975;10:1049-81.
    [69] Lawn BR. Fracture of brittle solids. CH.8. Cambridge UniversityPress1993.
    [70] White SN, Zhao XY, Zhaokun Y, Li ZC. Cyclic mechanical fatigueof a feldspathic dental porcelain. Int J Prosthodont1995;8:413-20.
    [71] Denry IL, Rosenstiel SF. Hertzian indentation response of Dicormachinable glass-ceramics (abstract). J Dent Res1995;74:522.
    [72] Peterson IM, Pajares A, Lawn BR, et al. Mechanicalcharacterization of dental ceramic by Hertzian contacts. J Dent Res1998;77:589-602.
    [73] Peterson IM, Pajares A, Guiberteau F, et al. Contact fracture ofbrittle bilayer coating on soft substrates. J Mater Res2001;16:115-26.
    [74] Lawn BR, Lee SK, Peterson IM, et al. A model of strengthdegradation from Hertzian contact damage in tough ceramics. J AmCeram Soc1998;81:1509-20.
    [75] Qasim T, Bush MB, Hu X, et al. Contact damage in brittle coatinglayers: influence of surface curvature. J Biomed Mater Res B2005;73:179–85.
    [76] Ford C, Qasim T, Bush MB, et al. Margin failures in crown-likebrittle structures: off-axis loading. J Biomed Mater Res B2008;85:23-8.
    [77] Sornsuwan T and Swain MV. Influence of occlusal geometry onceramic crown fracture; role of cusp angle and fissure radius. J MechanBehavior Biomed Mater.2011;4:1057-66.
    [78] Zhang Y, Bhowmick S, Lawn BR. Competing fracture modes inbrittle materials subject to concentrated cyclic loading in liquidenvironments: monoliths. J Mater Res2005;20:2021-29;
    [79] Bhowmick S, Zhang Y, Lawn BR. Competing fracture modes inbrittle materials subject to concentrated cyclic loading in liquidenvironments: bilayer structures.2005;20:2792-800.
    [80] Hermann I, Bhowmick S, Zhang Y, et al. Competing fracturemodes in brittle materials subject to concentrated cyclic loading in liquidenvironments: trilayer structures.2006;26:512-21.
    [81] Kim JW, Kim JH, Thompson VP, et al. Sliding contact fatiguedamage in layerd ceramic structures. J Dent Res2007;86:1046-1050.
    [82] Kim B, Zhang Y, Pines M, et al. Fracture of porcelain-veneeredstructures in fatigue. J Dent Res2007;86:142-6.
    [83] Coelho PG, Silva NR, Bonfante EA, et al. Fatigue testing of twoporcelain–Zirconia all-ceramic crown systems Dent Mater2009;25:1122-7.
    [84] Lorenzoni FC, Martins LM, Silva NRFA, et al. Fatigue life andfailure modes of crowns systems with a modified framework design. JDent2010;38:626-34.
    [85] Jang GW, Kim HS, Choe HC, et al.Fracture Strength andMechanism of Dental Ceramic Crown with Zirconia Thickness. ProcediaEngineering2011;10:1556-60.
    [86] Zhang Y, Allahkarami M, Hanan JC. Measuring residual stress inceramic zirconia-porcelain dental crowns by nanoindentation. J MechanBehav Biomed Mater2012;6:120-7.
    [87] Schmitter M, Mullar D and Rues S. Chipping behavior ofall-ceramic with zirconia framework and CAD/CAM manufacturedveneer. J Denti2012;2:154-62.
    [88] Bonfante EA, Coelho PG, Guess PC, et al. Fatigue and damageaccumulation of veneer porclain pressed on Y-TZP. J Dent2010;38:318-24.89Jung YG, Peterson M, Kim DK, et al. Lifetime limiting strengthdegradation from contact fatigue in dental ceramics. J Dent Res2000;79:722-31.
    [90] Chevalier J, Olagnon C, Fantozzi G. subcritical crack propagationin3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc1999;82:3128-9.
    [91] Pittayachawan P, McDonald A, Petrie A, et al. The biaxial flexuralstrength and fatigue property of Lava Y-TZP dental ceramic. Dent Mater2007;23:1018–29.
    [92] Scherrer SS, Quinn GD, Quinn JB. Fractographic failure analysis ofa Procera AllCeram crown using stereo and scanning electronmicroscopy. Dent Mater2008;24:1107-13.
    [93] Quinn JB, Quinn GD, Kelly JR, et al. Fractographic analyses ofthree ceramic whole crown restoration failures. Dent Mater2005;21;920-9.
    [94] Imanishi A, Nakamura T, Ohyama T.3-D Finite element analysis ofall-ceramic posterior crowns. Journal of Oral Rehabilitation2003;30:818-22.
    [95] De Jager N, Kler Md, Zel. The influence of different core materialon the FEA-determined stress distribution in dental crowns. Dent Mater2006;22:234-42
    [96] Coelho PG, Silva NR, Thompson VP, et al. Effect of proximal wallheight on all-ceramic crown core stress distribution: a finite elementanalysis study. Int J Prosthodont.2009;22:78-86.
    [97] Zhang L, Wang ZY, Chen JJ, et al. Probabilistic fatigue analysis ofall-ceramic crowns based on the finite element method. J Biomecha2010;43:2321-6.
    [98]刘伟才,张志升,黄承敏,等,牙科Vita mark2可切削陶瓷赫兹触压循环疲劳研究,华西口腔医学杂志,2006,26,306-8
    [99]刘伟才,黄承敏,巢永烈,等,牙科陶瓷赫兹触压破坏研究,口腔颌面修复学杂志,2005,6,193-5
    [100]王华蓉,蒋文涛,陈国亮,等,MC CAD/CAM全瓷冠三维有限元应力分析,医用生物力学,2007,22,137-40
    [101]郭大伟,张保卫,葛艳,等,全瓷冠牙备体聚合度对全瓷冠边缘适合性及抗压强度的影响,口腔颌面修复学杂志,2006,7,27-9.
    [102]贾骏,段媛媛,周建学,等,下颌第一磨牙全瓷冠的三维有限元分析,临床口腔医学杂志,2006,22,266-8
    [103]吴艳玲,牙科全瓷材料的生物力学性能研究,上海交通大学医学院硕士学位论文,2009
    [104]王卫国,张少锋,陈建军,等,下颌第一磨牙全瓷冠参数化三维有限元模型的建立,临床口腔医学杂志,2011,27,8-11
    [105] Hayashi M, Tsuchitani Y, Kawamura Y, et al. Eight-year clinicalevaluation of fired ceramics inlays. Oper Dent2000;25:473-81.
    [106] Addision o, Marquis PM and Fleming GJP. Resin Elasticity andthe Strengthening of All-ceramic Restorations. J Dent Res2007;86:519-23.
    [107] Komine F, Tomic M, Gerds T, et al. Influence of different adhesiveresin cements on the fracture strength of aluminum oxide ceramicposterior crowns. J Prosthet Dent2004;92:359-64.
    [108] Clelland NL, Ramirez A, Katsube N, et al. Influence of bondquality on failure load of leucite-and lithiadisilicate-based ceramics. JProsthet Dent2007;97:18-24.
    [109] Casucci A, Monticelli F, Goracci C, et al. Effect of surfacepre-treatments on the zirconia ceramic–resin cement microtensile bondstrength. Dent Mater2011;27:1024-30.
    [110] Amaral R, Ozcan M, Bottino MA, et al. Microtensile bond strengthof a resin cement to glass infiltrated Zirconia-reinforced ceramic: Theeffect of surface conditioning. Dent Mater2006;22:283-90.
    [111] Ocana M, Valandro LF, Amaral R, et al. Bond strength durabilityof a resin composite on a reinforced ceramic using various repairsystems. Dent Mater2009;25:1477-83.
    [112] McLean JW and von Fraunhofer JA. The estimation of cement filmthickness by an in vivo technique. J Br Dent1971;131:107-11.
    [113]孙强,何天鹏,韩东,等,非均匀的粘接剂层的厚度对全瓷冠应力分布的影响,口腔颌面修复学杂志,2006,7,181-4
    [114] May LG, Kelly JR, Marco A, et al. Effects of cement thickness andbonding on the failure loads of CAD/CAM ceramic crowns:Multi-physics FEA modeling and monotonic testing. Dent Mater,2012;28: e99-e109.
    [115] Liu B, Lu CL, Zhang XY, et al.The Effects of Adhesive Type andThickness on Stress Distribution in Molars Restored with All-CeramicCrowns J Prosthodon2011;20:35-44.
    [116] Chazine M, Casucci A, Mazzoni A, et al. Interfacial nanoleakageand internal cement thickness of three esthetic crown systems. DentMater,2012;28:1105-11.
    [117] Hirasawa T, Hirano S, Hirabayashi S, et al. Initial dimensionalchange of composites in dry and wet conditions. J Dent Res1983,62:28–31.
    [118] Oyagüe RC, Monticelli F, Toledano M, et al. Effect of water agingon microtensile bond strength of dual-cured resin cements to pre-treatedsintered zirconium-oxide ceramics. Dent Mater2009;25:392-99.
    [119] Silva NRFA, De Souza GM, Coelho PG, et al. Effect of waterstorage time and composite cement thickness on fatigue of aglass-ceramic trilayer system. J Biomed Mater Res Part B Appl Biomater.2008;84:117-23.
    [120] Shahin R and Kern M. Effect of air-abrasion on the retention ofzirconia ceramic crowns luted with different cements before and afterartificial aging. Dent Mater2010;26:922-8.
    [121] Rungruanganunt P and Kelly JR. Insights into “bonding” ofall-ceramics influenced by cement, sandblasting and water storage time.Dent Mater2012;9:939-44.
    [122]接触力学,Johnson KJ著,徐秉业等翻译,1992。
    [123] Craig, RG. Restorative Dental Materials. Mosby Elsevier HealthScience, Orlando,1997;56–57.
    [124]鲁成林,吴艳玲,张修银,等,全瓷冠触压破坏的实验研究,工程力学2009;246-248
    [125] Sornsuwan T and Swain MV. The effect of margin thickness,degree of convergence and bonding interlayer on the marginal failure ofglass-simulated all-ceramic crowns. Acta Biomater (2012),http://dx.doi.org/10.1016/j.actbio.2012.08.006
    [126] Ferrario VF, Sforza C, Zanotti G, et al. Maximal bite forces inhealthy young adults as predicted by surface electromyography. J Dent2004;32:451–7.
    [127] Quinn GD. Fractography of ceramics and glasses. A NISTrecommended practice guide; Special Publication960-16; Washington,DC: National Institute of Standards and Technology; May2007.
    [128] Scherrer SS, Kelly JR, Quinn GD, et al. Fracture toughness of adental porcelain determined by fractographic analysis. Dent Mater1999;15:342-8.
    [129]龚江宏,陶瓷材料断裂力学,2001
    [130]白世鸿,陈彦,乔生儒,等,SiC陶瓷高温弯曲强度的Weibull模量研究,机械强度,2000,22,312-4
    [131] Isgro G, Addsion O and Fleming GJP. The deformation andstrength of a dental ceramic following resin-cement coating. J Dent2011;39:122-7.
    [132] Isgro G, Addsion O and Fleming GJP. Transient and residualstresses induced during the sintering of two dentin ceramics. Dent Mater2011;27:379-85.
    [133] Albakry M, Guzzato M and Swain MV. Fracture toughness andhardness evaluation of three pressable all-ceramic dental materials. JDent2003;31:181–8.
    [134] He LH and Swain MV. Nanoindentation derived stress-strainproperties of dental materials. Dent Mater2007;23:814-821.
    [135] Swain MV. Unstable cracking (chipping) of veneering porcelain onall-ceramic dental crowns and fixed partial dentures. Acta Biomater2009;5:1668-1677.
    [136] Aboushelib MN, Jager ND, Kleverlaan CJ, et al. Effect of loadingmethod on the fracture mechanics of two layered all-ceramic restorativesystems. Dent Mater.2007;23:952-59.
    [137] Emami N, Soderholm KM and Berglund LA. Effect of light powerdensity variations on bulk curing properties of dental composites. JDentist2003;31:189-96.
    [138] Lawn BR, Deng Y, Miranda P, et al. Overview: Damage in brittlelayer structures from concentrated loads. J. Mater. Res.2002;17:3019-36.
    [139] Lawn BR. Indentation of Ceramics with Spheres: A century afterHertz. J Ceram Soc1998;81:1977-94.
    [140] Fisher-cripss AC. Elastic-plastic behavior in materials loaded witha spherical indenter. J mater Sci1997;32:727-36.
    [141] Lawn BR and Marshall, Nonlinear stress-strain curves for solidscontaing closed cracks with friction. J Mech Phys Solids1998;46:85-113
    [142] Cai H, Stevens Kalceff MA, et al. Deformation and Fracture ofmica-Containing Glass-Ceramics in Hertzian Contacts. J Mater Res1994;9:762–70.
    [143] Fisher-cripss AC. Elastic-plastic behavior in materials loaded witha spherical indenter. J mater Sci1997;32:727-36.
    [144] Studart AR, Filser F, Kocher P, et al. Mechanical and fracturebehavior of veneer-framework composites for all-ceramic dental bridges.Dent Mater2007;23:115-23.
    [145] Tabor D. hardness of metals. Oxford:Clarendon Press1951.
    [146] Lawn BR, Padture NP, Cait Hongda, et al. Making ceramics“ductile”.Science1994;25:1114-6.
    [147] Kim JW, Bhowmick S, Hermann I, et al. Transverse fracture ofbrittle bilayers: relevance to failure of all-ceramic dental crowns. JBiomedic Mater ResB Appl Biomater2006;9:58-65.
    [148] Ortorp A, Kihl ML, Carlsson G. A3-year retrospective and clinicalfollow-up study of Zirconia single crowns performed in a privatepractice. J Dentist2009;37:731-6.
    [149] Studart AR, Filser F, kocher P, et al. Fatigue of Zirconia undercyclic loading in water and its implications for the design of dentalbridges. Dent Mater2007;23:106-14.
    [150] Vita VM9working instructions.
    [151] Scientific Documentation IPS e.max Ceram. Ivoclar Vivadent
    [152] Wuttiphan S, Lawn BR and Padture NP. Crack suppression instrongly bonded homogeneous/heterogeneous laminates: a study onglass/glass ceramic bilayers. J Am Soc1996;79:634-40.
    [153] Lawn BR, Pajares A, Zhang Y, et al. Materials design in theperformance of all-ceramic crowns. Biomater2004;25:2885-2892.
    [154] Walter MH, Wolf BH and Wolf KW. Six-year clinical performanceof all-ceramic crowns with alumina cores. Int J Prosthodont2006;19:162-63.
    [155] Zhang Y and Lawn B. Long-term strength of ceramics forbiomedical applications. J Biomed Mater Res2004;69B:166–72.
    [156] Lohbauer U, Muller FA, Petschelt A. Influence of surfaceroughness on mechanical strength of resin composite versus glassceramic materials. Dent Mater2008;24:250-6.
    [157] Quinn JB, Sundar V and Lloyd IK. Influence of microstructureand chemistry on the fracture toughness of dental ceramics. Dent Mater2003;19:603-11.
    [158] Anderson DJ. Measurement of stress in mastication: Ⅰ,Ⅱ. J DentRes1956;35:664-71.
    [159] Chen HY, Hickel R, Setcos JC, et al. Effects of surface finish andfatigue testing on the fracture strength of CAD-CAM andpressed-ceramic crowns. J Prosthet Dent1999;82(4):468–75.
    [160] Kelly JR. ceramics in restorative and prosthetic dentistry. Annurev mater sci1997;27:443-68.
    [161]黎明,温诗铸,纳米压痕技术理论基础,机械工程学报,2003,39,
    [162] Denry I, Kelly JR. State of the art of Zirconia for dentalapplications. Dent Mater2008;24:299-307
    [163] Albakry M, Guzzato M and Swain MV. Influence of hot pressingon the microstructure and fracture toughness of two pressable dentalglass-ceramics. J Biomed Mater Res B Appl Biomater.2004;71:99-107.
    [164] Tsalouchou E, Cattell M, Knowles JC, et al. Fatigue and fractureproperties of yttria partially stabilized zirconia crown systems. DentMater2008;24:308-18.
    [165] Kohorst P, Dittmer MP, Borchers L, et al. Inflence of cyclic fatiguein water on the load-bearing capacity of dental bridges made of zirconia.Acta Biomater2008;4:1440-7.
    [166] Taira M, Nomura Y, Wakasa Y, et al. Studies on fracture toughnessof dental ceramics. Journal of Oral Rehabilitation1990;17:551-63.
    [167] Seghi RR, Denry IL, Rosenstiel SF. Relative fracture toughness andhardness of new dental ceramics. Journal of Prosthetic Dentistry1995;74:145—150.
    [168] Fischer H and Marx R. fracture toughness of dental ceramics:comparison of bending and indentation method. Dent Mater2002;18;12-9.
    [169] IPS e.max Five-year clinical performance report. The dentaladvisor2012
    [170] Etman MK and Woolford MJ. Three-year clinical evaluation oftwo ceramic crowns systems: a preliminary study. J Prosth Dent
    [171] Denry I, Kelly JR. State of the art of Zirconia for dentalapplications. Dent Mater2008;24:299-307
    [172] Hannink RHJ, Kelly PM, Muddle BC. Transformation tougheningin Zirconia containing ceramics. J Am Ceram Soc2000;83:461–87.
    [173] Borchers L, Stiesch M,Bach F W et al. Influence of hydrothermaland mechanical conditions on the strength of zirconia. Acta Biomater2010;64547-52.
    [174] Anderson DJ. Measurement of stress in mastication: I, II. J DentRes1956;35:664-71.
    [175] Pagniano RP, Seghi RR, Rosenstiel SF, et al. The effect of a layerof resin luting agent on the biaxial flexure strength of two all-ceramicsystems. J Prosthet Dent2005;93:459-66.
    [176] Ocana, M., Valandro, L.F., Amaral, R., Leite, F. and Bottino,M.A., Bond strength durability of a resin composite on a reinforcedceramic using various repair systems. Dent Mater2009,25:1477-83.
    [177] Ortorp A, Kihl ML and Carlsson GE. A3-year retrospective andclinical follow-up study of Zirconia single crowns performed in a privatepractice. J Dentist2009;37:731-6.
    [178] Rafferty BT, Janal MN, Zavanelli RA et al. Design feture of athree-deminsional molar crown and related the principal stress. A finiteelement model study. Dent Mater2010;153-63.
    [179] Heikkinen TT, Matinlinna JP, Vallittu PK et al. Dental Zirconiaadhesion with silicon compounds using some experimental andconventional surface conditioning methods. Silicon2009;1:199-202.
    [180] Heikkinen TT, Lassila LVJ, Matinlinna JP, et al. Thermocyclingeffects on resin bond to silicatized and silanized Zirconia. J Adhes SciTechn2009;23:1043-1051
    [181] Park JH, S Duarte J, Blatz M, et al. An in vitro evaluation of thelong-term resin bond to a new densely sintered high-purityzirconium-oxide ceramic surface. J Prosth Dentist2009;101:29-38.
    [182] Holderegger C, Sailer I, Schuhmacher C, et al. Shear bondstrength of resin cements to human dentin. Dent Mater,2008;25:392-99.
    [183] Liu B, Lu CL, Zhang XY, et al.The Effects of Adhesive Type andThickness on Stress Distribution in Molars Restored with All-CeramicCrowns J Prosthodon2011;20:35-44.
    [184] Dejak B and M MEng A. Three-dimensional finite elementanalysis of strength and adhesion of composite resin versus ceramicinlays in molars. J Prosth Dentist2008;99:131-40.
    [185] Tay FR and Pashley DH. Monoblocks in root canals-a hypotheticalor a tangle goal. J Endod.2007;33:391–8.
    [186]付强,李勇,王华蓉,等,粘接剂厚度对Plat铸造陶瓷与本牙质粘接强度的影响,临床医学口腔杂志1999
    [187] Yoshinari M and Derand T. Fracture strength of all-ceramiccrowns. Int J Prosthodont,1994,7:329-338.
    [188] Zhang DS, Lu CL, Zhang XY et al. Contact fracture of full-ceramic crown Subjected to occlusal Loads. Journal of biomechanics2008;41:2995-3001.
    [189] Ausiello P, Apicella A and Davidson CL. Effect of adhesive layerproperties on stress distribution in composite restorations—a3D finiteelements analysis. J Dent Mater2002;18:295-303
    [190] Smith DC. Dental cements. Current status and future prospects.Dent Clin North Am1983;27:763-792
    [191] Chazine M, Casucci A, Mazzoni A, et al. Interfacial nanoleakageand internal cement thickness of three esthetic crown systems. DentMater2012;28:1105-1111.
    [192] Manhart J, Chen H, Hickel R. The suitability of packableresin-based composites for posterior restorations. J Am Dent Assoc2001;132:639-45.
    [193]付钢,杜莉,任媛姝,等,不同设计桩核的后牙残根核桩冠修复体的三维有限元分析,华西口腔医学杂志,2009,27,24-8
    [194] Saygili G, Sahmali S and Demirel F. Changes in the MechanicalProperties of Tooth-colored Direct Restorative Materials in Relation toTime. Polym. Adv. Technol.2003;14:616-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700