用户名: 密码: 验证码:
半乳糖凝集素-3在舌癌侵袭和转移中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:舌癌是口腔颌面部最常见的恶性肿瘤之一,在我国约占全部口腔癌的40%。舌癌复发、转移率高,临床预后较差。尽管近几十年来其治疗方法不断得以改进和完善,但患者的五年生存率并未得到显著提高。肿瘤的局部复发和区域性淋巴转移是舌癌患者治疗失败的主要原因,而肿瘤细胞的迁移和侵袭是肿瘤转移和复发过程中的重要因素,因此有关肿瘤细胞迁移和侵袭机制的研究成为该领域的热点之一。半乳糖凝集素-3(galectin-3,Gal-3)为半乳糖结合蛋白家族成员,具有多种生物学功能,在许多肿瘤细胞的迁移和侵袭过程中起重要作用。研究发现GaI-3舌癌组织中过表达,但其在舌癌侵袭转移中的作用和确切机制尚不十分清楚。近年研究发现,Gal-3在某些肿瘤组织中的表达与β-catenin有关。由于β-catenin是经典Wnnt信号传导通路中的关键调控因子,因此我们猜测Gal-3可能通过Wnt/β-catenin信号传导通路调控舌癌细胞的迁移和侵袭。本课题采用免疫组织化学染色对76例舌癌组织标本中Gal-3的表达进行分析,结合临床资料研究Gal-3表达与舌癌相关临床病理因素的关系:应用RNA干扰技术沉默人舌癌细胞系SCC-4和CAL27中Gal-3基因,研究其在舌癌细胞增殖、迁移和侵袭中的作用;通过检测Gal-3基因沉默前后Wnt/β-catenin(?)言号传导通路中关键因子表达水平的改变,探讨Gal-3在舌癌细胞中表达与Wnt/β-catenin信号传导通路的关系,旨在为进一步阐明舌癌的侵袭和转移机制提供新的理论依据。
     方法:1.采用免疫组织化学SP法,对2005~2010年于山东大学齐鲁医院口腔颌面外科就诊的76例舌癌患者肿瘤组织标本中Gal-3的表达进行检测,并结合临床资料分析Gal-3表达与肿瘤分化、临床分期、区域淋巴结转移等临床病理因素间的关系。
     2.将液氮保存的舌癌细胞SCC-4和CAL27于37℃水浴中快速溶化,用预冷的培养基混匀已融化的肿瘤细胞悬液,在4℃下1800rpm离心10min。弃上清,重悬细胞于新鲜培养液中,SCC-4采用RPMI640,CAL27采用高糖DMEM培养基进行常规培养。收集对数生长期细胞用于实验。
     3.采用阳离子脂质体法进行转染。将细胞分为空白对照组、阴性对照组和实验组,按照Invitrogen公司LpofectamineTM RNAiMAX试剂说明书操作,分别将control-siRNA和Gal-3-siRNA瞬时转入阴性对照组和实验组细胞,空白对照组细胞不做任何处理。37℃,5%CO2条件下培养6h后,替换为含血清的生长培养基。转染后481h,对细胞生物学行为以及相关因子的表达进行检测。
     4.转染后48h收集各组细胞,采用Trizol(?)去提取总RNA。采用TIANGEN公司Quantscript RT K it试剂盒,取模板RNA1μg,加入反转录反应体系,合成cDNA第一链。应用TIANGEN公司RealMasterMix(SYBR Green)试剂盒,以1μl cDNA为模板,在7500Real Time PCR System中进行扩增,应用Sequence Detection Software version1.4对Gal-3的表达进行分析。以β-肌动蛋白(β-actin)作为内参照。引物序列为:Gal-3上游引物5'-GGCCACTGA-TTGTGCCTTAT-3',下游引物5'-TGCAACCTTGAAGTGGTCAG-3';β-actin上游引物5'-CTCCTC-CTGAGCGC AAGTACTC-3',下游引物5-TCCTGCTTGCTGATCCACATC-3'。
     5.转染后48h收集细胞,用RIPA细胞裂解液提取细胞总蛋白。采用BCA法进行蛋白定量。取50μg蛋白上样,12%SDS-PAGE胶垂直电泳后电转移至PVDF膜,用5%脱脂奶粉封闭过夜,加入1:1000兔抗人Gal-3多克隆抗体,4℃反应过夜,TBST洗膜,加入1:2000辣根过氧化物酶标记的羊抗兔IgG,室温孵育2h,ALP显色。扫描、分析Gal-3蛋白的表达。以β-actin (?)乍为内参照。
     6.采用MTT法检测细胞的增殖能力。细胞接种于96孔板,每孔细胞数约为2.0×103。37℃,5%CO2条件下过夜,细胞达到铺满30~50%时进行转染。分别于转染后0h、24h、48h和72h在每孔加入CCK-810μl,继续常规培养4h。用酶标仪测定在450nm处的吸光度(OD值),记录结果。以时间为横轴,OD值为纵轴绘制细胞生长曲线。
     7.将适当密度转染后的细胞接种于24孔培养板,形成细胞单层。用移液器滴头沿培养板底部形成“一”字划痕。镜下记录划痕相对距离,更换体积分数为1%胎牛血清的RPMI1640/H-DMEM培养基,24h后更换体积分数为10%胎牛血清的RPMI1640/H-DM EM培养基,继续培养24h,镜下观察各组肿瘤细胞迁移能力的差异。
     8.应用Yranswell小室法观察Gal-3基因沉默对SCC-4和CAL27细胞侵袭能力的影响。RNA干扰后48h,收集各组细胞,制备单细胞悬液,调整细胞密度为2×106/ml。将细胞悬液加入Transwell小室中,每孔100μl,将小室浸于24孔板的条件培养基中,37℃,5%CO2孵箱内孵育8h。取出Transwell小室,滤膜用甲醇固定1分钟。HE染色,显微镜下观察、照相并计数。
     9.转染后48h,收集各组细胞,采用WB法对对肿瘤细胞中β-catenin蛋白的表达水平进行检测;采用RealTime RT-PCR法对其mRNA的表达进行检测。β-catenin引物序列为:上游引物5'-GCCGGCTATTGTAGAAGCTG-3',下游引物5'-GAG-TCCCAAGGAGACCTTCC-3'。采用免疫荧光法染色,并应用共聚焦显微镜观察转染前后β-catenin在SCC-4亚细胞结构中定位的变化情况。
     10.转染后48h,采用相同方法检测各组细胞中Akt、pAkt、GSK-3β和pGSK-3β蛋白的表达。并于转染后0h、12h、24h和48h,检测实验组SCC-4细胞中Gal-3、β-catenin、pAkt和pGSK-3β蛋白的表达。
     11.为进一步明确Akt磷酸化在Gal-3/β-catenin轴中的作用,分别采用Akt抑制剂和(或)Gal-3-siRNA对SCC-4进行处理。Gal-3-siRNA转染后48h,采用WB法检测各组细胞中Akt、pAkt和β-catenin蛋白的表达。
     12.为证实Gal-3沉默系通过抑制Wnt/β-catenin信号通路下游靶基因的表达影响舌癌细胞的迁移和侵袭,于转染后48h,分别采用RT-PCR法和WB法检测SCC-4中MMP-9mRNA及蛋白的表达。
     结果:1.76例患者肿瘤组织标本中Gal-3表达的阳性率为86.8%。着色主要位于肿瘤上皮细胞和肿瘤间质中纤维细胞的胞浆,胞核染色为阴性。Gal-3表达的强度与颈淋巴结转移和肿瘤临床分期有关,与患者年龄、性别、肿瘤大小及组织分化程度等因素无显著相关性。
     2.实验发现,在转染后48h,Gal-3-siRNA处理组Gal-3mRNA及蛋白的表达明显受到抑制。Gal-3-siRNA转染对SCC-4和CAL27细胞Gal-3mRNA表达的抑制率分别为99.4%和98.6%。实验组细胞中Gal-3蛋白的表达亦显著降低。在肿瘤细胞生物学行为方面,实验显示,在转染后72h内,Gal-3-siRNA处理组肿瘤细胞在增殖能力方面较阴性对照组和空白对照组无显著下降。而细胞划痕实验显示,Gal-3沉默可显著降低两种细胞的迁移能力。Gal-3-siRNA处理组细胞的划痕愈合时间较阴性对照组组和空白对照组明显延长。此外,实验通过Transwell小室法证实,抑制Gal-3基因的表达可显著降低舌癌细胞的侵袭能力。
     3.本研究对Gal-3-siRNA作用后舌癌细胞中β-catenin(?)勺表达进行检测发现,Gal-3沉默可显著影响肿瘤细胞中β-catenin蛋白的水平。为明确Gal-3对β-catenin表达的调控是否发生在转录阶段,我们对β-catenin mRNA的水平进行了检测。实验发现虽然Gal-3沉默导致β-catenin蛋白下调,但其mRNA的表达水平并未发生显著改变。提示Gal-3沉默对β-catenin表达的影响发生在转录后阶段。通过免疫荧光法染色,观察转染前后β-catenin在SCC-4亚细胞结构中定位发现,在SCC-4中Gal-3-siRNA转染后48h,β-catenin在胞浆与胞核中的表达均显著降低。
     4.为明确Gal-3在β-catenin表达调控中的作用机制,我们对Wnt信号传导通路中的关键调控因子Akt和GSK-3β的总蛋白和磷酸化蛋白的水平进行了检测。研究发现,在各组细胞中Gal-3沉默并未导致Akt和GSK-3p总蛋白水平发生明显变化,然而在实验组细胞中两种蛋白的磷酸化形式显著降低。相反,对照组中pAkt和pGSK-3β的水平无明显变化。本研究还对实验组SCC-4细胞中Gal-3、pAkt、pGSK-3β以及β-catenin蛋白水平的时相变化进行了分析。实验结果显示,Gal-3、pAkt、pGSK-3β及β-catenin的水平均较转染前显著降低。同时,研究发现pAkt和pGSK-3β(?)水平的降低发生于转染后12小时,早于β-catenin蛋白下调发生的时间。此外,本研究发现应用Akt抑制剂抑制Akt磷酸化与应用Gal-3-siRNA沉默Gal-3基因的表达均可导致SCC-4中β-catenin蛋白表达显著下降。应用Akt抑制剂后,再加入Gal-3-siRNA不会引起β-catenin蛋白水平进一步降低。
     5.应用RT-PCR(?)去和WB法检测发现,转染后48h舌癌细胞SCC-4中MMP-9mRNA和蛋白表达水平均显著降低。
     结论:1.Gal-3过表达与舌癌的侵袭和转移相关。
     2.沉默Gal-3可显著抑制舌癌细胞SCC-4与CAL27的迁移和侵袭能力。
     3.抑制Gal-3基因表达,可导致舌癌细胞中β-catenin蛋白水平下调,但不影响其转录;Gal-3基因沉默使β-catenin蛋白在胞浆与胞核中的水平均显著降低。
     4.Gal-3表达可能通过活化Akt,调控GSK-3β磷酸化水平及胞浆p-Catenin的快速降解过程,从而作用于Wnt信号通路下游靶基因,最终影响舌癌细胞的迁移和侵袭。
Objectives:Squamous cell carcinoma of tongue (TSCC) is one of the most common malignant neoplasms in oral cavity, accounting for approximately40%of all oral cancers in China. Despite the advances in the therapeutic management of TSCC over the last few decades, the5-year survival rate is still remaining unimproved. The most common reseaons of the failure of the therapy are tumor recurrence and local regional lymph node metastasis. Thus, studies of the mechanisms that involved in tumor cell migration and invasion have become foci of this field. Galectin-3(Gal-3), a member of β-galactoside-binding protein family, has been reportedly implicated in diverse biological functions including tumor cell migration and metastasis. Several studies have linked this protein to tongue cacer progression. However, the effects of Gal-3expression and its mechanisms in tongue carcinoma are still unclear. β-catenin, an important factor in canonical Wnt signaling pathway, makes great contributions on cancer invasion and metastasis. Recently, studies have found an association between Gal-3and β-catenin expression in several cancers. According to these findings, we postulate that Gal-3may play a potential role in tumor cell migration and invasion by modulating Wnt signaling pathway in tongue carcinoma. In the present study, a total of76patients with TSCC were investigated immunohistochemically. χ2test was employed to investigate the correlation between expression of Gal-3and clinicopathological parameters. Gal-3-siRNA was transfected into tongue cancer cell lines, and the effecs of Gal-3on the Wnt/β-catenin signaling pathway as well as the mechanisms involved were determined to explore how Gal-3manipulates tongue cancer progression and metastasis.
     Methods:1. For immunohistochemical staining. SP method was employed on sections of76patients with TSCC. All these patients had received curative resection at the Department of Oral and Maxillofacial Surgery, Qilu Hospital, between2005and2010.χ2test was employed to investigate the correlation between expression of Gal-3and clinicopathological parameters.
     2. Tongue cancer cell lines, SCC-4and CAL27, which were stored in liquid nitrogen, were quickly melted in a water-bath at37℃. Tumor cells were resuspended in a fresh medium, and maintained at37℃in a5%CO2atmosphere in RPMI1640and DMEM respectively, containing10%fetal bovine serum with penicillin and streptomycin. Cells in logarithmic growth phase were used in experiments.
     3. Cells were divided into3groups:blank control, negative control and experimental group. Transient siRNA transfection was performed in negative control and experimental group with control-siRNA and Gal-3-siRNA respectively by cationic liposome (LipofectamineTM RNAiMAX, Invitrogen, USA) according to the manufacturer's instructions. Cells in blank control group remained untreated.
     4. Total RNA was extracted from cells of all3groups48h after transfection using a Trizol method. Template cDNA was synthesized from1μg of total RNA with a Quantscript RT Kit. random primers and a ribonuc lease inhibitor.1μl of the cDNA samples was mixed with19μl of mixed solutions. PCR was performed for40cycles with denaturation at95℃for15sec, annealing at60℃for1min with a RealMasterMix Kit (SYBR Green), using a7500Real Time PCR System. β-actin was used as an internal reference. The following primer sets were used:Gal-3,5'-GGCCACTGATTGTGCCTTAT-3'(forward) and5'-TGCAACCTTGAAGTG-GTCAG-3'(reverse); β-actin,5'-CTCCTCCTGAGCGCAAGTACTC-3'(forward) and5'-TCCTGCTTGCTGATCCACATC-3'(reverse).
     5. Cells were harvested after being treated with control-and Gal-3-siRNA for48h. Total protein was extracted by a RIPA cell lysate. Protein concentrations were measured using a BCA Protein Assay Kit.50μg protein was resolved by12%SDS-PAGE and electroblotted onto polyvinylidene difluoride plus membrane. The membrane was probed with anti-Gal-3antibody. Anti-β-catin was used to monitor equal loading in each lane. Immunoreactivity was detected using an enhanced chemiluminescence detection system. For densitometric analysis of WB, Alpha Image was used.
     6. Cell proliferation was measured by an MTT assay. Cancer cells (2.0×103cells/well) were seeded in96-well microtiter plates in a total volume of100μl/well. Transfection was performed when cells were30~50%confluent.10μl/well of CCK-8was added and cells were incubated under a humidified5%CO2atmosphere at37℃for4h. The absorbance of each well was determined at450nm using a microtiter plate reader. The results are expressed as mean±SD from triplicate cultures. Determinations were made in triplicate.
     7. Transfected cells were seeded on a24-well plate with their respective culture media. After the growing cell layers had reached confluence, a straight line in each well was made using a pipette tip. The cells were cultured in RPMI1640/H-DMEM containing1%volume fraction of FBS for24h. and then the media was replaced with RPMI1640/H-DMEM containing10%volume fraction of FBS. The filling of the wounds were evaluated at48h after scratching using a bright-field microscopy. All experiments were performed in triplicate.
     8. Invasion assays were performed using a BD BioCoat Matrigel Invasion Chamber. Briefly, cells were harvested after being transfected for48h. Cells were resuspended in serum-free DMEM and then added to the upper chamber at a density of2×105cells/well. After incubation for8h at37℃, the cells were fixed with ethanol and stained with hematoxylin and eosin. We subsequently counted the cells that migrated through the pores to the lower surface of each filter under a microscope and evaluated based on the mean values from five fields of view at×200magnifications.
     9. Cells were harvested48h after transfection. Same methods were applied for β-catenin protein level detecting. Then β-catenin expression was detected at the transcriptional level. Primers for β-catenin used in the experiments were as follows.5'-GCCGGCTATTGTAGAAGCTG-3'(forward) and5'-GAGTCCCAAGGAGAC-CTTCC-3'(reverse). Immunofluorescence method was used to investigate the distribution of β-catenin in SCC-448h after RNAi.
     10. Akt, pAkt, GSK-3β and pGSK-3β protein expression were detected at48h after Gal-3silencing. And time-lapse WBs for Gal-3, β-catenin. pAkt and pGSK-3β protein were performed at the indicated times of0h,12h,24h and48h after transfection.
     11. To confirm the necessity of Akt for Gal-3-mediated Wnt signaling and β-catenin regulation. Akt inhibitor was used in SCC-4cells transfected with or without Gal-3-siRNA. Total Akt, pAkt, and β-catenin protein levels were detected with WB.
     12. To test if MMP-9might be a mediator of β-catenin-induced migration and invasion in SCC-4cells, RT-PCR and WB were employed48h after Gal-3silencing to investigate the expression of MMP-9.
     Results:1. Gal-3was positively expressed in tumor cells as well as in cancer-associated stromal cells. Gal-3expression was predominant in cytoplasm. The level of Gal-3expression was found to be positively correlated with lymph node status and clinical stage. No significant relationship was found between Gal-3expression and age, gender, tumor size, and histological grade.
     2. Fouty-eight hours after transient gene silencing of Gal-3, significant inhibition of Gal-3mRNA as well as protein expression were dectected in experimental groups. Gal-3silencing achieved99.4%and98.6%knockdown in SCC-4and CAL27cell lines respectively. As for tumor cell biological behavior, the results showed that there were no differences in cell proliferation between control and experimental groups for both of the cell lines. However, wound-healing assay demonstrated that cell migration was drastically decreased in experimental groups after Gal-3-siRNA transfection. We found that the time required for wound closure of Gal-3-silenced tongue cacer cells was significantly longer than that of control cells. Furthermore, we also confirmed that Gal-3gene silencing affected cell invasion similarly to migration of tongue carcinoma cell lines. Cell invasion was decreased by approximately two folds in cells treated with Gal-3-siRNA, when compared with the control groups.
     3. In this study, the results showed that inhibition of Gal-3gene expression can affect the protein level of β-catenin in SCC-4and CAL27cells, causing a significant downregulation of β-catenin expression. To clarify whether β-catenin is manipulated at the transcriptional level, we also evaluated the mRNA level of in tumor cells. The experiments revealed that though Gal-3silencing can down-regulate protein level of β-catenin. its RNA level did not change in both cell lines. The distribution of β-catenin after Gal-3silencing in SCC-4cells was examined by dual-fluorescence confocal microscopy. Reduced production of P-catenin was observed in the cytoplasm and in the nucleus.
     4. To investigate the Gal-3-mediated regulation of β-catenin expression, we evaluated Akt and GSK-3β protein in total protein and phosphorylation levels in tumor cells of both control and experimental groups. Our study revealed that there were no changes detected of Akt and GSK-3β protein in total protein level, while the phosphorylated forms of both of the two proteins were significantly decreased after Gal-3silencing. To the contrary, in the control groups, we found no significant changes of pAkt and pGSK-3β expression. Additionally, we also assessed the time-dependent alterations these proteins in cells of experimental groups. We found that the decreases of both pAkt and pGSK-3β occurred at12h after transfection. while downregulation of β-catenin expression was detected at48h. Densitometric analysis of time-lapse WB was performed, which revealed that the protein expression levels of Gal-3, pAkt, pGSK-3β and β-catenin significantly reduced in transfected SCC-4cells. Meanwhile, using an Akt inhibitor leads to β-catenin repression, which is similar to observations made using Gal-3-siRNA. Gal-3-siRNA cannot suppress β-catenin levels further after treatment with an Akt inhibitor, indicating that Akt plays an important role in Gal-3/β-caten in function.
     5. We analyzed MMP-9levels by RT-PCR and Western blotting. MMP-9mRNA and protein levels were significantly lower in Gal-3-siRNA treated cells than in the corresponding controls.
     Conclusions:1. Gal-3is correlated with tumor invasion and metastasis in TSCC.
     2. Gal-3RNAi inhibits migration and invasion by human tongue cancer cells (SCC-4and CAL27).
     3. Gal-3silencing induces a downregulation of the protein level of β-catenin in both cell lines, but dose not change its mRNA expression. Reduced production of β-catenin was observed in the cytoplasm and in the nucleus.
     4. Gal-3mediates cell migration and invasion by activating Akt, which regulates GSK-3β phosphorylation and β-catenin degradation.
引文
[1]Sano D, Myers JN. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev, 2007,26(3-4):645-62.
    [2]An SY, Jung EJ, Lee M, et al. Factors related to regional recurrence in early stage squamous cell carcinoma of the oral tongue. Clin Exp Otorhinolaryngol,2008,1(3):166-70.
    [3]Barondes SH, Castronovo V, Cooper DN, et al. Galectins:a family of animal beta-galactoside-binding lectins. Cell,1994,76(4):597-8.
    [4]Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer,2005,5(1):29-41.
    [5]Danguy A, Camby I, Kiss R. Galectins and cancer. Biochim Biophys Acta,2002,1572(2-3):285-93.
    [6]Hughes RC. Galectins as modulators of cell adhesion. Biochimie,2001,83(7):667-76.
    [7]Rabinovich GA, Riera CM, Landa CA, et al. Galectins:a key intersection between glycobiology and immunology. Braz J Med Biol Res,1999,32(4):383-93.
    [8]Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta, 2002,1572(2-3):263-73.
    [9]Perillo NL, Marcus ME, Baum LG. Galectins:versatile modulators of cell adhesion, cell proliferation, and cell death. J MolMed (Berl),1998,76(6):402-12.
    [10]Wada J, Makino H. Galectins, galactoside-binding mammalian lectins:clinical application of multi-functional proteins. Acta Med Okayama,200l,55(1):11-7.
    [11]Barondes SH, Castronovo V, Cooper DN, et al. Galectins:a family of animal beta-galactoside-binding lectins. Cell,1994,76(4):597-8.
    [12]Gray CA, Adelson DL, Bazer FW, et al. Discovery and characterization of an epithelial-specific galectin in theendometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci U S A,2004,101 (21):7982-7.
    [13]Yamaoka K, Ohno S, Kawasaki H. et al. Overexpression of a beta-galactoside binding protein causes transformation of BALB3T3 fibroblast cells. Biochem Biophys Res Commun,1991,179(l):272-9.
    [14]Barondes SH, Cooper DN, Gitt MA, et al. Galectins. Structure and function of a large family of animal lectins. J Biol Chem,1994,269(33):20807-10.
    [15]Nangia-Makker P, Nakahara S, Hogan V, et al. Galectin-3 in apoptosis, a novel therapeutic target. J Bioenerg Biomembr.2007,39(1):79-84.
    [16]Akahani S, Nangia-Makker P, Inohara H, et al. Galectin-3:a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res,1997,57(23):5272-6.
    [17]Fukumori T, Kanayama HO, Raz A. The role of galectin-3 in cancer drug resistance. Drug Resist Updat, 2007,10(3):101-8.
    [18]Mazurek N, Sun YJ, Liu KF, et al. Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. J Biol Chem,2007,282(29):21337-48.
    [19]Glinsky VV, Glinsky GV, Glinskii OV, et al. Intravascular metastatie cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res.2003,63(13):3805-11.
    [20]Warfield PR, Makker PN, Raz A. et al. Adhesion of human breast carcinoma to extracellular matrix proteins is modulated by galectin-3. Invasion Metastasis,1997,17(2):101-12.
    [21]O'Driscoll L, Linehan R. Liang YH, et al. Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Res,2002,22(6A):3117-25.
    [22]Khaldoyanidi SK, Glinsky VV, Sikora L, et al. MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions.J Biol Chem.2003.278(6):4127-34.
    [23]Kim SJ. Choi IJ. Cheong TC. et al. Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology,2010,138(3):1035-45.e 1-2.
    [24]Hittelet A. Camby I. Nagy N. et al. Bindingsites for Lewis antigens are expressed by human colon cancer cells and negatively affect their migration. Lab Invest,2003.83(6):777-87.
    [25]Debray C. Vereecken P, Belot N, et al. M ultifaceted role of galectin-3 on human glioblastoma cell motility. Biochem Biophys Res Commun,2004.325(4):1393-8.
    [26]Honjo Y, Inohara H. Akahani S, et al. Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res,2000.6(12):4635-40.
    [27]Mikels AJ, Nusse R. Wnts as ligands:processing, secretion and reception. Oncogene,2006,25(57):7461-8.
    [28]Gordon MD. Nusse R. Wnt signaling:multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem,2006,281(32):22429-33.
    [29]Drees F, Pokutta S. Yamada S. et al. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates act in-filament assembly. Cell,2005.123(5):903-15.
    [30]Yamada S, Pokutta S. Drees F, et al. Deconstructing the cadherin-catenin-actin complex. Cell. 2005.123(5):889-901.
    [31]Liu C. Kato Y, Zhang Z. et al. beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad SciU S A.1999.96(11):6273-8.
    [32]Kawano Y Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci,2003,116(Pt 13):2627-34.
    [33]Ishitani T, Ninomiya-Tsuji J. Nagai S, et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature,1999.399(6738):798-802.
    [34]Polakis P. Wnt signaling and cancer. Genes Dev,2000,14(15):1837-51.
    [35]Iwai S. Katagiri W. Kong C. et al. Mutations of the APC. beta-catenin. and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005.131(12):773-82.
    [36]Odajima T. Sasaki Y, Tanaka N, et al. Abnormal beta-catenin expression in oral cancer with no gene mutation:correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki-67 labeling index, and clinicopathological features. Hum Pathol.2005.36(3):234-41.
    [37]Sogabe Y, Suzuki H, Toyota M, et al. Epigenetic in activation of SFRP genes in oral squamous cell carcinoma. Int J Oncol,2008.32(6):1253-61.
    [38]Leethanakul C. Patel V, Gillespie J. et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene.2000.19(28):3220-4.
    [39]Uraguchi M. Morikawa M. Shirakawa M, et al. Activation of WNT family expression and signaling in squamous cell carcinomas of the oral cavity. J Dent Res.2004.83(4):327-32.
    [40]Rhee CS. Sen M, Lu D. et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene,2002.21(43):6598-605.
    [41]Yang F. Zeng Q. Yu G. et al. Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal,2006,18(5):679-87.
    [42]Baker H. Patel V Molinolo AA. et al. Proteome-wide analysis of head and neck squamous cell carcinomas using laser-capture microdissection and tandem mass spectrometry. Oral Oncol.2005.41(2):183-99.
    [43]Marsit CJ. McClean MD. Furniss CS. et al. Epigenetic inactivation of the SFRP genes is associated with drinking smokingand HPV in head and neck squamous cell carcinoma. Int J Cancer,2006,119(8):1761-6.
    [44]Worsham MJ, Chen KM, Meduri V, et al. Epigenetic events of disease progression in head and neck squamous cell carcinoma. Arch Otolary ngol Head Neck Surg,2006,132(6):668-77.
    [45]Chang KW, Lin SC. Mangold KA. et al. Alterations of adenomatous pohposis Coli (APC) gene in oral squamous cell carcinoma. Int J Oral Maxillofac Surg,2000.29(3):223-6.
    [46]Ueda G. Sunakawa H, Nakamori K. et al. Aberrant expression of beta- and gamma-catenin is an independent prognostic marker in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2006.35(4):356-61.
    [47]Mahomed F. Altini M. Meer S. Altered E-cadherin/beta-catenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis,2007,13(4):386-92.
    [48]Lo ML. Goteri G. Capretti R. et al. Beta-catenin gene analysis in oral squamous cell carcinoma. Int J Immunopathol Pharmacol,2005,18(3 Suppl):33-8.
    [49]Shimura T, Takenaka Y, Fukumori T, et al. Implication of galectin-3 in Wnt signaling. Cancer Res. 2005,65(9):3535-7.
    [50]Weinberger PM, Adam BL. Gourin CG. et al. Association of nuclear, cytoplasmic expression of galectin-3 with beta-catenin/Wnt-pathway activation in thyroid carcinoma. Arch Otolaryngol Head Neck Surg. 2007.133(5):503-10.
    [51]Shimura T. Takenaka Y, Tsutsumi S. et al. Galectin-3. a novel binding partner of beta-catenin. Cancer Res. 2004.64(18):6363-7.
    [52]Song S, Mazurek N, Liu C. et al. Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinasc-3beta activity. Cancer Res. 2009.69(4):1343-9.
    [53]Yamamoto H. Kishida S. Uochi T. et al. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol, 1998.18(5):2867-75.
    [54]Kishida S. Yamamoto H. Ikeda S. et al. Axin. a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem. 1998.273(18):10823-6.
    [55]Dumic J. Dabelic S. Flogel M. Galectin-3:an open-ended story. Biochim Biophys Acta. 2006.1760(4):616-35.
    [56]Van den Brule FA. Fernandez PL. Buicu C. et al. Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn,1997.209(4):399-405.
    [57]Fowlis D. Colnot C. Ripoche MA. et al. Galectin-3 is expressed in the notochord. developing bones, and skin of the post implantation mouse embryo. Dev Dyn, 1995.203(2):241-51.
    [58]Davidson PJ. Li SY, Lohse AG. et al. Transport of galectin-3 between the nucleus and cytoplasm. I. Conditions and signals for nuclear import. Glycobiology,2006.16(7):602-11.
    [59]Li SY, Davidson PJ, Lin NY et al. Transport of galectin-3 between the nucleus and cytoplasm. II. Identification of the signal for nuclear export. Glycobiology.2006.16(7):612-22.
    [60]Davidson PJ, Davis MJ. Patterson RJ. et al. Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology,2002.12(5):329-37.
    [61]Hughes RC. The galectin family of mammalian carbohydrate-binding molecules. Biochem Soc Trans. 1997.25(4):1194-8.
    [62]Hughes RC. Mac-2:a versatile galactose-binding protein of mammalian tissues. Glycobiology. 1994.4(1):5-12.
    [63]Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta.1999.1473(1):172-85.
    [64]Nickel W. Unconventional secretory routes:direct protein export across the plasma membrane of mammalian cells. Traffic,2005.6(8):607-14.
    [65]Gong HC. Honjo Y, Nangia-Makker P, et al. The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res.1999.59(24):6239-45.
    [66]Lukyanov P. Furtak V. OchiengJ. Galectin-3 interacts with membrane lipids and penetrates the lip id bilayer. Biochem Biophys Res Commun,2005.338(2):1031-6.
    [67]Sato S, Hughes RC. Control of Mac-2 surface expression on murine macrophage cell lines. Eur J Immunol. 1994.24(1):216-21.
    [68]Lindstedt R. Apodaca G. Barondes SH, et al. Apical secretion of a cytosolic protein by M adin-Darby canine kidney cells. Evidence for polarized release of an endogenous lectin by a nonclassical secretory pathway. J Biol Chem,1993.268(16):11750-7.
    [69]Sato S, Burdett I, Hughes RC. Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells:a pathway independent of the endoplasmic reticulum-Golgi complex Exp Cell Res,1993,207(1):8-18.
    [70]Mehul B, Hughes RC. Plasma membrane targetting. vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion.J Cell Sci,1997,110 (Pt 10):1169-78.
    [71]Sato S, Hughes RC. Regulation of secretion and surface expression of Mac-2, a galactoside-bindingprotein of macrophages. J Biol Chem.1994.269(6):4424-30.
    [72]Thery C, Boussac M, Veron P, et al. Proteomic analysis of dendritic cell-derived exosomes:a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol,2001,166(12):7309-18.
    [73]Baptiste TA,James A. Saria M. et al. Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells:implications in the extracellular functions of the lectin. Exp Cell Res. 2007.313(4):652-64.
    [74]Zhu WQ, Ochieng J. Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Res.2001.61(5):1869-73.
    [75]Agrwal N. Sun Q. Wang SY et al. Carbohydrate-binding protein 35. I. Properties of the recombinant pohpeptide and the individuality of the domains. J Biol Chem,1993.268(20):14932-9.
    [76]Umemoto K. Leffler H. Venot A, et al. Conform at ional differences in liganded and unliganded states of Galectin-3. Biochemistry.2003.42(13):3688-95.
    [77]Mazurek N. Conklin J. Byrd JC, et al. Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem,2000,275(46):36311-5.
    [78]Kuwabara I. Liu FT. Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol. 1996.156(10):3939-44.
    [79]den Brule FA v, Buicu C, Sobel ME. et al. Galectin-3, a laminin bindingprotein. fails to modulate adhesion of human melanoma cells to laminin. Neoplasma,1995,42(5):215-9.
    [80]Sato S. Hughes RC. Binding specificity of a baby hamster kidney lectin for H type Ⅰ and Ⅱ chains, poly lactosamine glycans. and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem. 1992.267(10):6983-90.
    [81]Ochieng J, Warfield P. Green-Jarvis B. et al. Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem,1999,75(3):505-14.
    [82]Ochieng J, Leite-Browning ML. Warfield P. Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun,1998.246(3):788-91.
    [83]Malarrese P. Fusco O. Tinari N. et al. Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer,2000.85(4):545-54.
    [84]Dong S. Hughes RC. Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J,1997.14(2):267-74.
    [85]Ohannesian DW, Lotan D. Thomas P, et al. Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res,1995.55(10):2191-9.
    [86]Bresalier RS. Byrd JC. Wang L. et al. Colon cancer mucin:a new ligand for the beta-galactoside-binding protein galectin-3. Cancer Res,1996.56(19):4354-7.
    [87]Furtak V, Hatcher F. Ochieng J. Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun,2001.289(4):845-50.
    [88]Woo HJ, Lotz MM. Jung JU, et al. Carbohydrate-binding protein 35 (Mac-2), a laminin-binding lectin. forms functional dimers using cysteine 186. J Biol Chem,1991,266(28):18419-22.
    [89]Knibbs RN, Agrwal N, Wang JL, et al. Carbohydrate-binding protein 35. II. Analysis of the interaction of the recombinant polypeptide with saccharides. J Biol Chem.1993.268(20):14940-7.
    [90]Yang RY. Hill PN. Hsu DK. et al. Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Biochemistry,1998.37(12):4086-92.
    [91]Ahmad N, Gabius HJ. Andre S. et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem.2004.279(12):10841-7.
    [92]Inohara H. Akahani S. Koths K. et al. Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion. Cancer Res,1996,56(19):4530-4.
    [93]Nangia-Makker P, Honjo Y Sarvis R. et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol,2000.156(3):899-909.
    [94]Gil CD. La M, Perretti M, et al. Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin I. galectin-1 and galectin-3. Cell Biol Int,2006,30(4):338-44.
    [95]Krishnan V Bane SM. Kawle PD. et al. Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis. 2005.22(1):11-24.
    [96]Fukushi J. Makagiansar IT. Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angio genesis via engagement of galectin-3 and alpha3betal integrin. Mol Biol Cell,2004,15(8):3580-90.
    [97]Sano H. Hsu DK. Yu L. et al. Human galectin-3 is a novel chemoattract ant for monocytes and macrophages. J Immunol,2000,165(4):2156-64.
    [98]Camby I, Belot N, Rorive S. et al. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astroeytomas. anaplastic astrocytomas and glioblastomas. and significantly modulate tumor astrocyte migration. Brain Pathol,2001,110)-12-26.
    [99]Savino W, Mendes-Da-Cruz DA. Smaniotto S. et al. Molecular mechanisms governing thymocyte migration:combined role of chemokines and extracellular matrix.J Leukoc Biol,2004,75(6):951-61.
    [100]Nangia-Makker P. Ochieng J. Christman JK. et al. Regulation of the expression of galactoside-binding lectin during human monocytic differentiation. Cancer Res,1993.53(20):5033-7.
    [101]Jeng KC. Frigeri LG. Liu FT. An endogenous lectin. galectin-3 (epsilon BP/Mac-2). potentiates IL-1 production by human monocytes. Immunol Lett.1994.42(3):113-6.
    [102]Liu FT. Hsu DK. Zuberi RI, et al. Expression and function of galectin-3. a beta-galactoside-binding lectin. in human monocytes and macrophages. Am J Pathol,1995,147(4):1016-28.
    [103]Yamaoka A. Kuwabara I. Frigeri LG. et al. A human lectin. galectin-3 (epsilon bp/Mac-2). stimulates superoxide production by neutrophils.J Immunol,1995,154(7):3479-87.
    [104]Fernandez GC. Ilarregui JM. Rubel CJ, et al. Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival:involvement of alternative MAPK pathways. Glycobiology, 2005.15(5):519-27.
    [105]Hsu DK. Hammes SR. Kuwabara I. et al. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin. galectin-3. Am J Pathol,1996.148(5):1661-70.
    [106]Kimata H. Enhancement of IgE production in B cells by neutrophils via galectin-3 in IgE-associated atopic eczema/dermatitis syndrome. Int ArchAllergy Immunol.2002.128(2):168-70.
    [107]Sharma UC. Pokharel S. van BTJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation,2004.110(19):3121-8.
    [108]Neidhart M,Zaucke F, von KR. et al. Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann Rheum Dis,2005.64(3):419-24.
    [109]Dennis JW, Pawling J. Cheung P. et al. UDP-N-acetylglucosamine:alpha-6-D-mannoside betal,6 N-acetylglucosaminyltransferase V(Mgat5) deficient mice. Biochim BiophysActa,2002,1573(3):414-22.
    [110]Demetriou M. Granovsky M, Quaggin S, et al. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosy lation. Nature,2001,409(6821):733-9.
    [111]Shekhar MP, Nangia-Makker P. Tait L, et al. Alterations in galectin-3 expression and distribution correlate with breast cancer progression:functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am J Pathol.2004.165(6):1931-41.
    [112]Moisa A, Fritz P. Eck A, et al. Growth/adhesion-regulatory tissue lectin galectin-3:stromal presence but not cytoplasmic/nuclear expression in tumor cells as a negative prognostic factor in breast cancer. Anticancer Res,2007.27(4B):2131-9.
    [113]Sanjuan X. Fernandez PL. Castells A. et al. Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology.1997,113(6):1906-15.
    [114]Califice S. Castronovo V Van Den Brule F. Galectin-3 and cancer (Review). Int J Oncol. 2004.25(4):983-92.
    [115]Junking M. Wongkham C, Sripa B. et al. Decreased expression of galectin-3 is associated with metastatic potential of liver fluke-associated cholan gio carcinoma. EurJ Cancer,2008,44(4):619-26.
    [116]Jiang HB, Xu M, Wang XP. Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3. World J Gastroenterol,2008.14(13):2023-8.
    [117]Paron I. Scaloni A. Pines A. et al. Nuclear localization of Galectin-3 in transformed thyroid cells:a role in transcriptional regulation. Biochem Biophys Res Commun,2003.302(3):545-53.
    [118]Takenaka Y. Inohara H. Yoshii T. et al. Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett,2003,195(1):111-9.
    [119]Orlandi F. Saggiorato E. Pivano G, et al. Galectin-3 is a presurgical marker of human thyroid carcinoma Cancer Res,1998.58(14):3015-20.
    [120]Califice S, Castronovo V. Bracke M, et al. Dual activities of galectin-3 in human prostate cancer:tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene. 2004.23(45):7527-36.
    [121]den Brule FA v, Waltregny D. Liu FT. et al. Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression. Int J Cancer,2000,89(4):361-7.
    [122]Puglisi F, M inisini AM, Barbone F. et al. Galectin-3 expression in non-small cell lung carcinoma Cancer Lett.2004.212(2):233-9.
    [123]Openo KP. Kadrofske MM. Patterson RJ. et al. Galectin-3 expression and subcellular localization in senescent human fibroblasts. Exp Cell Res,2000,255(2):278-90.
    [124]Lin HM, Pestell RG, Raz A. et al. Galectin-3 enhances cyclin D(1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene,2002,21 (52):8001-10.
    [125]Wu CC. Chien KY, Tsang NM, et al. Cancer cell-secreted proteomes as a basis for searching potential tumor markers:nasopharyngeal carcinoma as a model. Proteomics,2005,5(12):3173-82.
    [126]Plzak J, Betka J, Smetana K Jr. et al. Galectin-3-an emerging prognostic indicator in advanced head and neck carcinoma. Eur J Cancer,2004,40(15):2324-30.
    [127]Saussez S, Cucu DR, Decaestecker C, et al. Galectin 7 (p53-induced gene 1):a new prognostic predictor of recurrence and survival in stage IV hypopharyngeal cancer. Ann Surg Oncol,2006,13(7):999-1009.
    [128]Piantelli M, Iacobelli S, Almadori G, et al. Lack of expression of galectin-3 is associated with a poor outcome in node-negative patients with laryngeal squamous-cell carcinoma. J Clin Oncol, 2002.20(18):3850-6.
    [129]Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev,2000,11(4):273-82.
    [130]Yamaguchi TP. Heads or tails:Wnts and anterior-posterior patterning. Curr Biol,2001,11(17):R713-24.
    [131]Miller JR. The Wnts. Genome Biol,2002,3(1):REVIEWS3001.
    [132]Clevers H. Wnt/beta-catenin signaling in development and disease. Cell,2006,127(3):469-80.
    [133]Du SJ. Purcell SM, Christian JL. et al. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol. 1995.15(5):2625-34.
    [134]Hoppler S, Brown JD. Moon RT. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev,1996,10(21):2805-17.
    [135]Belenkaya TY, Wu Y, Tang X, et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell,2008,14(1):120-31.
    [136]Logan CY. Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004.20:781-810.
    [137]Banziger C. Soldini D. Schutt C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell,2006,125(3):509-22.
    [138]Hofmann K. A superfamily of membrane-bound O-acy ltransferases with implications for wnt signaling. Trends Biochem Sci,2000,25(3):111-2.
    [139]Takada R, Satomi Y, Kurata T, et al. Monounsaturated fatty acid modification of Wnt protein:its role in Wnt secretion. Dev Cell,2006,11 (6):791-801.
    [140]Coudreuse D. Korswagen HC. The making of Wnt:new insights into Wnt maturation, sorting and secretion. Development,2007,134(1):3-12.
    [141]Hausmann G, Banziger C, Basler K. Helping Wingless take flight:how WNT proteins are secreted. Nat Rev Mol Cell Biol,2007,8(4):331-6.
    [142]Seaman MM. Recycle your receptors with retromer. Trends Cell Biol,2005,15(2):68-75.
    1143] Bejsovec A. Wnt signaling:an embarrassment of receptors. Curr Biol,2000,10(24):R919-22.
    [144]Pandur P. Kuhl M. An arrow for wingless to take-off. Bioessays,2001,23(3):207-10.
    [145]Dann CE, Hsieh JC, Rattner A, et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature,2001,412(6842):86-90.
    [146]Tamai K, Semenov M. Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000.407(6803):530-5.
    [147]Pinson KI. Brennan J, Monkley S. et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature,2000,407(6803):535-8.
    [148]Mao J. Wang J. Liu B. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell.2001,7(4):801-9.
    [149]Aberle H. Bauer A. Stappert J. et al. beta-cat enin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997,16(13):3797-804.
    [150]Mao B. Wu W. Li Y. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001.411(6835):321-5.
    [151]Kohn AD. Moon RT. Wnt and calcium signaling:beta-catenin-independent pathways. Cell Calcium. 2005,38(3-4):439-46.
    [152]Brennan KR. Brown AM. Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia,2004.9(2):119-31.
    [153]Katoh Y, Katoh M. Comparative integromics on VEGF family members. Int J Oncol,2006.28(6):1585-9.
    [154]Katoh Y, Katoh M. Canonical WNT signaling pathway and human AREG. Int J Mol Med. 2006.17(6):1163-6.
    [155]Behrens J. Jerchow BA. Wurtele M, et al. Functional interaction of an axin homolog conductin, with beta-catenin. APC. and GSK3beta. Science,1998,280(5363):596-9.
    [156]Ikeda S, Kishida S, Yamamoto H, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J,1998.17(5):1371-84.
    [157]Orford K. Crockett C.Jensen JP, et al. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem,1997,272(40):24735-8.
    [158]Bauer A. Chauvet S. Huber O, et al. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J,2000.19(22):6121-30.
    [159]Jones SE, Jomary C. Secreted Frizzled-related proteins:searching for relationships and patterns. Bioessays. 2002.24(9):811-20.
    [160]Shou J. Ali-Osman F. Multani AS. et al. Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene,2002,21 (6):878-89.
    [161]Miller JR, Hocking AM, Brown JD, et al. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+pathways. Oncogene,1999,18(55):7860-72.
    [162]Schlessinger J, Plotnikov AN. Ibrahimi OA. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell.2000.6(3):743-50.
    [163]Ai X. Do AT. Lozynska O, et al. QSulfl remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol.2003,162(2):341-51.
    [164]Chong JM. Uren A. Rubin JS, et al. Disulfide bond assignments of secreted Frizzled-related protein-I provide insights about Frizzled homology and netrin modules. J Biol Chem,2002,277(7):5134-44.
    [165]Schambony A. Kunz M. Gradl D. Cross-regulation of Wnt signaling and cell adhesion. Differentiation. 2004.72(7):307-18.
    [166]Hanai J. Gloy J. Karumanchi SA. et al. Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol, 2002,158(3):529-39.
    [167]Brigstock DR. The CCN family:a new stimulus package.J EndocrinoI, 2003.178(2):169-75.
    [168]Xie D. Yin D. Tong X. et al. Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res.2004.64(6):1987-96.
    [169]Latinkic BV Mercurio S. Bennett B. et al. Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signalling. Development,2003,130(11):2429-41.
    [170]Mercurio S. Latinkic B. Itasaki N. et al. Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development,2004,131 (9):2137-47.
    [171]Satoh S. Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXINI. Nat Genet,2000,24(3):245-50.
    [172]Mourad-Zeidan AA. Melnikova VO, Wang H. et al. Expression profilingof Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol, 2008.173(6):1839-52.
    [173]Hsu DK, Chernyavsky AI. Chen HY, et al. Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells.J Invest Dermatol,2009,129(3):573-83.
    [174]Kobayashi T. Shimura T. Yajima T, et al. Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. LID-10.1002/ijc.25946 [doi]. Int J Cancer.2011.
    [175]Shimamura T. Sakamoto M, Ino Y, et al. Clinicopathological significance of galectin-3 expression in ductal adenocarcinoma of the pancreas. Clin Cancer Res,2002.8(8):2570-5.
    [176]Khaldoyanidi SK, Glinsky VV, Sikora L, et al. MDA-MB-435 human breast carcinoma cell homo-and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J Biol Chem.2003.278(6):4127-34.
    [177]He TC. Sparks AB. Rago C. et al. Identification of c-MYC as a target of the APC pathway. Science. 1998.281(5382):1509-12.
    [178]Shtutman M.Zhurinsky J. Simcha I, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. ProcNatlAcad Sci U S A.1999.96(10):5522-7.
    [179]Crawford HC. Fingleton BM. Rudolph-Owen LA. et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene,1999,18(18):2883-91.
    [180]Cross DA. Alessi DR. Cohen P. et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature.1995.378(6559):785-9.
    [181]Lin CI. Whang EE. Abramson MA. et al. Galectin-3 regulates apoptosis and doxorubicin chemoresistance in papillary thyroid cancer cells. Biochem Biophys Res Commun,2009,379(2):626-31.
    [1]Raz Am Lotan R. Endogenous galactoside-binding lectins:a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev.1987,6(3):433-52.
    [2]Barondes SH, Cooper DN. Gitt MA. et al. Galectins. Structure and function of a large family of animal lectins. J Biol Chem,1994.269(33):20807-10.
    [3]Barondes SH. Castronovo V Cooper DN, et al. Galectins:a family of animal beta-galactoside-binding lectins. Cell,1994.76(4):597-8.
    [4]Hughes RC. The galectin family of mammalian carbohydrate-binding molecules. Biochem Soc Trans, 1997.25(4):1194-8.
    [5]Wang L. Inohara H. Pienta KJ. et al. Galectin-3 is a nuclear matrix protein which binds RNA. Biochem Biophys Res Commun,1995.217(1):292-303.
    [6]Ho MK. Springer TA. Mac-2, a novel 32.000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies.J Immunol,1982,128(3):1221-8.
    [7]Herrmann J, Turck CW, Atchison RE. et al. Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. J Biol Chem.1993,268(35):26704-11.
    [8]Castronovo V Campo E. den Brule FA v. et al. Inverse modulation of steady-state messenger RNA levels of two non-integrin laminin-binding proteins in human colon carcinoma. J Natl Cancer Inst. 1992.84(15):1161-9.
    [9]Sato S. Hughes RC. Binding specificity of a baby hamster kidney lectin for H type 1 and 11 chains. polyactosamine glycans. and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem. 1992.267(10):6983-90.
    [10]Beyer EC, Barondes SH. Secretion of endogenous lectin by chicken intestinal goblet cells. J Cell Biol. 1982.92(1):28-33.
    [11]Hsu DK. Zuberi RI. Liu FT. Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem,1992,267(20):14167-74.
    [12]Yang R Y. Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A,1996.93(13):6737-42.
    [13]Yang RY, Hill PN, Hsu DK. et al. Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Biochemistry.1998.37(12):4086-92.
    [14]Massa SM. Cooper DN, Leffler H. et al. L-29. an endogenous lectin. binds to glycoconjugate ligands with positive cooperativity. Biochemistry,1993,32(1):260-7.
    [15]Gong HC, Honjo Y. Nangia-Makker P, et al. The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res.1999.59(24):6239-45.
    [16]Moutsatsos IK. Davis JM. Wang JL. Endogenous lectins from cultured cells:subcellular localization of carbohy drate-binding protein 35 in 3T3 fibroblasts. J Cell Biol.1986.102(2):477-83.
    [17]Cowles EA. Moutsatsos IK. Wang JL. et al. Expression of carbohydrate binding protein 35 in human fibroblasts:comparisons between cells with different proliferative capacities. Exp Gerontol. 1989,24(5-6):577-85.
    [18]Hubert M. Wang SY. Wang JL. et al. Intranuclear distribution of galectin-3 in mouse 3T3 fibroblasts: comparative analyses by immunofluorescence and immunoelectron microscopy. Exp Cell Res. 1995,220(2):397-406.
    [19]Huflejt ME. Turck CW. Lindstedt R. et al. L-29. a soluble lactose-binding lectin, is phosphoiylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem.1993.268(35):26712-8.
    [20]Cowles EA. Agrwal N. Anderson RL. et al. Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphory lated derivative. J Biol Chem,1990,265(29):17706-12.
    [21]Mazurek N. Conklin J, Byrd JC. et al. Phosphory lation of the beta-galactoside-binding protein galectin-3 modulates bindingto its ligands. J Biol Chem,2000,275(46):36311-5.
    [22]Yoshii T. Fukumori T, Honjo Y et al. Galectin-3 phosphory lation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem.2002.277(9):6852-7.
    [23]Gaudin JC. Mehul B. Hughes RC. Nuclear localisation of wild type and mutant galectin-3 in transfected cells. Biol Cell,2000.92(1):49-58.
    [24]Tsay YG. Lin NY,Voss PG. et al. Export of galectin-3 from nuclei of digitonin-permeabilized mouse 3T3 fibroblasts. Exp Cell Res,1999,252(2):250-61.
    [25]Kaltner H, Seyrek K, Heck A. et al. Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res.2002.307(1):35-46.
    [26]Raz A. Meromsky L, Lotan R. Differential expression of endogenous lectins on the surface of nontumorigenic. tumorigenic, and metastatic cells. Cancer Res,1986,46(7):3667-72.
    [27]Allen HJ, Karakousis C. Piver MS. et al. Galactoside-binding lectin in human tissues. Tumour Biol. 1987.8(4):218-29.
    [28]Lotan R. Carralero D. Lotan D, et al. Biochemical and immunological characterization of K-1735P melanoma galactoside-binding lectins and their modulation by differentiation inducers. Cancer Res. 1989.49(5):1261-8.
    [29]Raz A. Carmi P. Pazerini G. Expression of two different endogenous galactoside-binding lectins sharing sequence homology. Cancer Res.1988.48(3):645-9.
    [30]Schaffert C, Pour PM. Chancy WG. Localization of galectin-3 in normal and diseased pancreatic tissue. Int J Pancreatol.1998.23(1):1-9.
    [31]Inufusa H, Nakamura M, Adachi T, et al. Role of galectin-3 in adenocarcinoma liver metastasis. Int J Oncol, 2001,19(5):913-9.
    [32]Shimonishi T. Miyazaki K. Kono N, et al. Expression of endogenous galectin-1 and galectin-3 in intrahepatic cholangiocarcinoma. Hum Pathol,2001,32(3):302-10.
    [33]Foddy L. Stamatoglou SC, Hughes RC. An endogenous carbohydrate-binding protein of baby hamster kidney (BHK21 C13) cells. Temporal changes in cellular expression in the developing kidney. J Cell Sci. 1990,97 (Pt 1):139-48.
    [34]Ellerhorst J. Nguyen T. Cooper DN. et al. Differential expression of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype. Int J Oncol. 1999,14(2):217-24.
    [35]Gabius HJ. Brehler R. Schauer A, et al. Localization of endogenous lectins in normal human breast, benign breast lesions and mammary carcinomas. Virchows Arch B Cell Pathol Incl Mol Pathol, 1986.52(2):107-15.
    [36]Irimura T, Matsushita Y. Sutton RC, et al. Increased content of an endogenous lactose-binding lectin in human colorectal carcinoma progressed to metastatic stages. Cancer Res,1991,51(1):387-93.
    [37]Baldus SE. Zirbes TK. Weingarten M. et al. Increased galectin-3 expression in gastric cancer:correlations with histopathological subtypes, galactosylated antigens and tumor cell proliferation. Tumour Biol. 2000,21(5):258-66.
    [38]Hsu DK. Dow ling CA, JengKC. et al. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer,1999.81(4):519-26.
    [39]Coli A. Bigotti G, Zucchetti F, et al. Galectin-3. a marker of well-differentiated thyroid carcinoma, is expressed in thyroid nodules with cytological atypia. Histopathology,2002,40(1):80-7.
    [40]Papotti M.Volante M. Saggiorato E. et al. Role of galectin-3 immunodetection in the cytological diagnosis of thyroid cystic papillary carcinoma. Eur J Endocrinol,2002,147(4):515-21.
    [41]Martins L. Matsuo SE, Ebina KN, et al. Galectin-3 messenger ribonucleic acid and protein are expressed in benign thyroid tumors. J Clin Endocrinol Metab,2002,87(10):4806-10.
    [42]Niedziela M. Maceluch J, Korman E. Galectin-3 is not an universal marker of malignancy in thyroid nodular disease in children and adolescents. J Clin Endocrinol Metab,2002,87(9):4411-5.
    [43]Yoshimura A, Gemma A. Hosoya Y, et al. Increased expression of the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer,2003,37(2):159-64.
    [44]Iurisci I. Tinari N, Natoli C, et al. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res,2000.6(4):1389-93.
    [45]Castronovo V, Van Den Brule FA,Jackers P. et al. Decreased expression of galectin-3 is associated with progression of human breast cancer.J Pathol,1996,179(1):43-8.
    [46]den Brule FA v, Berchuck A, Bast RC, et al. Differential expression of the 67-kD laminin receptor and 31-kD human laminin-binding protein in human ovarian carcinomas. Eur J Cancer,1994,30A(8):1096-9.
    [47]den Brule FA v, Buicu C, Berchuck A, et al. Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol,1996,27(11):1185-91.
    [48]Castronovo V, Liu FT, den Brule FA v. Decreased expression of galectin-3 in basal cell carcinoma of the skin. Int J Oncol,1999,15(1):67-70.
    [49]Mollenhauer J, Deichmann M, Helmke B, et al. Frequent downregulation of DMBT1 and galectin-3 in epithelial skin cancer. Int J Cancer,2003,105(2):149-57.
    [50]Xu XC, Sola GJJ, Lotan R, et al. Differential expression of galectin-1 and galectin-3 in benign and malignant salivary gland neoplasms. Int J Oncol,2000,17(2):271-6.
    [51]Lotan R, Matsushita Y, Ohannesian D, et al. Lactose-binding lectin expression in human colorectal carcinomas. Relation to tumorprogression. Carbohydr Res,1991,213:47-57.
    [52]Nakamura M, Inufusa H. Adachi T, et al. Involvement of galectin-3 expression in colorectal cancer progression and metastasis. Int J Oncol,1999,15(1):143-8.
    [53]Lotz MM, Andrews CW Jr, Korzelius CA,et al. Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad SciU SA,1993,90(8):3466-70.
    [54]Berberat PO. Friess H. Wang L. et al. Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer. J Histochem Cytochem,2001,49(4):539-49.
    [55]Shimamura T, Sakamoto M. Ino Y. et al. Clinicopathological significance of galectin-3 expression in ductal adenocarcinoma of the pancreas. Clin Cancer Res,2002,8(8):2570-5.
    [56]Bresalier RS, Yan PS, Byrd JC, et al. Expression of the endogenous gala ctose-bind ing protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer,1997,80(4):776-87.
    [57]Gordower L. Decaestecker C. Kacem Y et al. Galectin-3 and galectin-3-binding site expression in human adult astrocytic tumours and related angiogenesis. Neuropathol Appl Neurobiol,1999.25(4):319-30.
    [58]Danguy A. Camby I. Kiss R. Galectins and cancer. Biochim Biophys Ada,2002,1572(2-3):285-93.
    [59]den Brule FA v. Waltregny D. Liu FT. et al. Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression. Int J Cancer,2000,89(4):361-7.
    [60]Honjo Y. Inohara H. Akahani S. et al. Expression of cytoplasmic galeclin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res,2000,6(12):4635-40.
    [61]Cvejic D. Savin S. Paunovic I. et al. Immunohistochemical localization of galectin-3 in malignant and benign human thyroid tissue. Anticancer Res,1998.18(4A):2637-41.
    [62]Orlandi F. Saggiorato E. Pivano G. et al. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res,1998,58(14):3015-20.
    [63]Miyazaki J. Hokari R. Kato S, et al. Increased expression of galeclin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep,2002.9(6):1307-12.
    [64]Francois C. van VR, De Lathouwer O, et al. Galectin-1 and galectin-3 binding pattern expression in renal cell carcinomas. Am J Clin Pathol,1999,112(2):194-203.
    [65]Nagy N, Legendre H. Engels O, et al. Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer,2003,97(8):1849-58.
    [66]Piantelli M, Iacobelli S. Almadori G. et al. Lack of expression of galectin-3 is associated with a poor outcome in node-negative patients with laryngeal squamous-cell carcinoma. J Clin Oncol. 2002,20(18):3850-6.
    [67]Raz A. Lotan R. Lectin-like activities associated with human and murine neoplastic cells. Cancer Res, 1981.41(9 Pt 1):3642-7.
    [68]Meromsky L. Lotan R. Raz A. Implications of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization. Cancer Res,1986,46(10):5270-5.
    [69]Glinsky W, Glinsky GV Rittenhouse-Olson K. et al. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res,2001,61 (12):4851-7.
    [70]OchiengJ. Warfield P, Green-Jarvis B. et al. Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin.J Cell Biochem,1999.75(3):505-14.
    [71]Hittelet A. Legendre H. Nagy N. et al. Upregulation of galectins-1 and -3 in human colon cancer and their role in regulating cell migration. Int J Cancer,2003.103(3):370-9.
    [72]Raz A, Zhu DG. Hogan V, et al. Evidence for the role of 34-kDa galactoside-binding lectin in transformation and metastasis. Int J Cancer,1990,46(5):871-7.
    [73]Nangiamakker P, Thompson E. Hogan C, et al. Induction of tumorigenicity by galectin-3 in a nontumorigenic human breast-carcinoma cell-line. Int J Oncol,1995.7(5):1079-87.
    [74]Bresalier RS. Mazurek N. Sternberg LR, et al. Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside-bindingprotein galectin 3. Gastroenterology,1998,115(2):287-96.
    [75]Nangia-Makker P. Hogan V Honjo Y, et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst,2002,94(24):1854-62.
    [76]Vandenbrule F. Bellahcene A,Jackers P. et al. Antisense galectin-3 alters thymidine incorporation in human MDA-MB435 breast cancer cells. Int J Oncol,1997,11(2):261-4.
    [77]Inohara H. Akahani S, Raz A. Galectin-3 stimulates cell proliferation. Exp Cell Res,1998,245(2):294-302.
    [78]Joo HG. Goedegebuure PS, Sadanaga N, et al. Expression and function of galectin-3. a beta-galactoside-binding protein in activated T lymphocytes.J Leukoc Biol,2001,69(4):555-64.
    [79]Kim HR, Lin HM, Biliran H. et al. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res,1999,59(16):4148-54.
    [80]Akahani S. Nangia-Makker P. Inohara H. et al. Galectin-3:a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res,1997.57(23):5272-6.
    [81]Nangia-Makker P. Honjo Y, Sarvis R. et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol,2000,156(3):899-909.
    [82]Dagher SF, Wang JL, Patterson RJ. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A.1995.92(4):1213-7.
    [83]Lin HM, Pestell RG. Raz A. et al. Galectin-3 enhances cyclin D(1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene,2002.21(52):8001-10.
    [84]Paron I. Scaloni A. Pines A. et al. Nuclear localization of Galectin-3 in transformed thyroid cells:a role in transcriptional regulation. Biochem Biophys Res Commun,2003,302(3):545-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700