用户名: 密码: 验证码:
玉米SKIP同源基因ZmSKIP的克隆及在非生物胁迫中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农作物的栽培中,非生物胁迫是限制植物生长及产量的主要因子。玉米是集粮食、饲料和工业原料于一体的我国第二大粮食作物,在国家粮食安全及国民经济发展中占有举足轻重的地位。干旱缺水、土壤盐渍化等非生物胁迫已经成为我国许多地区玉米生产的主要限制因素,直接影响着玉米的生长及产量。传统的抗逆育种存在着周期长、费时费力的不足,而利用基因工程技术可以将抗逆基因导入植株提高植物对非生物胁迫的抗性已经具有广泛的应用。因此发掘玉米中抗非生物胁迫的基因并利用基因工程改造玉米是提高玉米在非生物胁迫下稳产或减产少的有效途径
     近年来,已有报道前体mRNA(pre-mRNA)剪切因子能够响应非生物胁迫并提高非生物胁迫的抗性。在本研究中,我们在玉米中克隆了一个pre-mRNA剪切因子SKIP同源的基因ZmSKIP,并且研究了它在逆境中的功能,为玉米抗逆基因工程育种提供重要的参考。主要结果如下:
     1、ZmSKIP编码一个含有609个氨基酸的蛋白。对蛋白保守结构域的分析结果显示ZmSKIP具有SNW/SKIP蛋白特有保守的S-N-W-K-N序列,与水稻中的SKIP基因同源性高达85%。ZmSKIP具有一个核定位序列。根据其核酸序列分析,在玉米基因组中,SKIP基因只有一个拷贝。通过生物信息学分析,ZmSKIP是SNW/SKIP共剪切基因的同源蛋白。
     2、ZmSKIP转录受干旱、高盐、ABA(Abscisic Acid)的诱导。在ZmSKIP启动子驱动GUS基因表达的转基因烟草中,GUS染色表明GUS在测试的各组织中都有表达,尤其在幼嫩的叶片中表达强烈。GUS酶活性荧光测定结果表明在NaCl、甘露醇、PEG(Polyethylene Glycol)和ABA的处理条件下表达明显增强。
     3、为了证实ZmSKIP蛋白的亚细胞定位,构建了CaMV35S:ZmSKIP::GFP融合表达载体,并转化烟草原生质体,激光共聚焦显微观察结果显示ZmSKIP定位于细胞核。
     4、为进一步确定ZmSKIP基因的功能,构建了CaMV35S启动子驱动ZmSKIP的表达载体并转化烟草。在含有300mM甘露醇、200mM NaCl和0.1mM ABA的MS培养基中,转基因烟草的根生长受到的抑制较少。在干旱、高盐和ABA处理条件下,土壤中生长的转基因植株表现出了明显的抗性。
     5、在逆境处理条件下测定了超表达ZmSKIP转基因烟草T1代植株和野生型烟草植株的抗氧化酶如超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化氢酶(Catalase, CAT)、过氧化物酶(Peroxidase, POD)的活性和丙二醛(Malondialdehyde, MDA)含量以及相对电导率(Relative Electrical Conductivity,REC)。结果表明,在干旱、甘露醇、NaCl和ABA处理条件下,相对于野生型烟草,转基因烟草表现出较高的抗氧化酶活性和较低的相对电导率(伤害率)和MDA含量。
     6、采用荧光定量PCR方法测试了在甘露醇、NaCl和ABA处理12小时的植株中的逆境相关基因的表达量,结果也显示,相对于正常条件下生长的烟草,超表达ZmSKIP转基因植株在甘露醇、NaCl和ABA处理12小时条件下,CAT基因表达均明显上调。对于APX基因,转基因烟草在处理后都有上调,而野生型烟草则是下调。对于PR5基因,野生型烟草在处理后出现下调,转基因烟草在甘露醇处理条件下有明显上调。
     7、在外源水杨酸(Salicylic Acid, SA)处理条件下,GUS酶活荧光定量分析以及生理生化指标和植物表型分析表明,与野生型烟草相比,超表达ZmSKIP转基因烟草并没有表现出明显的差异。ZmSKIP对于外源水杨酸也没有表现出明显的诱导。
     以上结果表明,在烟草中超表达ZmSKIP能够提高植株非生物胁迫抗性,ZmSKIP基因能作为一个很好的候选基因应用于提高转基因植物抗性。
Abiotic stresses are among the major factors that limit crop growth and yield.Maize, an important dry-land crop, is the second major food crop in China. It is widelyused as food, animal feed and industrial products. Abiotic stresses such as drought andhigh salinity are the principal causes of maize yield loss in most of the corn-producingareas in China. Traditional plant breeding has achieved significant results by breedingfor resistance to abiotic stresses, but the process is rather time-consuming and expensive.Plant biotechnology is an attractive alternative by allowing for direct introduction of asingle gene into a desirable genotype. Gene discovery and functional genomics effortshave revealed that productivity and adaptation of plants to abiotic stresses are controlledby a wide range of genes.
     In recent years, pre-mRNA splicing factor in plant has been of particular interestfor improving abiotic stress tolerance of crops. In this research, ZmSKIP, a maizehomologue of pre-mRNA splincing factor SKIP has been isolated and its function inresponse to abiotic stress has been investigated in transgenic tobacco plants. The resultswill provide an important basis for breeding maize resistant to abiotic stresses. The mainresults are as follows:
     1. ZmSKIP encoded a protein of609aa. The deduced amino acid sequence fromthe nucleotide sequence of the cDNA showed considerable homology with knownmembers of the SNW SKIP protein family. The S-N-W-K-N motif, which is absolutelyconserved in SNW SKIP protein family, was also found in ZmSKIP protein. ZmSKIPshowed the highest homology (85%) with SKIP in rice. Also, a putative bipartite nuclearlocalization signal motif was found. Based on its amino acid sequence features, ZmSKIPseemed to be encoded by only one gene in the maize genome and can be clearlyassigned to the SNW SKIP family of transcriptional regulators.
     2. ZmSKIP was induced at the transcriptional level by various abiotic stressesincluding drought, high salinity, and abscisic acid (ABA) in maize. Transgenic tobaccoplants expressing β-glucuronidase (GUS) reporter gene under the control of the ZmSKIPpromoter exhibited GUS activity in all tested tissues, and GUS expression wassignificantly induced by NaCl, mannitol, polyethylene glycol (PEG) and ABA.
     3. In order to confirm the sub-cellular localization of the ZmSKIP protein, weexpressed a ZmSKIP-GFP fusion protein under the control of the CaMV35S promoter in tobacco protoplasts. Fluorescence microscopy demonstrated that ZmSKIP wastargeted to nucleus.
     4. To further investigate whether ZmSKIP enhances tolerance to abiotic stress intransgenic plants, the coding region of ZmSKIP was inserted into the vector under thecontrol of the CaMV35S promoter and then transferred into tobacco plants. Comparedto wild type (WT) plants,the root growth of transgenic tobacco plants overexpressingZmSKIP was less inhibited under MS media supplemented with300mM mannitol,200mM NaCl or0.1mM ABA. In soil, transgenic tobacco plants overexpressing ZmSKIPwere more tolerant to drought, high salt and ABA stresses.
     5. The antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) andcatalase (CAT) activities), malondialdehyde (MDA) content and relative electricalconductivity (REC) of T1transgenic tobacco plants overexpression ZmSKIP and WTtobacco plants were examined under various abiotic stresses. Compared to WT plants,transgenic tobacco plants overexpressing ZmSKIP displayed higher antioxidantenzymes, lower MDA content and REC under drought, manitol, NaCl and ABAtreatments.
     6. Stress-responsive genes were assayed at the transcriptional level in WT andtransgenic plants after12h mannitol, NaCl and ABA treatments by qRT-PCR analysis.CAT transcript level in transgenic tobacco plants was up-regulated under mannitol,NaCl and ABA treatments, and was significantly higher than that in WT plants. APXtranscript level was up-regulated under abiotic stresses, while it was down-regulated inWT plants. PR5transcript level of WT plants was down-regulated under abiotic stresses,howere; it was significantly up-regulated under mannitol stress in transgenic plants.
     7. The results of the fluorometric GUS assays on ZmSKIP promoter, as well as thephysiological activity assays, plant germination and growth experiments showed thattransgenic tobacco plants overexpressing ZmSKIP have not significant comparing toWT tobacco plants under exogenous salicylic acid (SA) treatment. ZmSKIP was notsignificantly induced at the transcriptional level by exogenous SA in maize.
     The above results indicate that overexpressing of ZmSKIP improves abiotic stresstolerance in tobacco plants and ZmSKIP can be a good candidate gene for improving thestress tolerance of transgenic plants
引文
侯昕,2009.水稻SKIP同源基因的功能研究[D].华中农业大学博士论文.
    贾艾敏,2011.烟草转基因工作的研究进展[J].安徽农业科学,39:6336-6337.
    刘剑锋,唐鹏,彭抒昂,2004.采后浸钙对梨果实不同形态钙含量及生理生化变化的影响[J].华中农业大学学报,23:560-562.
    苗青,2011.番茄Sly-miR167启动子的分离与调控分析[D].重庆大学硕士论文.
    任永霞,季静,王罡,王萍,2005.植物遗传转化方法概述[J].河北北方学院学报(自然科学版)21,38-42.
    夏江东程吴季,2006.高等植物启动子功能和结构研究进展[J].云南农业大学学报,21:7-14.
    Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K,2003. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling.The Plant Cell [J].15:63-78.
    Abler ML, Green PJ,1996. Control of mRNA stability in higher plants. Plant Molecular Biology [J].32:63-78.
    Acquaah G,2007. Principles of Plant genetics and Breeding. Malden, MA; Oxford: Blackwell Pub.
    Agarwal PK, Agarwal P, Jain P, Jha B, Reddy MK, Sopory SK,2008. Constitutive overexpression ofa stress-inducible small GTP-binding protein PgRab7from Pennisetum glaucum enhancesabiotic stress tolerance in transgenic tobacco. Plant Cell Reports [J].27:105-15.
    Albers M, Diment A, Muraru M, Russell CS, Beggs JD,2003. Identification and characterization ofPrp45p and Prp46p, essential pre-mRNA splicing factors. RNA [J].9:138-50.
    Ambrozkova M, Puta F, Fukova I, Skruzny M, Brabek J, Folk P,2001. The fission yeast ortholog ofthe coregulator SKIP interacts with the small subunit of U2AF. Biochemical and BiophysicalResearch Communications [J].284:1148-54.
    Arfan M, Athar HR, Ashraf M,2007. Does exogenous application of salicylic acid through therooting medium modulate growth and photosynthetic capacity in two differently adapted springwheat cultivars under salt stress? Journal of Plant Physiology [J].164:685-94.
    Baima S, Possenti M, Matteucci A, et al.,2001. The arabidopsis ATHB-8HD-zip protein acts as adifferentiation-promoting transcription factor of the vascular meristems. Plant Physiology [J].126:643-55.
    Baudino TA, Kraichely DM, Jefcoat SC, Jr., Winchester SK, Partridge NC, Macdonald PN,1998.Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitaminD-mediated transcription. The Journal of Biological Chemistry [J].273:16434-41.
    Bres V, Gomes N, Pickle L, Jones KA,2005. A human splicing factor, SKIP, associates with P-TEFband enhances transcription elongation by HIV-1Tat. Genes and Development [J].19:1211-26.
    Calado A, Kutay U, Kuhn U, Wahle E, Carmo-Fonseca M,2000. Deciphering the cellular pathwayfor transport of poly(A)-binding protein II. RNA [J].6:245-56.
    Chen H, Chu P, Zhou Y, et al.,2012. Overexpression of AtOGG1, a DNA glycosylase/AP lyase,enhances seed longevity and abiotic stress tolerance in Arabidopsis. Journal of ExperimentalBotany [J].63:4107-21.
    Chen Z, Malamy J, Henning J, et al.,1995. Induction, modification, and transduction of the salicylicacid signal in plant defense responses. Proceedings of the National Academy of Sciences of theUnited States of America [J].92:4134-7.
    Dahl R, Wani B, Hayman MJ,1998. The Ski oncoprotein interacts with Skip, the human homolog ofDrosophila Bx42. Oncogene [J].16:1579-86.
    El-Kereamy A, El-Sharkawy I, Ramamoorthy R, et al.,2011. Prunus domestica pathogenesis-relatedprotein-5activates the defense response pathway and enhances the resistance to fungal infection.PloS One [J].6: e17973.
    Ella ES, Kawano N, Ito O,2003. Importance of active oxygen-scavenging system in the recovery ofrice seedlings after submergence. Plant Science [J].165:85-93.
    Fan W, Dong X,2002. In vivo interaction between NPR1and transcription factor TGA2leads tosalicylic acid-mediated gene activation in Arabidopsis. Plant Cell [J].14:1377-89.
    Fan W, Zhang M, Zhang H, Zhang P,2012. Improved tolerance to various abiotic stresses intransgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.PloS One [J].7: e37344.
    Figueroa JD, Hayman MJ,2004a. Differential effects of the Ski-interacting protein (SKIP) ondifferentiation induced by transforming growth factor-beta1and bone morphogenetic protein-2in C2C12cells. Experimental Cell Research [J].296:163-72.
    Figueroa JD, Hayman MJ,2004b. The human Ski-interacting protein functionally substitutes for theyeast PRP45gene. Biochemical and Biophysical Research Communications319:1105-9.
    Folk P, Puta F, Skruzny M,2004. Transcriptional coregulator SNW/SKIP: the concealed tie ofdissimilar pathways. Cellular and Molecular Life Sciences [J].61:629-40.
    Forment J, Naranjo MA, Roldan M, Serrano R, Vicente O,2002. Expression of Arabidopsis SR-likesplicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal [J].30:511-9.
    Foyer CH, Theodoulou FL, Delrot S,2001. The functions of inter-and intracellular glutathionetransport systems in plants. Trends in Plant Science [J].6:486-92.
    Frendo P, Didierjean L, Passelegue E, Burkard G,1992. Abiotic stresses induce a thaumatin-likeprotein in maize; cDNA isolation and sequence analysis. Plant Science [J].85:61-9.
    Gill SS, Tuteja N,2010. Reactive oxygen species and antioxidant machinery in abiotic stresstolerance in crop plants. Plant Physiology and Biochemistry [J].48:909-30.
    Gittins JR, Pellny TK, Hiles ER, Rosa C, Biricolti S, James DJ,2000. Transgene expression drivenby heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit genepromoters in the vegetative tissues of apple (Malus pumila mill.). Planta [J].210:232-40.
    Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P,1991. Expression of antifreeze proteins intransgenic plants. Plant Molecular Biology [J].17:1013-21.
    Hirose Y, Ohkuma Y,2007. Phosphorylation of the C-terminal domain of RNA polymerase II playscentral roles in the integrated events of eucaryotic gene expression. Journal of Biochemistry [J].141:601-8.
    Hou X, Xie K, Yao J, Qi Z, Xiong L,2009. A homolog of human ski-interacting protein in ricepositively regulates cell viability and stress tolerance. Proceedings of the National Academy ofSciences of the United States of America [J].106:6410-5.
    Hu L, Lu H, Liu Q, Chen X, Jiang X,2005. Overexpression of mtlD gene in transgenic Populustomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology25,[J].1273-81.
    Huang Y, Steitz JA,2001. Splicing factors SRp20and9G8promote the nucleocytoplasmic export ofmRNA. Molecular Cell [J].7:899-905.
    Jefferson RA, Kavanagh TA, Bevan MW,1987. GUS fusions: beta-glucuronidase as a sensitive andversatile gene fusion marker in higher plants. The EMBO Journal [J].6:3901-7.
    Jung YC, Lee HJ, Yum SS, et al.,2005. Drought-inducible-but ABA-independent-thaumatin-likeprotein from carrot (Daucus carota L.). Plant Cell Reports [J].24:366-73.
    Kadioglu A, Saruhan N, Sa lam A, Terzi R, Acet T,2011. Exogenous salicylic acid alleviates effectsof long term drought stress and delays leaf rolling by inducing antioxidant system. PlantGrowth Regulation [J].64:27-37.
    Karim S, Aronsson H, Ericson H, et al.,2007. Improved drought tolerance without undesired sideeffects in transgenic plants producing trehalose. Plant Molecular Biology [J].64:371-86.
    Kim SS,2004. Introduction of bioinformatic methods for the gene function analysis. Korean JHepatol [J].10:11-21.
    Kim YJ, Noguchi S, Hayashi YK, Tsukahara T, Shimizu T, Arahata K,2001. The product of anoculopharyngeal muscular dystrophy gene, poly(A)-binding protein2, interacts with SKIP andstimulates muscle-specific gene expression. Human Molecular Genetics [J].10:1129-39.
    Kostrouchova M, Housa D, Kostrouch Z, Saudek V, Rall JE,2002. SKIP is an indispensable factorfor Caenorhabditis elegans development. Proceedings of the National Academy of Sciences ofthe United States of America [J].99:9254-9.
    Kuhn JM, Schroeder JI,2003. Impacts of altered RNA metabolism on abscisic acid signaling.Current Opinion in Plant Biology [J].6:463-9.
    Kumpatla SP, Chandrasekharan MB, Iyer LM, Guofu L, Hall TC,1998. Genome intruder scanningand modulation systems and transgene silencing. Trends in Plant Science [J].3:97-104.
    Lee BH, Kapoor A, Zhu J, Zhu JK,2006. STABILIZED1, a stress-upregulated nuclear protein, isrequired for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. ThePlant Cell [J].18:1736-49.
    Leong GM, Subramaniam N, Issa LL, et al.,2004. Ski-interacting protein, a bifunctional nuclearreceptor coregulator that interacts with N-CoR/SMRT and p300. Biochemical and BiophysicalResearch Communications [J].315:1070-6.
    Lescot M, Dehais P, Thijs G, et al.,2002. PlantCARE, a database of plant cis-acting regulatoryelements and a portal to tools for in silico analysis of promoter sequences. Nucleic AcidsResearch [J].30:325-7.
    Lim GH, Zhang X, Chung MS, et al.,2010. A putative novel transcription factor, AtSKIP, isinvolved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. TheNew Phytologist [J].185:103-13.
    Liu D, He X, Li W, Chen C, Ge F,2012. Molecular cloning of a thaumatin-like protein gene fromPyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenicfungi. Plant Cell, Tissue and Organ Culture [J].111:1-11.
    Mahajan S, Tuteja N,2005. Cold, salinity and drought stresses: an overview. Archives ofBiochemistry and Biophysics [J].444:139-58.
    Manley JL, Tacke R,1996. SR proteins and splicing control. Genes Development [J].10:1569-79.
    Martinkova K, Lebduska P, Skruzny M, Folk P, Puta F,2002. Functional mapping of Saccharomycescerevisiae Prp45identifies the SNW domain as essential for viability. Journal of Biochemistry[J].132:557-63.
    Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L,2008. Abioticstress response in plants: When post-transcriptional and post-translational regulations controltranscription. Plant Science [J].174:420-31.
    Mckersie BD, Bowley SR, Harjanto E, Leprince O,1996. Water-Deficit Tolerance and FieldPerformance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiology [J].111:1177-81.
    Mittler R,2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science [J].7:405-10.
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F,2004. Reactive oxygen gene network ofplants. Trends in Plant Science [J].9:490-8.
    Morran S, Eini O, Pyvovarenko T, et al.,2011. Improvement of stress tolerance of wheat and barleyby modulation of expression of DREB/CBF factors. Plant Biotechnology Journal [J].9:230-49.
    Munis MFH, Tu L, Deng F, et al.,2010. A thaumatin-like protein gene involved in cotton fibersecondary cell wall development enhances resistance against Verticillium dahliae and otherstresses in transgenic tobacco. Biochemical and Biophysical Research Communications [J].393:38-44.
    Németh M, Janda T, Horváth E, Páldi E, Szalai G,2002. Exogenous salicylic acid increasespolyamine content but may decrease drought tolerance in maize. Plant Science [J].162:569-74.
    Nahakpam S, Shah K,2011. Expression of key antioxidant enzymes under combined effect of heatand cadmium toxicity in growing rice seedlings. Plant Growth Regulation [J].63:23-35.
    Negeri D, Eggert H, Gienapp R, Saumweber H,2002. Inducible RNA interference uncovers theDrosophila protein Bx42as an essential nuclear cofactor involved in Notch signal transduction.Mechanisms of Development [J].117:151-62.
    Neubauer G, King A, Rappsilber J, et al.,1998. Mass spectrometry and EST-database searchingallows characterization of the multi-protein spliceosome complex. Nature Genetics [J].20:46-50.
    Noctor G, Foyer CH,1998. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen UnderControl. Annual Review of Plant Physiology and Plant Molecular Biology [J].49:249-79.
    Palmer LE, Rabinowicz PD, O'shaughnessy AL, et al.,2003. Maize genome sequencing bymethylation filtration. Science [J].302:2115-7.
    Palusa SG, Ali GS, Reddy AS,2007. Alternative splicing of pre-mRNAs of Arabidopsisserine/arginine-rich proteins: regulation by hormones and stresses. The Plant Journal: for Celland Molecular Biology [J].49:1091-107.
    Pontier D, Miao ZH, Lam E,2001. Trans-dominant suppression of plant TGA factors reveals theirnegative and positive roles in plant defense responses. The Plant Journal: for Cell andMolecular Biology [J].27:529-38.
    Prathapam T, Kuhne C, Banks L,2002. Skip interacts with the retinoblastoma tumor suppressor andinhibits its transcriptional repression activity. Nucleic Acids Research [J].30:5261-8.
    Proudfoot N,2000. Connecting transcription to messenger RNA processing. Trends BiochemicalSciences [J].25:290-3.
    Rahnama H, Ebrahimzadeh H,2005. The effect of NaCl on antioxidant enzyme activities in potatoseedlings. Biologia Plantarum [J].49:93-7.
    Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y,2011. The auxin receptor homologue in Solanumlycopersicum stimulates tomato fruit set and leaf morphogenesis. Journal of ExperimentalBotany [J].62:2815-26.
    Robinson DJ,1996. Environmental risk assessment of releases of transgenic plants containingvirus-derived inserts. Transgenic Research [J].5:359-62.
    Roy R, Purty R, Agrawal V, Gupta S,2006. Transformation of tomato cultivar ‘Pusa Ruby’ withbspA gene from Populus tremula for drought tolerance. Plant Cell, Tissue and Organ Culture[J].84:56-68.
    Sawahel WA, Hassan AH,2002. Generation of transgenic wheat plants producing high levels of theosmoprotectant proline. Biotechnology Letters [J].24:721-5.
    Singh KB, Foley RC, O ate-Sánchez L,2002. Transcription factors in plant defense and stressresponses. Current Opinion in Plant Biology [J].5:430-6.
    Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF,1998. Mode of action of theCOR15a gene on the freezing tolerance of Arabidopsis thaliana. Proceedings of the NationalAcademy of Sciences of the United States of America [J].95:14570-5.
    Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S,2007. Differential expression ofalternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30and atSR45a, inresponse to environmental stress. Plant and Cell Physiology [J].48:1036-49.
    Thomashow MF,1998. Role of cold-responsive genes in plant freezing tolerance. Plant physiology[J].118:1-8.
    Tuteja N,2007. Abscisic Acid and abiotic stress signaling. Plant Signaling and Behavior [J].2:135-8.
    Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K,1993. An Arabidopsis myb homolog isinduced by dehydration stress and its gene product binds to the conserved MYB recognitionsequence. The Plant Cell [J].5:1529-39.
    Van Der Graaff E, Hooykaas PJ, Keller B,2002. Activation tagging of the two closely linked genesLEP and VAS independently affects vascular cell number. The Plant Journal: for Cell andMolecular Biology [J].32:819-30.
    Walworth A, Rowland L, Polashock J, Hancock J, Song G-Q. Overexpression of a blueberry-derivedCBF gene enhances cold tolerance in a southern highbush blueberry cultivar. MolecularBreeding [J].30:1-11.
    Wang WX, Vinocur B, Shoseyov O, Altman A,2001. Biotechnology of plant osmotic stresstolerance: Physiological and molecular considerations. Proceedings of the4th InternationalSymposium on in Vitro Culture and Horticultural Breeding,[J].285-92.
    Xu D, Duan X, Wang B, Hong B, Ho T, Wu R,1996. Expression of a Late Embryogenesis AbundantProtein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress inTransgenic Rice. Plant Physiology [J].110:249-57.
    Xu M, Li L, Fan Y, Wan J, Wang L,2011. ZmCBF3overexpression improves tolerance to abioticstress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Reports [J].30:1949-57.
    Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, Macdonald PN,2001. Ternary complexesand cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptorcoactivators in vitamin D receptor-mediated transcription. The Journal of Biological Chemistry[J].276:40614-20.
    Zhang C, Dowd DR, Staal A, et al.,2003. Nuclear coactivator-62kDa/Ski-interacting protein is anuclear matrix-associated coactivator that may couple vitamin D receptor-mediatedtranscription and RNA splicing. The Journal of Biological Chemistry [J].278:35325-36.
    Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG,2000. At the maize/Agrobacteriuminterface: natural factors limiting host transformation. Chemico-Biological Interactions [J].7:611-21.
    Zhang MQ,1999. Promoter analysis of co-regulated genes in the yeast genome. Computers&Chemistry [J].23:233-50.
    Zhou S, Fujimuro M, Hsieh JJ, Chen L, Hayward SD,2000a. A role for SKIP in EBNA2activationof CBF1-repressed promoters. Journal of virology [J].74:1939-47.
    Zhou S, Fujimuro M, Hsieh JJ, et al.,2000b. SKIP, a CBF1-associated protein, interacts with theankyrin repeat domain of NotchIC To facilitate NotchIC function. Molecular and CellularBiology [J].20:2400-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700