用户名: 密码: 验证码:
设施盐渍化土壤离子互作及生态修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是在对崇明现代农业园区设施栽培区域土壤质量调查的基础上,针对设施土壤离子互作和对芹菜生长及元素吸收的影响、不同类型改良剂对设施土壤和黄瓜产量效应进行的研究。该研究主要分为三部分,主要研究结果如下:
     1.为了达到针对不同程度问题土壤进行不同管理的目的,本研究对崇明现代农业园区设施土壤原位EC值、土壤有机质含量、pH值及盐分含量和芦笋(AsparagusOfficinalis L.)产量的空间变异性进行了分析。结果显示,在每个管理区域,温室土壤有机质、pH值、盐分含量及其成份表现出弱或中等的变异,而在整个区域表现出中等或强的空间变异性。这表明,土壤性质的变化的主导因子是施肥等人为因素,而土壤性质的自然变化则处于次要位置。土壤中钠盐并不是主导盐分,而钙镁盐含量偏高(ESP <15)。原位EC值和1:5土水比测定的土壤EC值有显著的正相关关系。95%以上的温室土壤的盐分含量超过一般蔬菜最佳生长所需的上限。虽然在每个管理区域内芦笋产量表现出较弱的空间变异性,但不同施肥管理措施显著影响设施栽培下的芦笋产量,并且高盐分含量会导致芦笋产量的显著下降。
     为研究温室土壤质量退化的原因,于2007-2009年分别跟踪调查了温室连作(芦笋)、温室轮作(主要种植黄瓜、茄子、西红柿、南瓜和辣椒等)及露地轮作(花菜-玉米)下,农户施肥和灌溉后作物产量及土壤质量的变化。结果发现,不同种植制度显著影响土壤质量。温室栽培显著提高了土壤中有机碳、矿质氮、有效磷和可交换钾的含量,温室连作和温室轮作分别导致土壤pH下降0.6和0.4个单位,而露地土壤pH值变化不大。同时,温室栽培的土壤中硝酸盐和氯离子含量均显著增加,温室土壤盐渍化随种植年限的增加有加重的趋势,而露地土壤盐分变化不明显。另外,尤其是芦笋单作温室,土壤EC值甚至高达10mS cm~(-1)以上,远远高于露地花菜-玉米轮作土壤的0.27mS cm~(-1)。调查发现,农户缺乏田间管理指导、一味追求短时期内的高产、温室栽培复种指数高、过量施用无机肥是导致温室土壤严重盐渍化的主要原因。另外,不当灌溉也是其中一个原因。
     2.为研究磷、钾对不同钙镁水平下土壤中有效元素含量、作物生长及元素吸收的影响,本研究采用由运用高位草炭和沙子按95:5(w/w)混合制成的含有3%有机质的模拟土壤,在模拟土壤中种植芹菜,并定期浇施营养液,然后跟踪调查模拟土壤性质及芹菜生长、产量、品质和营养吸收状况。研究结果显示,磷和钙镁有显著的互作关系,磷能降低模拟土壤的EC值,尤其是在高钙镁水平下,和对照相比,磷能显著降低模拟土壤的EC值。同时,磷在0~4mM之间,随着磷浓度的提高,芹菜地上部鲜重、干物量、叶面积、以及叶片中的磷、钙和镁浓度均显著地增加,而根冠比、叶绿素和类胡萝卜素含量,可溶性蛋白、可溶性糖、维生素C及氮钾浓度却均有下降的趋势。和低(钙4mM和镁4mM)、高水平(钙16mM和镁16mM)的钙镁相比,中水平(钙8mM和镁8mM)的钙镁显著的提高了芹菜地上部鲜重、总干物量和叶面积。本研究显示,在中钙镁水平下,4~8mM的磷供应对芹菜的营养需求是合适的。和对照相比,钾处理和钙镁处理均显著提高了土壤的EC值。虽然土壤中钙镁随着钾浓度的提高有下降的趋势,但在每一个钾水平上,随着钙镁水平的提高能显著提高土壤中可利用镁的含量,显著降低钾的含量,而对钙的含量没有显著的影响。另外,土壤中可利用锰的含量随着钙镁水平的增加有上升的趋势。相关分析表明,土壤中可利用钾含量和芹菜根、茎、叶中钾含量分别存在显著的正相关关系;土壤中的钙、镁分别和芹菜茎和叶中的钙和镁有显著的相关关系。和对照相比,钾显著提高了芹菜产量,而高的钙镁水平却显著抑制芹菜的生长。回归分析显示,芹菜茎中的可溶性蛋白和维生素C含量分别和土壤的EC值存在二次相关关系;芹菜根中的钾含量与钠和镁含量分别存在显著的负相关关系,而与钙含量没有显著的相关关系。芹菜茎和叶中的钾含量与钠和钙含量分别存在显著的负相关关系,而与镁含量没有显著的相关关系。
     3.为研究不同类型改良剂对温室土壤性质和黄瓜产量及品质的影响,本研究选用有机物料(草炭、谷糠、芦笋秸秆、草屑和大豆秸秆)、吸附物料(风化煤和活性炭)、螯合剂(木酢溶解壳聚糖、乙酸溶解壳聚糖)、微生物菌肥(木霉菌、连茬王和护根宝)和无机肥料(硫酸亚铁、磷酸二氢钾和氯化钾)等五种不同类型改良剂作为试验材料。结果显示,不同有机物料的有效元素含量差异显著,谷糠碳含量高、芦笋秸秆钾含量高、草屑磷钾含量高、大豆秸秆氮含量高,而芦笋秸秆和草屑铜含量超标。有机物料均能显著提高土壤的有机碳和可利用钾含量。同时,大豆秸秆能显著提高土壤中矿质氮的含量,芦笋秸秆能显著提高土壤中可利用磷含量。除草炭外,其它有机物料均能显著提高土壤过氧化氢酶和转化酶活性,谷糠和大豆秸秆能显著提高土壤淀粉酶含量,同时,谷糠和芦笋秸秆又显著降低了土壤中的脲酶含量。和对照相比,草炭、谷糠、芦笋秸秆、草屑和大豆秸秆分别提高黄瓜产量15.9%、10.1%、58.7%、49.7%和26.7%。有机物料还能显著降低黄瓜中的硝酸盐含量。和对照相比,活性炭和风化煤均能增加土壤的缓冲性,显著促进黄瓜的生长,提高其产量和品质。木酢溶解壳聚糖和乙酸溶解壳聚糖处理土壤均对黄瓜有显著的促进效应,但它们之间却没有显著的差异,这表明在农业生产中能够用木酢替代乙酸溶解壳聚糖。另外,微生物菌肥(尤其是木霉菌)、无机肥料均能不同程度提高温室黄瓜产量,并且降低黄瓜中的硝酸盐含量。本试验研究表明,将不同类型的改良剂进行组合对温室土壤进行改良,效果会更好。
This experiment was performed to study soil ionic interaction and its effect on celery(Apium graveolens L.) growth and elemental uptake, and the effects of different soilamendments on greenhouse soil properties and cucumber (Cucumis sativus L.) yield, based onthe assessment of soil quality and asparagus yield in an area of greenhouse cultivation onChongming Island, China. This study included three parts and results were as follows:
     1. This study was undertaken to determine the spatial variability of in situ electricalconductivity (ECa), pH, organic matter, soil salinity and spear yield of asparagus (AsparagusOfficinalis L.) in an area of plastic-greenhouse cultivation on Chongming Island, China,which could help the growers for good management practices. Results showed that soil spatialvariability was weak or moderate in each of greenhouse management areas, but moderate orstronge for all the study area. This indicated that the impacts of human activities ongreenhouse soil spatial variability were prominent, such as fertilization and managementpractices, but natural factors such as the formation of terrestrial were second. In thegreenhouse soil, sodium salt was not prominent (ESP <15). There was a significantcorrelation between ECa and1:5soil/water EC. Total soil salt content was more than theupperlimitation of plant adaption in95%of total area of greenhouse cultivation. The spatialvariability of asparagus spear yield was weak for different growers. However, differentmanagement practices significantly affected soil salinity and asparagus spear yield ingreenhouse cultivation, and excessive salinity of greenhouse soil could result in decreasedasparagus spear yield.
     Fertilization, irrigation, crop yield and soil quality were investigated from2007to2009in different cropping systems (greenhouse monoculture, greenhouse rotation and open fieldrotation) in order to study the reason of greenhouse soil degradation. Results showed thatdifferent cropping systems significantly affected soil quality. Although soil organic carbon,mineral nitrogen, available phosphorus and exchangeable potassium content increased ingreenhouse cultivation compared to open field rotation, greenhouse cultivation significantlyincreased soil EC, and NO3-and Cl-contents. Meanwhile, pH values decreased by0.6and0.4 in the greenhouse monoculture and greenhouse rotation, repectively, while did notsignificantly change in open field rotation. In addition, greenhouse soil salinization had adeterious trend with increasing planting year, while EC value did not significantly change inopen field rotation. In asparagus monoculture greenhouse, soil EC even approached10mScm~(-1), which outclassed soil EC (0.27mS cm~(-1)) in open-field rotation. Investigation indicatedthat high cropping index, excessive fertilizer input and inappropriate irrigation resulted ingreenhouse soil quality degradation due to weak farmer’s skill and local extention services.
     2. Greenhouse pot experiments were performed to optimize phosphorus (P) fertilizationunder different Calcium (Ca) and magnesium (Mg) levels and to study effects of thesenutrients on celery growth, quality and nutrient uptake. Results showed that P treatmentscould significantly decrease electrical conductivity in the substrate, while substrate ECincreased with increasing the level of Ca and Mg. Meanwhile, there were significantinteractions between P application and the level of Ca and Mg. Celery above-ground freshweight, total dry biomass, leaf area and P concentration in celery leaves significantlyincreased at low P treatments (0-4mM), whereas at high P treatments (4~(-1)6mM) did notsignificant change. The opposite trend was observed for root/shoot ratio, leaf chlorophyll,carotenoids, soluble protein, soluble sugar, ascorbic acid (vitamin C) and nitrogenconcentration in celery leaves. The medium levels of Ca and Mg (8mM Ca and8mM Mg)significantly increased celery above-ground fresh weight, total dry biomass and leaf areacompared to the low (4mM Ca and4mM Mg) and high (16mM Ca and16mM Mg) level ofCa and Mg at the4~(-1)6mM P treatments. This study suggested that4-8mM P applicationunder medium levels of Ca and Mg was appropriate to satisfy the nutritional requirements forimprovement of horticultural characteristics. Meanwhile, interactions between availableelements in the mixed organic substrate of peat and sand (95:5, w/w) as affected by potassium(K) under different calcium (Ca) and magnesium (Mg) levels, and effect of these nutrients oncelery growth, quality and nutrient uptake were studied. Results showed that EC values insubstrate significantly increased with increasing K application, and the level of Ca and Mg insupplied nutrient solution, respectively. K application could significantly decreased availableCa and Mg contents in substrate. Increased level of Ca and Mg significantly increased Mgcontent in substrate and decreased K, while did not significantly affect Ca. Mn content in substrate significantly increased with increasing level of Ca and Mg. available K content insubstrate had significant relation with K content in root, stalk and leaf of celery, and Ca andMg in substrate were significantly related with in stalk and leaf. K application significantlyincreased celery yield, while high level of Ca and Mg inhibited celery growth. Soluble proteinand vitamin C in stalk of celery had significant relation with EC in substrate, respectively. Caand Mn contents in leaves of celery were significantly related with yield, respectively. Kcontent in root of celery was significantly negatively related with Na and Mg in root, whilenot related with Ca. K content in stalk and leaves of celery were significantly negativelyrelated with Na and Ca, respectively, while not related with Mg.
     3. The use of organic materials (peat moss, bran coat, asparagus residues, turf clippingand soybean residues), adsorption materials (weathered coal and activated carbon), chelators(wood vinegar dissolved chitosan and acetic acide dissolved chitosan), microbial fertilizers(trichoderma,“Lian chawang” and “Hu genbao”) and mineral fertilizers (FeSO4, KH2PO4andKCl) as soil amendments for greenhouse cucumber production was studied. Different organicmaterials have different properties, especially elemental contents. The content of carbon inbran coat was highest among all the organic materials, the potassium content in asparagusresidue highest, the contents of phosphorus and potassium in turf clipping highest, andnitrogen content in soybean residues highest. However, the contents of copper in asparagusresidue and turf clipping were more than the standard when as soil amendments. Organicmaterials significantly increased soil organic carbon and available potassium content. Soilmineral nitrogen was significantly increased by soybean residues and asparagus residuessignificantly increased soil available phosphorus content. Organic materials significantlyincreased soil catalase and invertase activities except for peat moss. Soil amylase activity wassignificantly increased by mildewy bran coat and soybean residues, while mildewy bran coatand asparagus residues significantly decreased soil urease activities. Organic materialssignificantly increased cucumber yield and decreased nitrate contents. Asparagus residuetreatment could significantly increased potassium and magnesium contents in cucumber fruit.Active carbon and weathered coal could increase the buffering capacity of greenhouse soil,and improve cucumber growth, yield and quality. The wood vinegar solution of chitosan andthe acetic acid solution of chitosan treatments have significantly promoting effects on cucumber compared to the control, but no significant difference was observed between them,indicating wood vinegar could substitute acetic acid in agricultural production. In addition,trichoderma and mineral fertilizers could increased cucumber yield and decreased the NO_3-content in cucumber fruit compared to the control. This study suggested that the combinationof different types of amendments was applied to the greenhouse soil, which could achievebetter results.
引文
[1]章镇,王秀峰.园艺学总论.北京:中国农业出版社,2003.
    [2]余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37(6):581~586.
    [3]国家科技部网站. www.most.gov.cn/ztzl/kjzg60/kjzg60hhcj/kjzg60nckj/nccg/200909.
    [4]费颖恒,黄艺,严昌荣等.大棚种植对农业土壤环境的胁迫[J].农业环境科学学报,2008,27(1):243~247.
    [5]吴凤芝,刘德,王东凯等.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,1998(4):5-8.
    [6]董艳,董坤,鲁耀等.设施栽培对土壤化学性质及微生物区系的影响.云南农业大学学报,2009,24(3):418~424.
    [7]马爱军,何任红,王开冻等.设施草莓地土壤盐渍化的形成及防止对策探讨.中国南方果树.2002,4(31):71.
    [8]侯云霞,钱光熹,王建民,等.上海蔬菜保护地的土壤盐分状况.上海农业学报,1987,3(4):31~38.
    [9]朱世东.蔬菜大棚土壤盐分集积及防止.上海蔬菜,1988,(1):23.
    [10]施秀珠,奚振邦,朱建萍.上海郊区蔬菜塑料大棚的土壤障碍问题.上海蔬菜,1989,(3):28~30.
    [11]程美廷.温室土壤盐分积累、盐害及其防止.土壤肥料,1990,(1):1~4.
    [12]薛继澄,毕德义,李家金等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,(1):4~9
    [13]李文庆.大棚栽培后土壤盐分的变化.土壤,1995,(4):203~205.
    [14]张金盛,任顺荣,赵振达.蔬菜保护地土壤硝酸盐积累及盐分变化.天津农业科学,1998,4(4):36~39.
    [15]王平,刘淑英.兰州市安宁区蔬菜保护地土壤盐分的含量及其剖面分布规律.甘肃农业大学学报,1998,33(2):186~189.
    [16]李中,金富兰,刘乙俭.不同年限温室土壤养分状况分析.辽宁农业科学,1999,(5):53.
    [17]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159~162.
    [18]刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及影响.北方园艺,1998,(6):1~2.
    [19]孙凇发.温室土壤次生盐渍化的研究.上海农学报,1992,10(2):132~140.
    [20]吴志行,石海仙,董明光等.大棚蔬菜连作障碍及土壤次生盐渍化原因与防止.长江蔬菜,1994,(5):21~23.
    [21]岛田永生.塑料大棚土壤的特性和改良.北京:农业出版社,1986.
    [22]内海修一.保护地园艺—环境与作物生理.北京:农业出版社,1984.
    [23]张耀良,曹建东,王冬翼.治理设施土壤盐渍化的一种有效模式.上海农业学报,2008,24(4):121~123.
    [24]徐益章,陆建忠.设施栽培的土壤盐渍化初探.上海蔬菜,2004,(5):60~61.
    [25] Ju X.T., Kou C.L., Christie P., et al. Changes in the soil environment from excessiveapplication of fertilizers and manures to two contrasting intensive cropping systems on thenorth China plain. Environmental Pollution,2007,145:497~506.
    [26]王朝辉,田宵鸿,李生秀.叶类蔬菜的硝态氮累积及成因研究.生态学报,2001,21(7):1136~1141.
    [27]王朝辉,宗志强,李生秀.菜地和一般农田土壤主要养分累积的差异.应用生态学报,2002,13(9):1091~1094.
    [28]王学军.日光温室土壤次生盐渍化分析.北方园艺,1998,(3):12~13.
    [29] Flowers T.J., Flowers S.A. Why does salinity pose such a difficult problem for plant breeders?Agr. Water Manege.2005,78:15-24.
    [30] Malash N., flower T.J., Ragab R. Effect of irrigation systems and water management practicesusing saline and non-saline water on tomato production. Agricultural water management,2005,78:25~38.
    [31]李廷轩,张锡洲,王昌全等.保护地土壤次生盐渍化的研究进展.西南农业学报,2001,14(增刊1):103~107.
    [32]赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993.
    [33]殷永娴,刘鸿雁.设施栽培下土壤中硝化、反硝化作用的研究.生态学报,1996,16(3):246~250
    [34]薛继澄,李家金,毕德义.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响.南京农业大学学报,1995,18(1):53~57.
    [35] Li W.Q., Zhang M., Van Der Zee D. Salt contents in soils under plastic greenhouse gardeningin China.Pedosphere,2001,11(4):359~367
    [36]郭文忠,李丁仁.宁夏日光温室土壤次生盐渍化发生原因及治理.长江蔬菜,2003,(4):39~40.
    [37]谢玉珍.确保大鹏蔬菜持续高产谨防土壤盐渍化.农业科技与信息,1999,(8):14.
    [38]房云波,孟春玲.保护地内土壤次生盐渍化对土壤性质的影响及对策.辽宁农业科学,2006,(6):40~41.
    [39]史桂芳,毕军,夏光利等.保护地蔬菜土壤障碍指标界定及应用研究.耕作与栽培,2003,3:49-50.
    [40] Jackson T.L., Westermann D.T., Moore D.P. The effect of chloride and lime on the manganeseuptake by bush beans and sweet corn. Soil Science Society of American Journal,1966,30:70~73.
    [41] Petrie S.E., Jackson T.L. Effects of fertilization on soil solution pH and manganeseconcentration. Soil Sci Soc Am J,1984,48:315~318.
    [42] Rhoades J.D. Use of saline water irrigation. Water Quality Bull,1987,12:14~22.
    [43] Khattak R.A., Jarrell W.M. Salt-induced manganese solubilization in California soil. SoilScience Society of American Journal,1988,52:1606~1611.
    [44]臧小平.土壤锰毒与植物锰的毒害.土壤通报,1999,30(3):139~141.
    [45] Waldren S., Davies M.S., Etherington J.R. The effect of manganese on root extension ofGeum rivale L., Geum urbanum L. and their hybrids. New Phytologist,1987,106(4):679~688.
    [46] Marsh K.B., Peterson L.A. Gradients in Mn accumulation and changes in plant form forpotato plants affected by Mn toxicity. Plant and Soil,1990,121:157~163.
    [47] Garbeva P., Van Veen J.A., Van Elsas J.D. Microbial diversity in soil: selection of microbialpopulations by plant and soil type and implications for soil suppressiveness. Annu Rev ofPhytopathol,.2004,42:243~270.
    [48] Janvier C., Villeneuve F., Alabouvette C., et al. Soil health through soil disease suppression:which strategy from descriptors to indicators? Soil Biol Biochem,2007,39:1~23.
    [49] Paul E.A. Soil microbiology, ecology, and biochemistry. Academic, San Diego, USA,3rdEds,2007, pp532.
    [50] Karlen D.L., Mausbach M.J., Doran J.W., et al. Soil quality: a concept, definition, andframework for evaluation. Soil Science Society of American Journal,1997,61:4~10.
    [51] Doran J.W., Zeiss M.R. Soil health and sustainability: managing the biotic component of soilquality. Applied Soil Ecology,2000,15:3~11.
    [52] Kennedy A.C., Smith K.L. Soil microbial diversity and sustainability of agricultural soil.Plant Soil,1995,170:75~86.
    [53]谢成陶.盐渍土改良原理与作物抗性.中国农业科学技术出版社,1993.
    [54] Shen W., Lin X., Gao N., et al. Land use intensification affects soil microbial populationsfunctional diversity and related suppressiveness of cucumber Fusarium wilt in China’sYangtze River Delta. Plant Soil,2008,306:117~127.
    [55] Wang ZH, Li SX. Effects of N forms and rates on vegetable growth and nitrate accumulation.Pedosphere,2003,13(4):309-316.
    [56] Grattan, S.R., Grieve C.M. Salinity-mineral nutrient relations in horticultural crops. Sci.Hortic.,1999,78:127-157.
    [57]吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响.农业系统科学与综合研究,2002,18(1):20-22.
    [58]宋圃菊.饮食与胃癌的病因.北京医学院学报,1978,(1):52~60.
    [59] Lee C.Y. Effect of cultural practices on chemical composition of processing vegetables.Journal of Food Science,1974,39:1075~1079.
    [60] Nielsen D.R., MacDonald J.G.(Eds). Nitrogen in the environment. New York: AcademicPress,1978.
    [61] Szwonek E. Nitrates concentration in lettuce and spinach as dependent on nitrate doses. ActaHort.,1986,176:93~98.
    [62]王晓佳,宋明.蔬菜的污染与无污染蔬菜生产(一).中国蔬菜,1996,(3):53~55.
    [63] Ramaly A.L., Stroehlein J.L., Pessarakli M. Effect of salt stredd on dry matter production andnitrogen uptake by tomatoes. Journal of plant nutrition,1990,13(5):573-577.
    [64]郑光华.塑料大棚蔬菜栽培生理障碍.上海:上海科学出版社,1984.
    [65]殷永娴,曹利中.设施土壤的微生物区系.土壤,1994,3:143~145.
    [66] Johnston AE, Goulding KWT, Poulton PR. Soil acidication during more than100years underpermanent grassland and woodland at Rothamsted. Soil Use and Management,1986,2,3-10.
    [67]国家环境保护总局.中东部地区生态环境现状调查报告.环境保护,2003,8:3-8.
    [68] Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmentalchange. Science,2001,292:281-284.
    [69] Nieder R, Richter J. Carbon and nitregon accumulation in arable soils of west germany andits influence on the environment developments1970to1998. Journal of plant nutrition andsoil science,2000,163:65-72.
    [70]李文庆,张民,李海峰等.大棚土壤硝酸盐状况研究.土壤学报,2002,39(2):283-287.
    [71] Babiker IS, Kato K, Ohta K, et al. Assessment of groundwater contamination by nitrateleaching from intensive vegetable cultivation using geographical information system.Environmwnt international,2004,29(8):1009-1017.
    [72] Zhang M, Geng S, Smallwood KS. Assessing groundwater nitrate contamination for resourceand landscape management. Ambio,1998,27(3):170-174.
    [73] Cahn MD. Cation and nitrate leaching in an oxisol of Brazilian Amazonl. Agronomy Journal,1993,85:334-340.
    [73]徐文彬,洪业汤,陈旭辉等.区域农业土壤N2O释放的研究-----以贵州省为例.中国科学(D辑),1999,29(5):450-456.
    [74]张光亚,方柏山,闵航等.设施栽培土壤氧化亚氮排放及其影响因子的研究.农业环境科学学报,2004,23(1):144-147.
    [75] Li ZP, Zhang TL, Han FX et al. Changes in soil C and N contents and mineralization across acultivation chronosequence of paddy fields in subtropical China. Pedosphere,2005,15(5):554-562.
    [76] Hechrath G. Phosphorus leaching from soils containing different phosphorus concentrationsin the Broadbalk experiment. Journal of environmental quality,1995,24:904-910.
    [77] Maguire RO, Sims JT. Soil testing to predict phosphorus leaching. Journal of environmentalquality,2002,31(5):1601-1609.
    [78] Sharpley A.N., Menzel R.G. The impact of soil and fertilizer on the environment. Advan.Agron.,1987,41:297~320.
    [79]宋菲,郭玉文,刘孝义等.土壤中重金属镉铅复合污染的研究.环境科学学报,1996,16(4):431~436.
    [80]周娟娟,高超,李忠佩等.磷对土壤砷固定与活化的影响.土壤,2005,37(6):645-648.
    [81] Ohno T, Grunes DL. Potassium-magnesium interactions affecting nutrient uptake by wheatforage. Soil Sci. Soc. Am. J,1985,45:685-690.
    [82] Ohno T, Grunes DL, Sanchirico CA. Nitrogen and potassium fertilization and environmentalfactors affecting the grass tetany hazard of wheat forage. Plang and Soil,1985,86:173-184.
    [83]陈怀满,郑春荣,周美东等.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.
    [84]吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4:8~15.
    [85]王遵亲.排水在防止各种土壤盐渍化中的重要作用.土壤学报,1964.
    [86]张春兰,张耀栋,周权锁.不同作物茬口对减轻蔬菜保护地土壤盐害及连作障害的作用.土壤通报,1995,26(6):257-259.
    [87]冯永军,陈为峰,张蕾娜,吴安民.设施园艺土壤的盐化与治理对策.农业工程学报,2001,17(2):111-114.
    [88]吴根良,柴伟国.畦面覆盖及灌水对切花月季温室土壤盐分运动变化的影响.浙江农业学报,1996,8(1):62-64.
    [89]李凤霞,马力文.甜菜地膜覆盖栽培的土壤盐分变化及其对产质量的影响.中国农业气象,1996,17(2):33-35.
    [90]黄强,殷志刚,田长彦,等.施用有机肥条件下的土壤溶液盐分变化动态.干旱区研究,2001,18(1):53-55.
    [91]李新举,张志国.秸秆覆盖与秸秆翻压还田效果比较.国土与自然资源研究,1999,1:43-45.
    [92]卢善玲,周根娣,汪雅各,张家骐.上海蔬菜硝酸盐残留状况及其控制途径.上海农业学报,1990,6(4):59-66.
    [93]谢承陶.盐渍土改良与作物抗性.北京:中国农业科技出版社,1993.
    [94] Liang, Y., Si J., Nikolic M., et al. Organic manure stimulates biological activity and barleygrowth in soil subject to secondary salinization. Soil Biology&Biochemistry,2005,37:1185~1195.
    [95] Casa R., Castrignanò A. Analysis of spatial relationships between soil and crop variables in adurum wheat field using a multivariate geostatistical approach. European Journal ofAgronomy,2008,28:331~342.
    [96] Corwin D.L., Kaffka S.R., Hopmans J.W., et al. Assessment and field-scale mapping of soilquality properties of a saline-sodic soil. Geoderma,2003,114:231~259.
    [97] Guimar es Couto E., Stern A., Klamt E. Large area spatial variability of soil chemicalproperties in central Brazil. Agriculture, Ecosystems and Environment,1997,66:139~152.
    [98] Liu Z.H., Jiang L.H., Li X.L., et al. Effect of N and K fertilizers on yield and quality ofgreenhouse vegetable crops. Pedosphere,2008,18(4):496~502.
    [99] Yao H., Jiao X., Wu F. Effects of continuous cucumber cropping and alternative rotationsunder protected cultivation on soil microbial community diversity. Plant Soil,2006,284:195~203.
    [100] Li W.Q., Du B.H., Luo H.Y., et al. The influence of greenhouse cultivation on soilmicroflora. Soil and Fertilizer,1996,2:31~33.
    [101] Lin X.G., Yin R., Zhang H.Y., et al. Changes of soil microbiological properties caused byland use changing from rice–wheat rotation to vegetable cultivation. EnvironmentalGeochemistry and Health,2004,26:119~128.
    [102] Xue J.C. The soil factors causing physiological defect of vegetable cultivated in protectedfarmland and countermeasures. Soil and Fertilizer,1994,1:4~9.
    [103] Ardahanlioglu O., Oztas T., Evren S., et al. Spatial variability of exchangeable sodium,electrical conductivity, soil pH and boron content in salt-and sodium-affected areas of theIgdir plain (Turkey). Journal of Arid Environment,2003,54:495-503
    [104] Panagopoulos T., Jesus J., Antunes M.D.C., et al. Analysis of spatial interpolation foroptimizing management of a salinized field cultivated with lettuce. European Journal ofAgronomy,2006,24:1~10.
    [105] Rüth B., Lennartz B. Spatial variability of soil properties and rice yield along two catenas insoutheast China. Pedosphere,2008,18(4):409~420.
    [106] Sawchik J., Mallarino A.P. Variability of soil properties, early phosphorus and potassiumuptake, and incidence of pests and weeds in relation to soybean grain yield. AgronomyJournal,2008,100(5):1450~1462.
    [107] USDA Tech Bulletin962. Categories of irrigation water quality based on electricalconductivity.
    [108]鲍士旦.土壤农化分析.北京:中国农业出版社,2005.
    [109] Levy G.J. Sodicity. In: Sumner M E. Handbook of soil science. USA: CRC Press,2000, pp27-63.
    [110] Gotway C.A., Ferguson R.B., Hergert G.W., et al. Comparison of kriging andinverse-distance methods for mapping soil parameters. Soil Science Society of AmericanJournal,1996,60:1237~1247.
    [111] Kravchenko A., Bullock D.G. A comparative study of interpolation methods for mappingsoil properties. Agronomy Journal,1999,91:393~400.
    [112] Makarian H., Rashed Mohassel M.H., Bannayan M., et al. Soil seed bank and seedlingpopulations of Hordeum murinum and Cardaria draba in saffron fields. Agriculture,Ecosystems and Environment,2007,120:307~312.
    [113]赵其国,史学正.土壤资源概论.北京:科学出版社,2007.
    [114] Hillel D. Applications of Soil Physics. Academic Press, New York,1980, pp380.
    [115] Cambardella C.A., Moorman T.B., Novak J.M., et al. Field-scale variability of soilproperties in Central Iowa soils. Soil Science Society of American Journal,1994,58:1501~1511.
    [116] Testing and Nutrition Guideline. MSU Ag Facts Extension Bulletin E-1736.1983.
    [117] Darwish T., Atallah T., Moujabber M.E., et al. Salinity evolution and crop response tosecondary soil salinity in two agro-climatic zones in Lebanon. Agricultural WaterManagement,2005,78:152~164.
    [118] Cao Z.H., Huang J.F., Zhang C.S., et al. Soil quality evolution after land use change frompaddy soil to vegetable land. Environmental Geochemistry and Health,2004,26:97~103.
    [119] Kahlown M.A., Azam A. Effect of saline drainage effluent on soil health and crop yield.Agricultural Water Management,2003,62(2):127-138.
    [120] Bailey D. Alkalinity, pH and Acidification. In: Reed D.W. Water, media, and nutrition forgreenhouse crops. Ball Publishing, Batavia, IL,1996, pp314.
    [121] Peterson J.C. Modify your pH perspective. Florists Review,1981,169:34~36.
    [122] Fisher P.R., Wik R.M., Smith B.R., et al. Correcting iron deficiency in calibration grown ina container medium at high pH. HortTechnology,2003,13:308~313.
    [123] Nelson P.V. Fertilization. In: Holcomb EJ ed. Bedding plants IV. Ball Publishing, BataviaIll.,1994.
    [124] Cerri C.E.P., Bernoux M., Chaplot V., et al. Assessment of soil property spatial variation inan Amazon pasture: basis for selecting an agronomic experimental area. Geoderma,2004,123:51~68.
    [125] Richter J., Roelcke M. The N-cycle as determined by intensive agriculture: examples fromcentral Europe and China. Nutrient Cycling in Agroecosystems,2000,57:33~46.
    [126] Ju X.T., Liu X.J., Zhang F.S., et al. Nitogen fertilization, soil nitrate accumulation, andpolicy recommendations in several agricultural regions of China. Ambio,2004Aug,33(6):300~305.
    [127] Chao, G., Sun, B., Zhang, T.L. Sustainable nutrient management in Chinese agriculture:Challenges and perspective. Pedosphere,2006,16(2):253~263.
    [128]贾继文,李文庆,陈宝成.山东省蔬菜大棚土壤养分状况与施肥现状的调查研究.见:谢建昌,陈际型主编.菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社,1997,73~75.
    [129]沈明珠,翟宝杰,东惠茹.蔬菜硝酸盐积累的研究Ⅰ不同蔬菜硝酸盐、亚硝酸盐含量评价.园艺学报,1982,9(4):41~48.
    [130] Neeteson J.J. The resk of nitrate leaching after application of nitrogen fertilizers toagricultural crops. In: Adriano, DC, eds. Advances in environmental science, groundwaterseries, springer, New York.1992.
    [140] Pioke H.B., Sharma M.L., Hirschberg K.J. Impact of irrigated horticulture on nitrateconcentrations in groundwater. Agriculture, Ecosystems and Envrionment,1990,32:119~132.
    [141] Jebson M. Typical arable farm management practices. www.mag.govt.nz9,2002/7/15.
    [142] Powlson D.S. Integrating agricultural nutrient management with environmentalobjective-Current state and future prospects. The fertilizer society, Proceedings,1997, No.402.
    [143] Petrovic N., Kastori R., Scaife A. Production of leafy vegetable with low concentration ofnitrate, in: Proceedings2nd conference of the European society of agronomy, WarwickUniversity, pp422~432.
    [144] Santamaria P., Elia A., Parente A., et al. Fertilization strategies for lowering nitrateaccumulation in leafy vegetables: Chicory and rocket salad case. Journal of plant nutrition,1998,21:1791~1803.
    [145]王朝辉,田霄鸿,李生秀.叶类蔬菜的硝态氮累积及成因研究.生态学报,2001,21(7):1136-1141.
    [146] Addiscott T.M., Benjamin N. Nitrate and human health. Soil Use and Management,2004,20:98~104.
    [147] Heckrath G., Brookes P.C., Poulton P.R., et al. Phosphorus leaching from soils containingdifferent phosphorus concentrations in the Broadbalk experiment. Journal of environmentalquality,1995,24:904~910.
    [148]刘克峰.土壤、植物营养与施肥.气象出版社,2006.
    [149] Fallovo C., Rouphael Y., Rea E., et al. Nutrient solution concentration and growing seasonaffect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. Journal ofthe Science of Food and Agriculture,2009,89:1682~1689.
    [150] Kader, A.A. Flavor quality of fruits and vegetables. Journal of the Science of Food andAgriculture,2008,88:1863~1868.
    [151] Owen Jr.J., Warren S., Bilderback T., et al. Phosphorus rate, leaching fraction, and substrateinfluence on influent quantity, effluent nutrient content, and response of a containerizedwoody ornamental crop. HortScience,2008,43(3):906~912.
    [152]吕福堂,司东霞.日光温室土壤盐分积累及离子组成变化的研究.土壤,2004,36:208~210.
    [153] Burnett, S.E., Zhang D. Effects of phosphorus on morphology and foliar nutrientconcentrations of hydroponically grown scaevola aemula R. Br.(Whirlwind Blue).HortScience,2008,43:902~905.
    [154] Hawkin, H.J., Hettasch H., Mesjasz-Przybylowicz J., et al. Phosphorus toxicity in theProteaceae: A problem in post-agricultural lands. Scientia Horticulturae,2008,117:354~365.
    [155] Marschner, H. Mineral nutrition of higher plant.2nd Ed. Academic Press, London, UK.,1995.
    [156] Espinoza, L., Sanchez C.A., Schueneman T.J. Celery yield responds to phosphorus rate butnot phosphorus placement on histosols. HortScience,1993,28:1168~1170.
    [157] Tremblay N., Auclair P., Parent L. E., et al. A multivariate diagnosis approach applied tocelery. Plant and Soil,1993,154:39~43.
    [158] Ao Y., Sun M., Li Y. Effect of organic substrates on available elemental contents in nutrientsolution. Bioresource Technology,2008,99(11):5006~5010.
    [159]孙敏,奥岩松,陈伯清.不同栽培体系对莴苣和番茄营养生长的影响.辽宁农业科学,2004,4:10~12.
    [160]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    [161] Hoagland, D.R., Arnon D.I. The water-culture method for growing plants without soil.Circular347, Agricultural Experimental Station, University of California, Berkeley, CA.,1950.
    [162] Adams P. Nutritional control in hydroponics. In: Savvas, D., Passam, H.C.(Eds),Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens,2002,pp211-262.
    [163] Sonneveld C. Composition of nutrient solutions. In: Savvas D., Passam H.C.(Eds.),Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens,Greece,2002, pp179~210.
    [164] Sonneveld C., Straver N. Nutrients Solutions for Vegetables and Flowers Grown in Water orSubstrates.10th Edition. Series: Voedingsoplossingen Glastuinbouw, No8, PBG Naaldwijik–PBG Aalsmeer.,1994.
    [165] Jones, B.R. Hydroponics: A Practical Guide for the Soilless Grower,2nd edition. St.-LuciePress. Boca Raton,2005.
    [166] Alt D., Ladebusch H., Melzer O. Long-term trial with increasing amounts of phosphorus,potassium and magnesium applied to vegetable crops. Acta Horticulturae,1999,506:29~36.
    [167] Dufault, T.J. Relationships among nitrogen, phosphorus, and potassium fertility regimes oncelery transplant growth. HortScience,1985,20:1104~1106.
    [168] Valentine A.J., Osborne B.A., Mitchell D.T. Interactions between phosphorus supply andtotal nutrient availability on mycorrhizal colonization, growth and photosynthesis ofcucumber. Scientia Horticulturae,2001,88:177~189.
    [169]李韵珠,李保国,1998.土壤溶质运移.科学出版社.
    [170]张淑香,王小彬,金柯等.干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响.植物营养与肥料学报,2001,7:391~396.
    [171] Shuman L.M. Effect of phosphorus level on extractable micronutrients and their distributionamong soil fractions. Soil Science Society of America Journal,1988,52:136~141.
    [172] Medina E., Paredes C., Pérez-Murcia M.D., et al. Spent mushroom substrates as componentof growing media for germination and growth of horticultural plants. Bioresource.Technology,2009,100:4227~4232.
    [173] Levander, O.A. Fruit and vegetable contributions to dietary mineral intake in human healthand disease. HortScience,1990,25:1486~1488.
    [174] Savvas, D., Adamidis K. Automated management of nutrient solutions based on targetelectrical conductivity, pH, and nutrient concentration ratio. Journal of Plant Nutrition,1999,2:1415~1432.
    [175] Gikaara D.M., Johnston M.E. Management of phosphorus supply to Australian floriculturalspecies. Scientia Horticulturae,2004,102:311~323.
    [176] Silber A., Ganmore-Neumann R., Ben-Jaacov J. The response of three Leucadendroncultivars (Proteaceae) to phosphorus levels. Scientia Horticulturae,2000,84:141~149.
    [177] Johnston M.E., Gikaara D.M., Edwards D.G. Phosphorus nutrition of Caustis blakei grownwith two phosphorus sources of different solubility in two soils of differing phosphorusadsorption capacity. Scientia Horticulturae,2006,110:298~304.
    [178] Westgate P.J., Blue W.G., Eno C.F. Blackleart of celery and its relationship to soil fertilityand plant composition. Proceedings of the Florida State Horticultural Society,1954,67:158~163.
    [179] Xu H., Gauthier L., Gosselin A. Effects of fertigation management on growth andphotosynthesis of tomato plants grown in peat, rockwool and NFT. Scientia Horticulturae,1995,63,11~20.
    [180] Gül, A., Ero ul, D., Ongun, A.R. Comparison of the use of zeolite and perlite as substratefor crisp-head lettuce. Scientia Horticulturae,2005,106:464~471.
    [181] Karley, A.J., White, P.J. Moving cationic minerals to edible tissues: potassium, magnesium,calcium. Curr. Opin. Plant Boil.,2009,12,291~298.
    [182] Marcar, N.E., Termaat, A. Effects of root-zone solutes on Eucalyptus camaldulensis andEucalyptus bicostata seedlings: Responses to Na+, Mg2+and Cl-. Plant Soil,1990,125:245~254.
    [183] Bar-Tal A., Feigenbaum S., Sparks D.L. Potassium-salinity interaction in irrigated corn.Irrigation Science,1991,12:27~35.
    [184] Leggett, J.L., Sims, J.L., Gossett D.R., et al. Potassium and magnesium nutrition effects onyield and chemical composition of burley tobacco leaves and smoke. Journal of Plant Science,1977,57:159~166.
    [185] Munson, R.D. Potassium, calcium and magnesium in the tropics and substropics. Tech. BullInternational Fertilizer Development Center, Muscle Shoals, AL.,1982.
    [186] Narwal R.P., Kumar V., Singh J.P. Potassium and magnesium relationship in cowpea. PlantSoil,1985,86:129~134.
    [187] Wills R.B.H., Lim J.S.K., Greenhield H. Composition of Australian foods. Leafy, stem andother vegetables. Food Technol. Austral.,1986,10:416~417.
    [188] Sanchez C.A., Burdine H.W., Guzman V.L. Soil testing and plant analysis as guides for thefertilization of celery on histosols. Soil Crop Sci. Soc. Fla. Proc.,1990,49:69~72.
    [189] Hochmuth, G., Hanlon, E., Snyder, G., et al. Fertilization of sweet corn, celery, romaine,escarole, endive, and radish on organic soils in Florida. UF IFAS Extension, BUL313,2003.
    [190] Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot.,1996,78:661~669.
    [191] Garcia-Gil J.C., Plaza C., Soler-Rovira P., et al. Long-term effects of municipal solid wastecompost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem.,2000,32:1907~1913.
    [192] Levy J.S., Taylor B.R. Effects of pulp mill solids and three composts on early growth oftomatoes. Bioresource Technology,2003,89:297~305.
    [193] Madrid F., L pez R., Cabrera F. Metal accumulation in soil after application of municipalsolid waste compost under intensive farming conditions. Agriculture, Ecosystems&Environment,2007,119,249-256.
    [194] Tejada M., Hernandez M.T., Garcia C. Soil restoration using composted plant residues:Effects on soil properties. Soil Tillage Res.,2009,102:109~117.
    [195] Mylavarapu R.S., Zinati G.M. Improvement of soil properties using compost for optimumparsley production in sandy soils. Scientia Horticulturae,120(3):426-430.
    [196] Nunes J.R., Cabral F., L pez-Pi eiro A. Short-term effects on soil properties and wheatproduction from secondary paper sludge application on two Mediterranean agricultural soils.Bioresource Technology,2008,99:4935~4942.
    [197] Barzegar A.R., Yousefi A., Daryashenas A. The effect of addition of different amounts andtypes of organic materials on soil physical properties and yield of wheat. Plant Soil,2002,247:295~301.
    [198] Nelson P.N., Oades J.M. Organic matter, sodicity, and soil structure. In Sodic Soils. Eds.M.E. Sumner and R. Naidu. Oxford University Press, New York.,1998.
    [199] Uygur V., Karabatak I. The effect of organic amendments on mineral phosphate fractions incalcareous soils. J. Plant Nutr. Soil Sci.,2009,172,336~345.
    [200]宋永林,袁锋明,姚造华.化肥与有机物料配施对作物产量及土壤有机质的影响.华北农学报,2002,17(4):73-76.
    [201]李建伟.2005年我国蔬菜产业发展的回顾.中国蔬菜,2006,(10):1~2.
    [202] Olayinka A., Adebayo A. Effect of pre-incubated sawdust-based cowdung on growth andnutrient uptake of Zea mays (L.) and on soil chemical properties. Biol. Fertil. Soils,1989,7:176~179.
    [203]关松荫,张德生,张志明.土壤酶及研究方法.北京:中国农业出版社,1986.
    [204] Barzegar A.R, Nelson P.N., Oades J.M., Rengasamy P. Organic matter, sodicity and claytype: Influence on aggregation. Soil Sci. Soc. Am. J.,1997,61,1131-1137.
    [205] Sumner M.E. The electrical double layer and clay dispersion. In Soil Crusting: Chemicaland Physical Processes. Eds. M E Sumner and B A Stewart. Lewis Publishers, Boca Raton,FL.1992.
    [206] Battaglia A., Calace N., Nardi E., Petronio B., Pietroletti M. Reduction of Pb and Znbioavailable forms in metal polluted soils due to paper mill sludge addition: Effects on Pband Zn transferability to barley. Bioresource Technology,2007,98:2993~2999.
    [207] Cabral F., Vasconcelos E. Agricultural use of combined primary/secondary pulpmill sludge.Agrochimica,1993,37:409~417.
    [208] Rotenberg D., Cooperband L., Stone A. Dynamic relationship between soil properties andfoliar disease as effected by annual additions of organic amendment to a sandy soil vegetableproduction systems. Soil Biology&Biochemistry,2005,37:1343~1357.
    [209] Simard R., Baziramakenga R., Yelle S., et al. Effects of de-inking paper sludges on soilproperties and crop yields. Candian. Journal of. Soil Science,1998,78:689~697.
    [210] Fu L., Yang W., Wei Y. Effects of copper pollution on the activity of soil invertase andurease in loquat orchards. Chin. J. Geochem.,2009,28,076~080.
    [211] Tejada M., Gonzalez J.L., García-Martínez A.M.,et al. Effects of different green manures onsoil biological properties and maize yield. Bioresource Technology,2008,99:1758~1767.
    [212] Cordovil C., Cabral F., Coutinho J. Potential mineralization of nitrogen from organic wastesto ryegrass and wheat crops. Bioresource Technology,2007,98,3265-3268.
    [213] Fageria N.K., Baligar V.C. Charles A.J. Mineral Nutrition of Field Crops, second ed.CHIPS-Plant Science Handbook,2007, pp624.
    [214] Bowie S.H.U., Thornton I. Environmental geochemistry and health. Kluver Academic Publ.,Hingham, M.A.,1985.
    [215]谢红梅,张丽,许尊炼等.活性炭脱出废水中对硝基苯酚的研究.安徽农业科学,2009(19):9107-9109.
    [216]许剑海,钱庆荣,陈庆华.桐壳基活性炭对水中苯胺的吸附性能研究.环境科学与管理,2009,34(5):80~83.
    [217]龚兵丽,邱宇平,程海燕,赵雅萍,黄民生.碳质吸附剂吸附溶解性有机质的研究进展[J].净水技术,2008,27(1):32~34.
    [218]洪正源,金放,李世荣等.活性炭在医疗领域应用的研究进展.精细与专用化学品,2009,8:22~23.
    [219]李善祥,窦秀云.我国风化煤利用现状与展望[J].腐殖酸,1998(1):16~20.
    [220]李华,李永青,沈成斌等.风化煤施用对黄土高原露天煤矿区复垦土壤理化性质的影响研究[J].农业环境科学学报,2008,27(5):1752~1756.
    [221]段学军,闵航,陆欣.风化煤玉米秸培施熟化土壤的生物学效应研究[J].土壤通报,2003,34(6):516~520.
    [222]宋永林.设施蔬菜施肥存在的问题及对策建议[J].中国农业信息,2009(3):33-34.
    [223]杨玉新,王纯立,谢志刚等.微生物肥对土壤微生物种群数量的影响.新疆农业科学,2008,45(S1):169-171.
    [224]俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3):413,-.422
    [225]王珊,李廷轩,张锡洲,周建新.设施土壤中微生物数量及其生物量碳的变化研究.中国农业科学通报,2005,21(4):198~201,225.
    [226]罗兵,徐郎莱,孙海燕.壳聚糖对黄瓜品质和产量的影响.南京农业大学学报,2004,27(1):20~23.
    [227]宋士清,尚庆茂,郭世荣,张志刚.壳聚糖对黄瓜幼苗抗盐的协同生理作用研究.西北植物学报,2006,26(3):0435~0441.
    [228]孙巧峰,于贤昌,李建勇,高俊杰.羧甲基壳聚糖灌根对日光温室黄瓜生理特性和产量的影响.山东农业大学学报(自然科学版),2005,36(1):42~46.
    [229] Mortvedt J.J. Calculating salt index. Fluid Journal,2001,9(2):8~11.
    [230] Her ner A., Schmidt S., Schonhof I., et al. Spear yield and quality of white asparagus asaffected by soil temperature. European Journal of Agronomy,2006,25:336~344.
    [231] Al-Rawahy S.A., Stroehlein J.L., Pessarakli M. Effect of salt stress on dry matter productionand nitrogen uptake by tomatoes. Journal of plant nutrition,1990,13(5):567~577.
    [232] Ayers R.S, Westcot D.W. Water quality for agriculture. FAO irrigation and drainage paper,FAO, Rome,1985,29:141.
    [233] Bveese F., Moshrefi N. Physiological reaction of Chile pepper to water and salt stress. InProceedings of the third international drip trickle irrigation congress. November,1985:18~21.
    [234] Mapa R.B., Kumaragamage D. Variability of soil properties in a tropical Alfisol used forshifting cultivation. Soil Technology,1996,9:187~197.
    [235] Ramos C., Agut A., Lidon A.L. Nitrate leaching in important crops of the valenciancommunity region (Spain). Environmental Pollution,2002,118:215~223.
    [236] Stalikas C.D., Mantalovas A.C., Pilidis G.A. Multielement concentrations in vegetablespecies grown in two typical agricultural areas of Greece. Sci. Total Environ.,1997,206(1):17~24.
    [237] Yaron. Pattern of salt distribution under trickle irrigation. Ecological Studies. BerlinHeidelberg: New York,1973,5:389~394.
    [238]农田灌溉水质标准.中华人民共和国国家标准,1992, GB5084-92.
    [239] Flower T.J., Ragab R., Malash N., et al. Sustainable strategies for irrigation in salt-proneMediterranean: SALTMED. Agricultural Water Management,2005,(78):3~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700