用户名: 密码: 验证码:
基于分子生物学技术的堆肥微生物群落、功能与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥法可以实现有机城生活垃圾的减量化、无害化和资源化处理,是一种很有应用前景垃圾处理技术,但目前堆肥法周期过长、产品质量较差,其在国内的应用较少,因此,提高堆肥效率和产品质量是促进其在生活垃圾处理应用中的关键。微生物是堆肥系统中最主要的生物因素,全面、准确地掌握堆肥中微生物的群落结构、种群动态、功能活性可为堆肥工艺的优化调整与技术革新提供最重要的微生物学依据。现代分子生物学技术可以在非培养的条件下研究环境微生物,应用聚合酶链式反应(PCR)、变性梯度凝胶电泳(DGGE)、实时荧光定量PCR (qPCR)及DNA测序等现代分子生物学技术及时、快速、全面地获取堆肥微生物的群落组成和种群动态等信息对优化、改进现有堆肥工艺技术,提高堆肥效率与产品质量具有重要意义。
     本论文以分子生物学技术为主要研究手段,结合使用传统分离培养技术,全面、深入地研究了堆肥系统中的微生物群落,并以获得的微生物学信息进行了堆肥工艺改进、技术革新方面的有益探索。
     采用传统堆肥法对以人工分选到的厨余垃圾进行堆肥,证明厨余垃圾是良好的堆肥材料,微生物在堆肥高温期降解的有机质量占堆肥过程中有机质降解总量的60%以上,堆肥高温期微生物对有机质的降解和堆肥的腐熟贡献最大;以PCR、 DGGE、DNA测序等对堆肥高温期样品中的微生物进行研究,16/18S rDNA序列分析结果表明微生物群落在堆肥高温期存在较明显的动态演替,其中优势细菌为芽孢杆菌,优势放线菌为链霉菌和诺卡氏菌,优势真菌为曲霉。
     基于传统堆肥过程高温期的堆肥材料降解速度快、堆体内微生物群落多样性较高的研究结果,提出了一种通过人为加热方式使堆肥全过程均在50℃高温下完成的全程高温堆肥法,并以4种采用不同温度控制方式的全程高温堆肥法与传统堆肥法进行比较研究,结果表明直接将堆体温度快速升高至50℃以上但不控制最高温度的全程高温堆肥法可以获得最快的腐熟速度,其堆肥周期为14天,而传统堆肥法的周期为28天。在比较研究的基础上总结出一种较佳的全程高温堆肥法:在堆肥初期采取外加热源的方式使堆体温度快速升高到50℃以上并使其一直维持在50℃以上、保持堆体约60%的含水量、以0.25L/(min·kg)的供气量保持堆体好氧的环境并每天翻堆。
     结合使用PCR、DGGE及DNA测序、qPCR等分子生物学技术和传统分离培养技术对比研究了传统堆肥法和全程高温堆肥法中的微生物群落,结果表明全程高温堆肥法降低了堆体中细菌群落的多样性,优势细菌以嗜热的芽孢杆菌为主,增加了细菌尤其是芽孢杆菌的数量,但过高的堆体温度会使细菌数量减少;全程高温堆肥法提高了堆体中放线菌群落的多样性,增加了放线菌的数量,优势放线菌包括链霉菌、微球菌、无枝酸菌和其他一些嗜热放线菌;全程高温堆肥法会强烈抑制真菌的生长。
     以高温期堆肥和土壤等的悬浮液为接种剂、以稻草和木屑混合物为培养基在55℃水浴中驯化培养30天,以羧甲基纤维素钠平板培养基对其分离培养、以纤维素刚果红培养基对嗜热菌的纤维素降解能力进行筛选,获得了15株纤维素高效降解菌。生理生化、形态学和16S rDNA序列分析结果显示其中13株与芽孢杆菌有97%以上的相似性,1株与波茨坦短芽孢杆菌有97%以上的相似性,1株与类芽孢杆菌有80%的相似性,可能是某未知菌种。将单个菌株的培养液以5mL/kg堆肥的接种量添加至堆体PA中,结果显示该堆体的高温期比不接种的堆体PN提早1天进入高温期,高温期的时间也延长了2天;堆体PA中的TOC含量比未接种的堆体PN中的降得更快,但氮元素的损失更小;以C/N值对其堆肥周期进行评价,结果显示堆体PA和PN分别在第21天和27天达到腐熟,添加接种剂可以提前6天实现堆肥的腐熟;以纤维素和半纤维素的降解为评价指标探讨了接种剂对堆肥的影响,结果表明堆肥的高温期是降解纤维素和半纤维素主要阶段,添加接种剂促进了纤维素和半纤维素的降解;以有机质消耗动力学方程评价接种剂对堆肥的影响,结果显示接种剂的添加使有机质的降解速度更快,降解度更高,因而接种剂可以加速堆肥的腐熟并获得更稳定的产品。
Composting is a promising technology which can simultaneously achieve the reduction, reclamation and safe treatment of organic municipal solid waste (MSW). The most important thing for the promotion of composting in MSW treatment is to improve the composting efficiency and the quality of compost since the long composting cycle and the low quality of compost have restricted the application of composting in China. Microorganism is the major biological factor in a composting system. An understanding of the microbial community structure, the population dynamics and the functions of microbes will provide us important microbiological knowledge for the improvement of composting. With the help of modern molecular biology techniques, researchers can study microorganisms without culturing them, and by using molecular biology techniques, such as polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), real-time fluorescence quantitative PCR (qPCR) and DNA sequencing, researchers can obtain the microbial community structure and the population dynamics promptly, which is very important for the the improvement of composting.
     In this paper, molecular biology techniques, combinated with culture method, was applied for investigating the microbial community in compost system, and the information about the microbial community was used as basic kwonledge for the improvement of composting technology.
     Traditional composting method was used for composting kitchen discards that manually separated from MSW, and composting was proved to be good compost materials. Among the degraded organic matters during the active composting phases, more than60%of them were degraded in the high-temperature phase, which indicated that the high-temperature phase is the most important phsase for the degradation of organic matters. PCR, DGGE and DNA sequencing were applied for investigating the microbial community of samples from the high-temperature phase, and the analysis results of16/18S rDNA sequence showed a relatively abvious dynamics of the microbial community. The studies also showed that, in the samples from the high-temperature phase, the dominant bacteria, the dominant actinomysetes and the dominnat fungi are Bacillus spp., Streptomyces spp. and Nocardia spp., and Aspergillus spp., respectively.
     Based on the study results above, the paper proposed a new method of continuously thermophilic composting (CTC), which composted the materials under high-temperature (>50℃) during the whole composting process. Four runs with different operation manner were compared with a traditional composting run. The run which directly heated the materials to50℃without any other temperature control showed the fastest speed of degradation and matured in14days, while the composting cycle of traditional run was28days. On the basis of research results above, the paper suggested an effective CTC method as follows:heat the materials up to50℃in the initial phase of compossting, maintain the pile temperature at least at50℃, keep a moisture content of60%, supply a gas flow of0.25L/(min-kg) and turn the pile daily.
     With the help of PCR, DGGE and DNA sequencing, qPCR and traditional culture techniques, the paper investigated the microbial community in the traditional composting process and the CTC process. The study showed that the CTC methods decreased the diversity of bacterial community and increased the numbers of bacteria, and the major dominant bacteria are Bacillus spp.. The study also showd that the CTC methods increased the diversity of actinomycetes and the numbers of actinomycetes, and the dominant actinomycetes are Streptomyces spp., Mocromonospora spp., Amycolatopsis spp. and some other thermophilic actinomycetes. In addition, the CTC methods might have suppressed the growth of fungi.
     In the study, suspension of soil and compost samples from high-temperature phase was used as source inouculant and the suspension was mixed with rice straw and chips, which were used as a medium. The mixture was cultured in a water bath at55℃for30days. A medium with sodium salt of carboxymethyl cellulose was used for separation of cellulolytic thermophiles from the culture mixture. Fifteen strains were selected from the cultured thermophiles after determine their degradation ability on a medium with cellulose and Congo red. Among the15strains,13strains were97%identical to Bacillus spp., one strain was97%identical to Brevibacillus borstelensis, and one strain was80%identical to Paenibacillus sp., which was determined by the biochemical or physiological identidication, the morphology characterization and the analysis of16S rDNA sequence. Each cultured strain with a volume of5mL/(kg compost) was inoculated into pile PA, with a negative control PN. The results showed a faster decrease of total organic carbon and a less loss of nitrogen in pile PA. The results also showed that pile PA matured six days earlier than pile PN, which suggested that a inoculation have spped up the mature process. The inoculant also had speed up the degradation of cellulose and hemicellulose.
引文
[1]上海世博会事务协调局.中国2010年上海世博会主题内容手册.http://www.expo2010.cn/download/00002.pdf,2010-05-01
    [2]中华人民共和国国家统计局http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_402622945.htm. 2010-02-25
    [3]张乐观,朱新峰.我国生活垃圾的处理现状及发展趋势.工业安全与环保,2006,32(9):37-39
    [4]马诗院,马建华.我国城市生活垃圾分类收集现状及对策.环境卫生工程,2007,15(1):12-14
    [5]杜吴鹏,高庆先,张恩琛,等.中国城市生活垃圾处理及趋势分析.环境科学研究,2006,19(6):115-120
    [6]尚谦,袁兴中.关于城市生活垃圾的危害及特性分析.有色金属加工,2001,30(2):17-25
    [7]中华人民共和国建设部.城市生活垃圾卫生填埋技术规范(CJJ17-2004).北京:中国建筑工业出版社,2004,1-24
    [8]Alcock RE, Jones KC. Dioxins in the environment:a review of trend data. Environmental Science & Technology,1996,30(11):3133-3143
    [9]Merillot, J.M. Recycling organic municipal wastes in France. Biocycle,1989, 30(7):30-31
    [10]Brinton R. German composting systems. Biocycle.1992,33(6):66-66
    [11]van der Werf P, Cant M. Composting trends in Canada show varied progress. Biocycle,2007,48(4):29-31
    [12]Bertoldi MD, Civilini M, Comi G. MSW compost standards in the European Community. Biocycle,1990,31(8):60-62
    [13]Suler DJ, Finstein MS. Effect of temperature, aeration, and moisture on CO2 formation in bench-scale, continuously thermophilic composting of solid waste. Applied and Environmental Microbiology.1977,33(2):345-350
    [14]Kuter GA, Hoitink HAJ, Rossman LA. Effects of aeration and temperature on composting of municipal sludge in a full-scale vessel system. Journal of Water Pollution Control Federation,1985,57(4):309-315
    [15]Strom PF. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Applied and Environmental Microbiology,1985,50(4): 899-905
    [16]Nakasaki K, Yaguchi H, SasakiY, et al. Effects of pH control on composting of garbage. Waste Management & Research,1993,11(2):117-125
    [1-7]Bach PD, Shoda M, Kubota H. Rate of composting of dewatered sewage sludge in continuously mixed isothermal reactor. Journal of Fermentation Technology 1984,62 (2):285-292
    [18]Li X, Zhang R, Pang Y. Characteristics of dairy manure composting with rice straw. Bioresource Technology,2008,99(2):359-367.
    [19]韩涛,任连海,张相锋,等.餐厨垃圾高温好氧堆肥小试研究.北京工商大学学报(自然科学版),2006,24(3):1-4
    [20]杨恋,杨朝晖,曾光明,等.好氧堆肥高温期的嗜热真菌和嗜热放线菌群落结构.环境科学学报,2008,28(12):2514-2521
    [21]杨延梅,席北斗,刘鸿亮,等.餐厨垃圾堆肥理化特性变化规律研究.环境科学研究,2007,20(2):72-77
    [22]陈萍丽,赵秀兰.城市污泥特征及其资源化利用.微量元素与健康研究,2006,23(1):54-56
    [23]Nakasaki K, Sasaki M, Shoda M, et al. Change in microbial numbers during thermophilic composting of sewage sludge with reference to CO2 evolution rate. Applied and Environmental Microbiology.1985,49(1):37-41
    [24]Rantala PR, Vaajasaari K, Juvonen R, et al. Composting of forest industry wastewater sludges for agriculture use. Water Science and Technology,1999, 40(1):187-194
    [25]Yamada Y, Kawase Y. Aerobic composting of waste activated sludge:kinetic analysis for microbiological reaction and oxygen consumption. Waste Management,2006,26(1):49-61
    [26]Margesin R, Cimadom J, Schinner F. Biological activity during composting of sewage sludge at low temperatures. International Biodeterioration & Biodegradation,2006,57(2):88-92
    [27]Marttinen SK, Hanninen K, Rintala JA. Removal of DEHP in composting and aeration of sewage sludge. Chemosphere,2004,54(3):265-272
    [28]Tiquia SM, Tam NFY. Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technology,2000,72(1):1-7
    [29]陈同斌,黄启飞,高定.城市污泥堆肥温度动态变化过程及层次效应.生态学报,2002,22(5):736-741
    [30]Liu Y, Ma L, Li Y, et al. Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere,2007,67(5):1025-1032
    [31]李艳霞,王敏健.环境温度对污泥堆肥的影响.环境科学,1999,20(6):63-66
    [32]占新华,黄焕忠.污泥堆肥过程中水溶性有机物光谱学变化特征.环境科学学报,2001,21(4):470-474
    [33]Bruns-Nagel D, Drzyzga O, Steinbach K, et al. Anaerobic/aerobic composting of 2,4,6-trinitrotoluene-contaminated soil in a reactor system. Environmental Science and Technology,1998,32(11):1676-1679
    [34]田旸,杨凤林,柳丽芬,等.堆肥技术处理有机污染土壤的研究进展.环境污染治理技术与设备,2002,3(12):31-37
    [35]Semple KT, Reid BJ, Fermor TR. Impact of composting strategy on the treatment of soils contaminated with organic pollutants. Environmental Pollution, 2001,112(2):269-283
    [36]蒋晓云,曾光明,黄丹莲,等.接种白腐菌堆肥修复五氯酚污染的土壤.环境科学,2006,27(12):2553-2557
    [37]Bernai MP, Paredes C, Sanchez-Monedero MA, et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology,1998,63(1):91-99
    [38]Goyal S, Dhull SK, Kapoor KK. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology,2005,96(14):1584-1591
    [39]Golueke CG. Principles of biological resource recovery. Biocycle,1981,22(1): 36-40.
    [40]Garcia C, Hernandeza T, Costaa F, et al. Evaluation of the maturity of municipal waste compost using simple chemical parameters. Communications in Soil Science and Plant Analysis,1992,23(13-14):1501-1512
    [41]Chanyasak V, Kubota H. Carbon/organic nitrogen ratio in water extract as measure of composting degradation. Journal of Fermentation Technology,1981, 59(3):215-219
    [42]Hue NV, Liu J. Predicting compost stability. Compost Science & Utilization, 1995,3(1):8-15
    [43]Wu L, Ma LQ, Martinez GA. Comparison of methods for evaluating stability and maturity of biosolids compost. Journal of Environmental Quality,2000,29(2): 424-429
    [44]Zmora-Nahuma S, Markovitcha O, Tarchitzky J, et al. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology and Biochemistry,2005, 37(11):2109-2116
    [45]Chikae M, Ikeda R, Kerman K, et al. Estimation of maturity of compost from food wastes and agro-residues by multiple regression analysis. Bioresource Technology,2006,97(9):1979-1985
    [46]Helfrich P, Chefetz B, Hadar Y, et al. A novel method for determining phytotoxicity in composts. Compost Science & Utilization,1998,6(1):6-13
    [47]Cunha-Queda AC, Ribeiro HM, Ramos A, et al. Study of biochemical and microbiological parameters during composting of pine and eucalyptus bark. Bioresource Technology,2007,98(17):3213-3220
    [48]Zucconi F, de Bertoldi M. Compost specifications for the production and characterization of compost from municipal solid waste. In:de Bertolldi M, Ferranti MP, Hermite PL, et al. Compost:Production, Quality and use. Essex Elservier Applied Science,1987,30-50
    [49]Ko HJ, Kim KY, Kim HT, et al. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management,2008, 28(5):813-820
    [50]Lasaridi KA, Stentiford El. A simple respirometric technique for assessing compost stability. Water Research,1998,32(12):3717-3723
    [51]Said-Pullicino D, Erriquens FG, Gigliotti G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology,2007, 98(9):1822-1831
    [52]Cabanas-Vargas DD, Sanchez-Monedero MA, Urpilainen ST, et al. Assessing the stability and maturity of compost at large-scale plants. Articulo de Investigacion, 2005,9(2):25-30
    [53]Sesay AA, Lasaridi K, Stentiford Ed, et al. Controlled composting of paper pulp sludge using the aerated static pile method. Compost Science & Utilization, 1997,5(1):82-96
    [54]Benito M, Masaguer A, Moliner A, et al. Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biology and Fertility of Soils,2003,37(3):184-189
    [55]Tiquia SM. Microbiological parameters as indicators of compost maturity. Journal of Applied Microbiology,2005,99(4):816-828
    [56]Barrena R, Vazquez F, Sanchez A. Dehydrogenase activity as a method for monitoring the composting process. Bioresource Technology,2008,99(4): 905-908
    [57]张永涛,张增强,孙西宁.模糊数学法在堆肥腐熟度评价中的应用.环境卫生工程,2009,17(4):45-48
    [58]黄红丽,曾光明,黄国和,等.灰色聚类法在堆肥腐熟度评价中的应用.安全与环境学报,2005,5(6):87-90
    [59]袁荣焕,彭绪亚,吴振松,等.城市生活垃圾堆肥腐熟度综合指标的确定.重庆建筑大学学报,2003,25(4):54-58
    [60]罗泉达,黄惠珠,郑长焰,等.猪粪堆肥的腐熟度指标.福建农林大学学报(自然科学版),2009,38(1):84-87
    [61]李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展.农业环境科学学报,2003,22(2):252-256
    [62]Tiwari VN. Composting of dairy farm wastes and evaluation of its manurial value. Proceedings of the National Academy of Sciences, India,1989,59(2): 109-114
    [63]魏自民,李英军,席北斗,等.三阶段温度控制接种法对堆肥有机物质变化影响.环境科学,2008,29(2):540-544
    [64]徐智,张陇利,张发宝,等.接种内外源微生物菌剂对堆肥效果的影响.中国环境科学,2009,29(8):856-860
    [65]黄丹莲,曾光明,黄国和,等.接种白腐真菌堆肥处理含Pb垃圾.环境科学,2006,27(1):175-180
    [66]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,1999
    [67]李国学.施用污泥堆肥对土壤和青菜(Brassica chinensis)中重金属积累特性的影响.中国农业大学学报,1996,18(6):563-568
    [68]周文兵,刘大会,朱端卫.不同调理剂对猪粪堆肥过程及其养分状况的影响.华中农业大学学报,2004,23(4):421-425
    [69]傅海燕.生物表面活性剂鼠李糖脂改善堆肥介质微环境的作用机制及在堆肥中的应用研究:[湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2007,1-80
    [70]时进钢.表面活性剂对堆肥过程中微生物胞外酶的作用及其机理研究:[湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2007,1-90
    [71]王伟.堆肥介质中高效降解细菌的吸附传输性能研究:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2006,1-60
    [72]张志波.表面活性剂对堆肥中微生物产酶及有机质降解的影响研究:[湖南大 学硕士学位论文].长沙:湖南大学环境科学与工程学院,2007,1-58
    [73]钟华.基于生物表面活性剂的堆肥微环境条件的改良:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2005,1-78
    [74]Insam H, Amor K, Renner M, et al. Changes in functional abilities of the microbial community during composting of manure. Microbial Ecology,1996, 31(1):77-87
    [75]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展.生态学报,2003,23(5):988-995
    [76]Brock TD. The study of microorganisms in situ:progresses and problems (4th Edn.). Symposia of the Society for General Microbiology,1987,41(1):1-17
    [77]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews,1995,59(1):143-169
    [78]Saitou K, Nagasaki K, Yamakawa H, et al. Linear relation between the amount of respiratory quinones and the bicrobial biomass in soil. Soil Science Plant Nutrition,1999,45(3):775-778
    [79]胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用.微生物学通报,2002,29(4):95-98
    [80]Hu HY, Lim BR, Goto N, et al. Analysis precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. Journal of Microbiological Methods,2001,47(1):17-24
    [81]Yu H, Zeng G, Huang H, et al. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation, 2007,18(6):793-802
    [82]White DC, Davis WM, Nickels JS, et al. Determination of the sedimentary microbial biomass by extractible liqid phosphate. Oecologia,1979,40(1):51-62
    [83]Klamer M, Baath E. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology,1998,27(1):9-20
    [84]喻曼,曾光明, 陈耀宁,等PLFA法研究稻草固态发酵中的微生物群落结构变化.环境科学,2007,28(11):2603-2608
    [85]Horiuchi JI, Ebie K, Tada K, et al. Simplified method for estimation of microbial activity in compost by ATP analysis. Bioresource Technology,2003,86(1):95-8
    [86]Hirose T, Ueda T, Kobatake Y. Changes in ATP concentration triggered by chemoreception in the plasmodia of the myxomycete Physarum polycephalum. Journal of General Microbiology,1980,121(2):175-180
    [87]Michael H, William CG, Larry PW. A quantitative analysis of DNA extraction and purification from compost. Journal of Microbiology Methods,2003,54(1): 37-45
    [88]LaMontagne M G, Michel Jr F C, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiology Methods,2002,49(3): 255-264
    [89]Yang Z, Xiao Y, Zeng G, et al. Comparison of methods for total community DNA extractionand purification from compost. Applied Microbiology and Biotechnology,2007,74(4):918-925
    [90]Carola B, Stefan W. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters. Applied Environmental Microbiology,2003,69(8): 4618-4627
    [91]Wery N, Lhoutellier C, Ducray F, et al. Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Research,2008,42(1-2):53-62
    [92]Novinscak A, Surette C, Filion M. Quantification of Salmonella spp. in composted biosolids using a TaqMan qPCR assay. Journal of Microbiological Methods,2007,70(1):119-126
    [93]Muyzer G, Brinkhoff T, Ulrich N, et al. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular Microbial Ecology Manual,1998, 3.4.4:1-27
    [94]Ishii K, Fukui M, Takii S, et al. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of Applied Microbiology,2000,89(5):768-777
    [95]Cahyani VR, Matsuya K, Asakawa S et al. Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis. Biology and Fertility of Soils,2004,40(5):334-344
    [96]Xiao Y, Zeng GM, Yang ZH, et al. Coexistence of nitrifiers, denitrifiers and Anammox bacteria in a sequencing batch biofilm reactor as revealed by PCR-DGGE. Journal of Applied Microbiology,2009,106(2):496-505
    [97]傅以钢,王峰,何培松,等DGGE污泥堆肥工艺微生物种群结构分析.中国环境科学,2005,25(B6):98-101
    [98]刘有胜,杨朝晖,曾光明,等.PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析.环境科学学报,2007,27(7):1151-1156
    [99]杨朝晖,刘有胜,曾光明,等PCR-DGGE技术对餐厨垃圾高温堆肥中嗜热细菌种群结构分析.中国环境科学,2007,27(6):733-737
    [100]Haruta S, Kondo M, Nakamura K, et al. Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Applied Microbiology and Biotechnology,2002,60(1-2):224-231
    [101]Ryckeboer J, Mergaert J, Vaes K, et al. A survey of bacteria and fungi occurring during composting and self-heating processes. Annals of Microbiology,2003, 53(4):349-410
    [102]Ryckeboer J, Mergaert J, Coosemans J, et al. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiolology,2003,94(1):127-137
    [103]Beffa T, Blanc M, Marilley L, et al. Taxonomic and metabolic microbial diversity during composting. In:de Bertoldi M., Sequi P., Lemmes B., et al. The Science of Composting, Part 1. London:Chapman & Hall,1996,149-161
    [104]van Gestel K, Mergaert J, Swings J, et al. Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environmental Pollution, 2003,125(2):361-368
    [105]Chamuris GP, Koziol-Kotch S, Brouse TM. Screening fungi isolated from woody compost for lignin-degrading potential. Compost Science & Utilization,2000, 8(1):6-11
    [106]Hart TD, Kinsey G, Kelley J, et al. Strategies for the isolation of cellulolytic fungi for composting of wheat straw. World Journal of Microbiology & Biotechnology,2002,18(5):471-480
    [107]黄丹莲,曾光明,黄国和,等.白腐菌的研究现状及其在堆肥中的应用展望.微生物学通报,2004,31(2):112-116
    [108]郁红艳,曾光明,黄国和,等.木质素降解真菌的筛选及产酶特性.应用与环境生物学报,2004,10(5):639-642
    [109]曾光明,陈耀宁.白腐菌相容菌株的筛选及其混合培养产酶.长沙理工大学学报(自然科学版),2006,3(3):107-112
    [110]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72(2):169-183
    [111]郁红艳,曾光明,胡天觉,等.真菌降解木质素研究进展及在好氧堆肥中的 研究展望.中国生物工程杂志,2003,23(10):57-61
    [112]陈芙蓉,谢更新,郁红艳,等.基于木质素生物降解的堆肥化接种剂开发.生态与农村环境学报,2008,24(2):84-87
    [113]吴元喜,张晓昱,胡佳华,等.木质纤维素分解菌筛选及木质纤维素降解.华中农业大学学报,1997,16(6):614-617
    [114]习兴梅,曾光明,郁红艳,等.黑曲霉(Aspergillus niger)木质纤维素降解能力及产酶研究.农业环境科学学报,2007,26(4):1506-1511
    [115]Zeng G, Huang D, Huang G, et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology,2007,98(2):320-326
    [116]牛俊玲,崔宗均,李国学,等.高温堆肥中复合菌系对木质纤维素和林丹降解效果的研究.农业环境科学学报,2005,24(2):375-379
    [117]秦莉,高茹英,李国学,等.外源复合菌系对堆肥纤维素和金霉素降解效果的研究.农业环境科学学报,2009,28(4):820-823
    [118]傅海燕,曾光明,黄国和,等.堆肥过程中产生生物表面活性剂的细菌的筛选.环境科学学报,2004,24(5):936-938
    [119]李镜,刘红玉,曾光明,等.堆肥中生物表面活性剂产生菌的筛选及培养条件优化.安徽农业科学,2009,37(17):7884-7886
    [120]任焕,王宏燕,孟杰,等.产生生物表面活性剂的耐冷菌的筛选及发酵条件优化.东北农业大学学报,2009,40(10):43-48
    [121]叶芬霞,朱瑞芬,叶央芳.复合微生物吸附除臭剂的制备及其除臭应用.农业工程学报,2008,24(8):254-257
    [122]董锁成,曲鸿敏.城市生活垃圾资源潜力与产业化对策.资源科学,2001,23(2):13-16,25
    [123]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002,14-15
    [124]杨朝晖,肖勇,曾光明,等.用于分子生态学研究的堆肥DNA提取方法,环境科学,2006,27(8):1613-1617
    [125]Liu ZL, Domier LL, Sinclair JB. Polymorphism of genes coding for nuclear 18S rRNA indicates genetic distinctiveness of anastomosis group 10 from other groups in the Rhizoctonia solani species complex. Applied and Environmental Microbiology,1995,61(7):2659-2664
    [126]Heuer H, Krsek M, Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradient. Applied and Environmental Microbiology, 1997,63(8):3233-3241
    [127]LaPara TM, Nakatsub CH, Pantea LM.Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE, Water Research,2002,36(3):638-646
    [128]Zhang T, Fang HHP. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnology Letters,2000,22(5):399-405
    [129]贺琪,李国学,张亚宁,等.高温堆肥过程中的氮素损失及其变化规律.农业环境科学学报,2005,24(1):169-173
    [130]Chang CC, Ng CC, Wang CY, et al. Activity of cellulase from Thermoactinomycetes and Bacillus spp. isolated from Brassica waste compost. Scientia Agricola,2009,66(3):304-308
    [131]Allen MJ, Hartman PA. Amylolytic isoenzymes of Thermoactinomyces vulgaris. Journal of Bacteriology,1972,109(1):452-454
    [132]陈云成.应用链霉菌Streptomyces spp.防治植物真菌性病害与植物寄生性线虫病害:[中兴大学硕士学位论文].台湾:国立中兴大学生命科学院,2009,3-54
    [133]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):18-23
    [134]王在贵,范涛.特异腐质霉Humicola insolens(YH-8)纤维素酶的催化性质研究.中国农学通报,第2006,22(2):115-118.
    [135]Wong JWC, Li SWY, Wong MH. Coal fly ash as a composting material for sewage sludge:effects on microbial activities. Environmental Technology,1995, 16(3):527-537
    [136]Larney FJ, Yanke LJ, Miller JJ, et al. Fate of coliform bacteria in composted beef cattle feedlot manure. Journal of Environmentla Quality,2003.32(4):1508-1515
    [137]Liang C, Das KC, McClendon RW. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology 2003,86(1):131-137
    [138]Lin C. A negative-pressure aeration system for composting food wastes. Bioresource Technology,2008,99(16):7651-7656
    [139]Sasaki N, Suehara K-I, Kohda J, et al. Effects of CN ratio and pH of raw materials on oil degradation efficiency in a compost fermentation process. Journal of Bioscience and Bioengineering,2003,96(1):47-52
    [140]Jimenez El, Garcia VP. Determination of maturity indices for city refuse composts. Agriculture, Ecosystems & Environment,1992,38(2):331-343
    [141]McKinley VL, Vestal JR. Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge. Applied and Environmental Microbiology,1985,50(6):1395-1403
    [142]Tiquia SM. Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environmental Technology,2005,26(10): 1101-1114
    [143]Maso MA, Blasi AB. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua. Bioresource Technology, 2008,99(11):5120-5124
    [144]Sundberg C, Smars S, Jonsson H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technology, 2004,95(1):145-150
    [145]中华人民共和国农牧渔业部.城镇垃圾农用控制标准(GB8172-87).北京:中国标准出版社,1987,1-2
    [146]Paredes C, Cegarr J, Bernal MP, et al. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. Environmental International,2005,3(2):305-312.
    [147]Gomez-Brandon M, Lazcano C, Dominguez J. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere,2008,70(3): 436-444
    [148]He YW, Inamori YH, Mizuochi M, et al. Nitrous oxide emissions from aerated composting of organic waste. Environmental Science & Technology,2001, 35(11):2347-2351.
    [149]Schulze KL. Continuous thermophilic composting. Applied and Environmental Microbiology,1962,10(1):108-122
    [150]Ueno Y, Haruta S, Ishii M, et al. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology,2001,57(4):555-562
    [151]Fouly HM, Wilkinson HT, Chen W. Restriction analysis of internal transcribed spacers and the small subunit gene of ribosomal DNA among four Gaeumannomyces species. Mycologia,1997,89(4):590-597
    [152]Smit E, Leeflang P, Glandorf B, et al. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology,1999,65(6):2614-2621
    [153]White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis MA, Gelfand DH, Sninsky JJ, et al. PCR protocols:a guide to methods and applications. San Diego:Academic Press,1990,315-322
    [154]Jin X, Xu LH, Mao PH, et al. Description of Saccharomonospora xinjiangensis sp. nov. based on chemical and molecular classification. International Journal of Systamic Bacteriology,1998,48(4):1095-1099.
    [155]McCaig AE, Glover LA, Prosser JI. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology,1999,65(4):1721-1730
    [156]Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology,1985, 49(1):1-7
    [157]Buchholz-Cleven BEE, Rattunde B, Straub KL. Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology,1997,20(2):301-309
    [158]Vallaeys T, Topp E, Muyzer G, et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology 1997,24(2):279-285
    [159]Droffner ML, Brinton Jr WF, et al. Evidence for the prominence of well characterized mesophilic bacteria in thermophilic (50-70℃) composting environments. Biomass & Bioenergy,1995,8(2):191-195
    [160]Joo HS, Hirai M, Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strain No.4 with heterotrophic nitrification and aerobic denitrification. Water Research,2006,40(16):3029-3036
    [161]Mergaert J, Swings J. Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. Journal of Industrial Microbiology & Biotechnology,1996, 17(3):463-469
    [162]Golueke CG. Biological Reclamation of Solid Waste. Emmaus:Rodale Press, 1977,8-17
    [163]Pastia MB, Belli ML. Cellulolytic activity of Actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiology Letters,1985,26(1):107-112
    [164]Schumann P, Weiss N, Stackebrandt E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology,2001,51(3):1007-1010
    [165]Strom PF. Identification of thermophilic bacteria in solid-waste composting. Applied and Environmental Microbiology,1985,50(4):906-913
    [166]Hoitink HAJ, Boehm MJ. Biocontrol within the context of soil microbial communities:a substrate-dependent phenomenon. Annual Review of Phytopathology,1999,37(3):427-446
    [167]Yoon JH, Kim IG, Shin YK, et al. Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology, 2005,55(2):395-400
    [168]Otsuka S, Sudian I, Komori A, et al. Community structure of soil bacteria in a tropical rainforest several years after fire. Microbes and Environment,2008, 23(1):49-56
    [169]Fergus CL. The cellulolytic activity of thermophilic fungi and actinomycetes. Mycologia,1960,60(1):120-129
    [170]Ferracini-Santos L, Sato HH. Production of alkaline protease from Cellulosimicrobium cellulans. Brazilian Journal of Microbiology,2009,40(1): 54-60
    [171]Sims GK, Sommers LE, Konopka A. Degradation of Pyridine by Micrococcus luteus Isolated from Soil. Applied and Environmental Microbiology,1986,51(4): 963-968
    [172]Bonnarme P, Lapadatescu C, Yvon M, et al. L-methionine degradation potentialities of cheese-ripening microorganisms. J Dairy Research,2001,68(4): 663-674
    [173]Goodfellow M, Kim SB, Minnikin Deet al. Amycolatopsis sacchari sp. nov., a moderately thermophilic actinomycete isolated from vegetable matter. International Journal of Systematic and Evolutionary Microbiology,2001,51(1): 187-193
    [174]Hu X, Osaki S, Hayashi M, et al. Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts.2008, Journal of Polymers and the Environment,16(1):103-108
    [175]Chun J, Kimt SB, Oh YK, et al. Amycolatopsis thermoflava sp. nov., a novel soil actinomycete from Hainan Island, China. International Journal of Systematic and Evolutionary Microbiology,1999,49(6):1369-1373
    [176]Li Y, Irwin DC, Wilson DB. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Ce19A. Applied and Environmental Microbiology,2007,73(10):3165-3172
    [177]Kim JH, Irwin D, Wilson DB. Purification and characterization of Thermobifida fusca xylanase 10B. Canadian Journal of Microbiology,2004,50(10):835-843
    [178]Ramirezy P, Coha JM. Enzymatic degradation of cellulose for thermophilic actinomycete:isolation, characterization and cellulolytic activity determination. Revista Peruana de Biologia,2003,10(1):67-77
    [179]El-Tarabily KA, Sykes ML, Kurtbke ID, et al. Synergistic effects of a cellulase-producing Micromonospora carbonacea and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Canadian Journal of Botany,1996,74(3):618-624
    [180]Kindaichi T, Kawano Y, Ito T, et al. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnology & Bioengneering,2006,94(6):1111-1121
    [181]Nakamura Y, Satoh H, Kindaichi T, et al. Community structure, abundance, and in situ activity of nitrifying bacteria in river sediments as determined by the combined use of molecular techniques and microelectrodes. Environmental Science and Technology,2006,40(5):1532-1539
    [182]Lungisa M, Brendan SW, Brett IP. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost. Soil Biology and Biochemistry,2006,38(9):2963-2966
    [183]Zeng G M, Huang H L, Huang D Lm, et al. Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochemistry,2009,44(2):396-400
    [184]Narisawa N, Haruta S, Cui ZJ, et al. Effect of adding cellulolytic bacterium on stable cellulose-degrading microbial community. The Society for Biotechnology, 2007,104(5):432-434
    [185]Taccari M, Stringini M, Comitini F, et al. Effect of Phanerochaete chrysosporium inoculation during maturation of co-composted agricultural wastes mixed with olive mill wastewater. Waste Management,2009,29(5): 1615-1621
    [186]Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. Journal of Biotechnology,2001,87(1):43-57
    [187]孙晓华,罗安程.纤维素分解菌的分离、筛选及其环境适应性初步研究.科 技通报,2005,21(2):236-241
    [188]布坎南,吉本斯.伯杰细菌鉴定手册,第八版.中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组.北京:科学出版社,1984,1-660
    [189]Kulcu R, Yaldiz O. Determination of aeration rate and kinetics of composting some agricultural wastes. Bioresource Technology,2004,93(1):49-57
    [190]Huang DL, Zeng GM, Feng CL, et al. Degradation of lead contaminated lignocellulosic waste by Phanerochaete Chrysosporium and the reduction of lead toxicity. Environmental Science & Technology,2008,42(13):4946-4951
    [191]Dees PM, Ghiorse W. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiology Ecology,2001,35(2):207-216
    [192]Iidal K, Ueda Y, Kawamura Y, et al. Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. International Journal of Systematic and Evolutionary Microbiology,2005, 55(11):1811-1816
    [193]黄丹莲,曾光明,胡天觉,等.白腐菌应用于堆肥处理含木质素废物的研究.环境污染治理技术与设备,2005,6(2):29-32
    [194]Khalil AI, Beheary MS, Salem EM. Monitoring of microbial population and their cellulolytic activities during the composting of municipal solid waste. World Journal of Microbiology and Biotechnology,2001,17(1):155-161
    [195]Antizar-Ladislao B, Lopez-Real J, Beck AJ. Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Management,2005,25(3):281-189
    [196]Sasek V, Bhatt M, Cajthaml T, et al. Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Archives of Environmental Contamination and Toxicology,2003,44(3):336-342
    [197]Paredes C, Roig A, Bernal MP, et al. Evolution of organic matter and nitrogen during cocomposting of olive mill wastewater with solid organic wastes. Biology and Fertility of Soils,2000,32(3):222-227
    [198]Hamoda M F, Abu Qdais H A, Newham J. Evaluation of municipal solid waste composting kinetics. Resource, Conservation and Recycling,1998,23(4): 209-223
    [199]贾传兴,彭绪亚,袁荣焕,等.生物可降解度判定生活垃圾堆肥处理的稳定性.中国给水排水,2005,22(5):68-70
    [200]Paredes C, Bernal MP, Cegarra J, et al. Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes. Bioresource Technology, 2002,85(1):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700