用户名: 密码: 验证码:
燃料电池低铂载量膜电极制备新技术的探索及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)因其比能量高、无污染、可快速低温启动等优点而受到人们的广泛关注。膜电极(MEA)是质子交换膜燃料电池的核心部件,不仅对燃料电池的性能有很大的影响,而且对降低其生产成本、加快其商业化进程具有很重要的现实意义。低温燃料电池大量使用贵金属铂作为催化剂的活性组分,成为燃料电池成本居高不下的重要因素,严重影响了低温燃料电池的商业化进程,因此,研究和开发具有低铂载量的膜电极,对于有效降低燃料电池的成本,促进燃料电池的发展和商业化进程具有十分重要的意义。
     本文从降低燃料电池成本和提高其性能出发,采用原子层沉积、脉冲电沉积等新技术将活性组分直接沉积在扩散层上,探索制备了系列低铂载量膜电极,并对这些低铂载量膜电极的性能开展了研究。
     采用原子层沉积法(ALD)直接在气体扩散层的XC-72R碳黑整平层上沉积铂活性组分,成功制备出了一种低铂载量膜电极。该膜电极的铂载量可低至0.26mg/cm2,在0.7V时电流密度可高达637mA/cm2。考察了该催化电极中的铂活性组分的形貌分布,电催化活性和稳定性以及由该催化电极制备成的膜电极的电池性能。结果表明:由于技术本身的限制,ALD方法制得的催化电极中铂活性组分的粒径高达8-10nm,尽管如此,该电极仍然显示了良好的电催化活性,其活性优于商业催化剂;在H2/O2单电池中,其最大功率密度高达3.34kW/gPt,是使用商业催化剂和传统方法制备膜电极的1.76倍,原因可能在于在ALD电极中,活性组分铂能够均匀地分布在电极表层,而由商业催化剂制备的电极具有一定的催化剂厚度层,相当大一部分铂都被包裹在电极的内层,影响了其催化效能的发挥。
     使用经过预处理的碳纳米管(CNTs)替代XC-72R作为整平层碳材料,采用ALD技术成功制备出了一种高性能超低铂载量膜电极。与炭黑相比,纳米碳管具有更好的抗腐蚀能力;使用CNTs作为碳载体可以防止由于碳载体被腐蚀导致铂活性组分暴露而造成的电池性能下降,寿命减短的问题。结果显示:使用CNTs替代XC-72R的ALD法制备的催化电极中铂活性组分的粒径可由8-10nm降低为3-5nm;在铂载量低至0.26mg/cm2的情况下,ALD法制备出的膜电极的最大功率密度高达2.95kW/gPt,在通常的工作电压0.7V时的电流密度仍高达667mA/cm2,可完全媲美高铂载量商业催化剂制备的膜电极性能;此外,使用ALD法制备的基于CNTs的膜电极在400mA/cm2恒电流下持续放电100h后,其电压仍高达0.65V,衰减率为9.5%,而采用ALD法制备的基于XC-72R的膜电极放电100小时后的电压仅为0.62V,衰减率达16.2%,说明使用碳纳米管制备的ALD法膜电极具有更好的稳定性;这可能与碳纳米管具有更高的有序度、更好的抗氧化性能有关。交流阻抗和循环伏安测试说明这种低铂载量膜电极具有良好的电化学稳定性。
     为了进一步考察碳载体对ALD法制备的膜电极性能的影响,我们还尝试采用XC-72取代XC-72R碳黑,制得了以XC-72碳黑为载体的高性能低铂载量的膜电极。实验结果表明:基于XC-72炭黑的ALD膜电极比起基于XC-72R以及CNTs的ALD膜电极具有更优异的性能。TEM显示基于XC-72的ALD法制备催化电极中铂活性组分分布均匀,粒径约为3-4nm;载量低至0.18mg/cm~2时其最大输出功率密度为4.80kW/gPt,分别是商业催化剂膜电极的2.5倍, XC-72R膜电极的1.43倍, CNTs膜电极的1.63倍;另外,在400mA/cm~2恒电流密度下持续放电100h后,ALD法制备的膜电极显示出优异的性能,电压仍高达0.74V,衰减率为1.8%,而商业催化剂制备的膜电极在运行100h后性能开始出现明显下降,衰减率为7.5%,ALD法制备的基于CNTs的膜电极衰减率为9.5%,基于XC-72R的膜电极衰减率为16.2%,证明该电极具有更高的铂利用率和稳定性;循环伏安测试说明这种低铂载量膜电极具有良好的电化学稳定性。关于为何XC-72碳黑作为基体载体制得的膜电极会出现更好的性能的原因及其机理,本文尚不能给出合理的解释,有待进一步的探索和研究。
     本文探索的另一种新型的膜电极制备方法为脉冲电沉积法:采用脉冲电沉积法,在涂覆有整平层的碳纸的Ru/C+Nafion催化层上沉积铂活性组分,成功制备了一种基于Ru@Pt/C核壳结构催化剂的膜电极。该法可将铂活性组分直接沉积在电极的三相反应界面上,从而大大提高铂利用率。我们考察了Ru/C:Nafion比例、脉冲沉积电流密度以及沉积的铂载量对于膜电极的性能影响;实验结果表明在Ru/C:Nafion比例为2:1,脉冲沉积电流密度为0.5mA/cm~2,铂载量低至0.045mg/cm~2时能得到性能最优的膜电极;在氢气-空气燃料电池中,该膜电极在通常的工作电压0.7V时的电流密度仍高达336mA/cm~2,最大输出功率密度为0.56W/cm~2,而相同条件下测试的商业催化剂制备的膜电极的最大输出功率仅为0.40W/cm~2;TEM结果显示该法制备出的Ru@Pt/C核壳结构粒子大小约为~4.5nm。
     本文还探索了使用微波合成法在涂覆有整平层的碳纸的炭黑层上沉积铂活性组分,制备了一种高性能低铂载量膜电极。实验结果表明:该法制备出的催化电极中铂活性组分高度分散,粒径均匀,约为2-3nm;考察了亲水层中碳载体含量和聚四氟乙烯(PTFE)含量对电池性能的影响,发现当碳载体含量为0.37mg/cm~2,PTFE含量为5%(by mass)时,膜电极性能最优,该膜电极铂载量可低至0.12mg/cm~2,在通常的工作电压0.7V时的电流密度仍高达538mA/cm~2,最大输出功率密度为0.89W/cm~2;交流阻抗和循环伏安测试说明这种低铂载量膜电极具有良好的电化学稳定性。
     本文探索了三种制备低铂载量膜电极的新型制备技术,制备的膜电极均显示了优异的性能,尤其是原子层沉积技术和脉冲电沉积技术制备的膜电极,在质子交换膜燃料电池有很好的潜在应用前景。
Proton exchange membrane fuel cells (PEMFCs) have been acknowledged as one of themost promising alternative power sources due to their advantages, such as high power density,zero or low emission and quick startup at low temperature etc. As the key component ofPEMFC, membrane electrode assembly (MEA) has a great influence on both performanceand cost of fuel cell. At present, state-of-art carbon supported platinum is still the widely usedelectrocatalyst in MEA, which accounts for a large portion of PEMFC cost. To realize thecommercialization of PEMFC, lowering the platinum loading without loss of performance ofmembrane electrode assemblies has been one of the hottest topics in fuel cell field. In thisthesis, several novel techniques has been explored to be used for the preparation of MEAswith low Pt loading, and the performance of these MEAs, as well as the effect of preparationparameters on the performance have been extensively investigated.
     Firstly, we prepared a high performance MEA with low Pt loading by using an atomiclayer deposition (ALD) technique. A cell performance of637mA/cm~2at0.7V was achievedwhen the platinum loading was lowered to0.26mg/cm~2. The morphology and distribution ofPt nanoparticles on the surface of the ALD-electrode was observed using a high-resolutiontransmission electron microscope (HR-TEM). The results revealed that although the activecomponent Pt on the ALD-electrode had a big particle size of8-10nm due to the limit ofALD technique, the electrode still showed superior activity to the electrode prepared withcommercial catalyst and conventional preparation method; The mass activity could be high upto3.34kW/gPt, which is1.76times higher than that of later. This improved mass activity canbe attributed to the well-dispersed Pt particles on the outer surface of the ALD-electrode; incontrast, most of the Pt nanoparticles in the electrode prepared with commercial catalyst andconventional preparation method were dispersed on the interior surface of the electrode,resulting in low Pt utilization.
     Secondly, a high performance low platinum loadings MEA with carbon nanotubes(CNTs) instead of XC-72R was prepared by using ALD technique. It is well recognized thatCNTs has much better anti-corrosion properties than carbon black, using CNT as support canprevent the corrosion of support and the migration of platinum, resulting better performanceand durability. TEM images showed the Pt nanopaticles were highly dispersed on the CNTsbased ALD-electrode and had a particle size range of3-4nm, rather than8-10nm of theXC-72R based ALD-electrode. As the platinum loading was0.26mg/cm~2, the current density of the CNTs based ALD-MEA can reach as high as667mA/cm~2at0.7V of cell potential. Themass activity can reach4.80kW/gPt. In addition, this MEA showed excellent durability, after100h long term testing, no obvious performance change can be observed. The voltage of theCNTs based ALD-MEA reached0.65V, higher than that of XC-72R based ALD-MEA, and9.5%voltage loss compared with16.2%voltage loss of conventional MEA, confirming thehigh durability in ALD-MEA, and the superiority of CNTs substrate; This improvedperformance can be attributed to the higher order degree and better oxidation resistance ofCNTs. EIS and cyclic voltammetry (CV) test also reveal the good electrochemical stability ofCNTs based ALD-MEA.
     To further investigate the effect of substrates supports on the performance of ALD-MEA,we prepare another ALD-MEA with by depositing Pt catalyst on the substrate layer of XC-72,It is found that the XC-72carbon black based MEA showed better performance comparedwith XC-72R and CNTs based MEAs. TEM images showed the Pt nanopaticles were highlydispersed on the XC-72based ALD-electrode and had a particle size range of3-4nm. Themass activity reached4.80kW/gPt with Pt loading of0.18mg/cm~2, which is2.53times higherthan that of the MEA prepared with commercial catalyst and conventional method, and,1.43times and1.63times higher than those of XC-72R based ALD-MEA and CNT basedALD-MEA, respectively. In100h of durability testing, the XC-72based ALD-MEAexhibited excellent durability,1.8%voltage loss when the MEA was discharged at a currentdensity of400mA/cm~2compared with7.5%,16.2%and9.5%voltage loss of conventionalMEA, XC-72R based ALD-MEA and CNT based ALD-MEA, respectively. Furthermore, thegood electrochemical stability is also confirmed by CV testing results. This article was not yetgiven a reasonable explanation of why XC-72R based ALD-MEA had better performance andfurther exploration and research were expected.
     Another new technique we used for the preparation of MEA is pulse electrodeposition(PED) method; the MEA was prepared by electrodepositing Pt on the substrate prepared withRu/C catalyst, to form a Ru@Pt/C catalyst on the surface of the electrode. The effects of ratioof Ru/C to Nafion, deposition current density, and deposited Pt loading on the cellperformance were investigated. The optimal ratio of Ru/C to Nafion is ca.2:1, optimal pulsecurrent density is0.5mA/cm~2. The MEA prepared at optimal conditions and with Pt loadingof0.045mg/cm~2shows a performance of336mA/cm~2at0.7V, with the maximum outputpower of0.56W/cm~2in the H2/air fuel cell; The conventional MEA had a maximum outputpower of0.40W/cm~2with the same Pt loading. The particle size of Ru@Pt nanoparticle is~4.5nm by the TEM results.
     Microwave synthesis technique has also been used for the preparation of MEA with lowPt loading. TEM images showed the Pt particles were highly dispersed in the electrode andthe particle size is in the range of2-3nm. The effects of loading amounts of carbon black andTeflon in the substrate layer on the cell performance were investigated. The optimal carbonblack loading is0.37mg/cm~2, and optimal Teflon loading is ca.5wt.%. The MEA preparedat optimal conditions and with Pt loading of0.12mg/cm~2at anode was prepared, in H2/O2single cell, it achieved current density of538mA/cm~2at0.7V with maximum power densityof0.89W/cm~2. Moreover, EIS and CV test provided strong clues for the goodelectrochemical stability of this low Pt loading MEA.
     In summary, three types of new techniques has been explored to use for the preparationof low Pt loading MEA, all of them showed excellent activity and good stability, as well asgood durability. Especially, ALD and PED techniques may be the promising techniques forthe preparation of MEAs for PEM fuel cell applications.
引文
[1]衣宝廉,燃料电池-原理.技术.应用[M].北京:化学工业出版社,2003:161-162
    [2] Grove, W.XXIV. On voltaic series and the combination of gases by platinum[J].Philosophical Magazine Series3,1839,14(86):127-130
    [3] Wang X.,Hsing I.M.Surfactant stabilized Pt and Pt alloy electrocatalyst for polymerelectrolyte fuel cells[J]. Electrochim.Acta,2002,47(18):2981-2987
    [4]毛宗强.燃料电池[M].北京:化学工业出版社,2005:1-425
    [5]陈延禧.聚合物电解质燃料电池的研究进展[J].电源技术,1996,20(1):21-27
    [6] Carrette L., Friedrich K.A., Stimming U.. Fuel Cells-Fundamentals and Applications[J].Fuel Cells,2001,1(1):5-39
    [7] Yousfi-Steiner N.,Mocotéguy P.,Candusso D., et al. A review on polymer electrolytemembrane fuel cell catalyst degradation and starvation issues: Causes, consequences anddiagnostic for mitigation[J]. J. Power Sources,2009,94(1):130-145
    [8] Steele B., Heinzel A.. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352
    [9] Markovi N., Schmidt T., Stamenkovi V., et al.Oxygen reduction reaction on Pt and Ptbimetallic surfaces:a selective review[J]. Fuel Cells,2009,1(2):105-116
    [10] Kongkanand A., Kuwabata S., Girishkumar G., et al. Single-wall carbon nanotubessupported platinum nanoparticles with improved electrocatalytic activity for oxygenreduction reaction[J]. Langmuir,2006,22(5):2392-2396
    [11]王林山,李瑛,燃料电池[M].北京:冶金工业出版社,2005:138-139
    [12]黄镇江,刘凤君,燃料电池及其应用[M].北京:电子工业出版社,2005:1-266
    [13]傅献彩,沈文霞,姚天扬物理化学[M].第四版.北京:高等教育出版社,1992:578-579
    [14]Chetty R., Xia W., Kundu S., et al. Effect of Reduction Temperature on the Preparationand Characterization of PtRu Nanoparticles on Multiwalled Carbon Nanotubes[J].Langmuir,2009,25(6):3853-3860
    [15]Bock C., Paquet C., Couillard M., et al. Size-Selected Synthesis of PtRu Nano-Catalysts:Reaction and Size Control Mechanism[J]. J.Am.Chem.Soc.,2004,126(25):8028-8037
    [16]Alayoglu S., Zavalij P., Eichhorn B., et al. Structural and Architectural Evaluation ofBimetallic Nanoparticles:A Case Study of Pt-Ru Core-Shell and Alloy Nanoparticles[J].ACS Nano,2009,3(10):3127-3137
    [17]Dyer C.. Fuel cells for portable applications[J]. Fuel Cells Bull.,2002,2002(3):8-9
    [18]Acres G.. Recent advances in fuel cell technology and its applications[J]. J. PowerSources,2001,100(1-2):60-66
    [19]Miesse C., Jung W., Jeong K., et al. Direct formic acid fuel cell portable power system forthe operation of a laptop computer[J]. Journal of Power Sources,2006,162(1):532-540
    [20]Casado-Rivera E., Volpe D., Alden L., et al. Electrocatalytic activity of orderedintermetallic phases for fuel cell applications[J]. J.Am.Chem.Soc,2004,126(12):4043-4049
    [21]Antolini E., Salgado J. R. C., Silva R. M., et al. Preparation of carbon supported binaryPt-M alloy catalysts (M=first row transition metals) by low/medium temperaturemethods.[J]. Mater. Chem. Phys.,2007,101:395-403
    [22]Shao Z.G., Joghee P., Hsing I.M.. Preparation and characterization of hybrid Nafion-silicamembrane doped with phosphotungstic acid for high temperature operation of protonexchange membrane fuel cells[J]. J. Membr. Sci.,2004,229(1-2):43-51
    [23] Haile S.M.. Fuel cell materials and components[J]. Acta Mater.,2003,51(19):5981-6000
    [24] Steele B.C.H., Heinzel A.. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352
    [25] Eikerling M., Ioselevich A.S., Kornyshev A.A.. How good are the Electrodes we use inPEFC.[J]. Fuel Cells,2004,4(3):131-140
    [26] Litster S., McLean G. PEM fuel cell electrodes[J]. J. Power Sources,2004,130(1-2):61-76
    [27]吕金艳,张学军. PEM燃料电池膜电极制备方法研究进展[J].电池工业,2006,11(6):410-413
    [28] Srinivasan S., Ticianelli E.A., Derouin C.R., et al. Advances in solid polymer electrolytefuel cell technology with low platinum loading electrodes[J]. J. Power Sources,1988,22(3-4):359-375
    [29] Ticianelli E.A., Derouin C.R., Redondo A., et al. Methods to advance technology ofproton-exechange mwmbrane fuel cells[J]. J. Electrochem. Soc.,1988,135(9):2209-2214
    [30] Ticianelli E., Derouin C., Srinivasan S. Localization of platinum in low catalyst loadingelectrodes to attain high power densities in SPE fuel cells[J]. J. Electroanal. Chem.Interfacial Electrochem.,1988,251(2):275-295
    [31] Lindstrom R.W. Electrocatalytic gas diffusion electrode employing thin carbon clothlayer[P]. USA:4647359,1991-05-06
    [32]张海峰,侯明,洪有陆,等.千瓦级质子交换膜燃料电池[J].电源技术,2003,27(004):348-350
    [33] Wilson M., Gottesfeld S.. Thin-film catalyst layers for polymer electrolyte fuel cellelectrodes[J]. J. Appl. Electrochem.,1992,22(1):1-7
    [34] Wilson M.S., Gottesfeld S.. High Performance Catalyzed Membranes of Ultra-low PtLoadings for Polymer Electrolyte Fuel Cells[J]. J. Electrochem. Soc.,1992,139(2):L28-L30
    [35] DuPont C. Membrane and electrode structure [P]. USA:5330860,1994-07-19
    [36] The Dow Chemical Company. Process for preparing a membrane/electrode assembly [P].USA:5702755,1997-12-30
    [37] General Motors Corporation. Methods of preparing membrane electrode assembles [P].USA:6524736,2003-02-25
    [38] Tanaka K., Kogyo K.K.. Membrane electrode assembly for polymer electrolyte fuel cell
    [P]. USA:6847518,2005-01-25
    [39] General Motors Corporation. Method of making membrane electrode assemblies [P].USA:6933003,2005-08-23
    [40] Yan S.G., Doyle J.C. Membrane electrode assembly prepared by direct spray of catalystto membrane [P]. USA:0163920,2005-07-28
    [41] General Motors Corporation. Method of making MEA for PEM/SPE fuel cell [P]. USA:6074692,2000-06-13
    [42] Industrial Technology Research Institute. Method for manufacturing membrane electrodeassembly of fuel cell [P]. USA:6475249,2002-11-05
    [43] Paul Scherrer Instttut. Membrane electrode assembly (MEA), method for itsmanufacturing and a method for preparing a membrane to be assembled in a MEA [P].Europe:031906,2005-04-07
    [44]原鲜霞,乔永进.化学镀铂法制备质子交换膜燃料电池膜电极[J].稀有金属,2000,24(4):277-281
    [45] Park J., Kim J., Lee H., et al. A novel direct deposition of Pt catalysts on Nafionimpregnated with polypyrrole for PEMFC[J]. Electrochim. Acta,2004,50(2-3):769-775
    [46] Taylor E.J., Anderson E.B., Vilambi N.R.K.. Preparation of high platinum utilization gasdiffusion electrodes for proton exchange membrane fuel cells[J]. J. Electrochem. Soc.,1992,139(5): L45-L46
    [47] Thompson S., Jordan L., Forsyth M.. Platinum electrodeposition for polymer electrolytemembrane fuel cells[J]. Electrochim. Acta,2001,46(10-11):1657-1663
    [48] Ye J., Fedkiw P.. Electrodeposition of high-surface area platinum in a well adherentnafion film on glassy carbon[J]. Electrochim. Acta,1996,41(2):221-231
    [49] Choi K., Kim H., Lee T.. Electrode fabrication for proton exchange membrane fuel cellsby pulse electrodeposition[J]. J. Power Sources,1998,75(2):230-235
    [50]魏子栋,曾少华.质子交换膜燃料电池电极制备新方法[P].中国: CN1472834A,2004-02-14
    [51] Srinivasan S., Manko D.J., Koch H., et al. Recent advances in solid polymer electrolytefuel cell technology with low platinum loading electrodes[J]. J. Power Sources,1990,29(3-4):367-387
    [52] Haug A.T., White R.E., Weidner J.W., et al. Increasing Proton Exchange Membrane FuelCell Catalyst Effectiveness Through Sputter Deposition[J]. J. Electrochem. Soc.,2002,149(3): A280-A287
    [53] Pan M., Tang H., Jiang S.P., et al. Fabrication and Performance of Polymer ElectrolyteFuel Cells by Self-Assembly of Pt Nanoparticles[J]. J. Electrochem. Soc.,2005,152(6):A1081-A1088
    [54] Gülzow E., Schulze M., Wagner N., et al. Dry layer preparation and characterisation ofpolymer electrolyte fuel cell components[J]. J. Power Sources,2000,86(1-2):352-362
    [55] Kim C., Chun Y., Peck D., et al. A novel process to fabricate membrane electrodeassemblies for proton exchange membrane fuel cells[J]. Int. J. Hydrogen Energy,1998,23(11):1045-1048
    [56] Acres G., Frost J., Hards G., et al. Electrocatalysts for fuel cells[J]. Catal. Today,1997,38(4):393-400
    [57] Xiong L., Manthiram A.. High performance membrane-electrode assemblies withultra-low Pt loading for proton exchange membrane fuel cell[J]. Electrochim. Acta,2005,50(16-17):3200-3204
    [58] Hogarth M., Munk J., Shukla A., et al. Performance of carbon-cloth bound porous-carbonelectrodes containing an electrodeposited platinum catalyst towards the electrooxidationof methanol in sulphuric acid electrolyte[J]. J. Appl. Electrochem.,1994,24(1):85-88
    [59] O'Hayre R., Lee S.J., Cha S.W., et al. A sharp peak in the performance of sputteredplatinum fuel cells at ultra-low platinum loading[J]. J. Power Sources,2002,109(2):483-493
    [60] Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly andfuel cell adopting the membrane electrode assembly[P]. USA:6749892,2004-06-15
    [61] Khan M., Lin S.. Using Pt sols to prepare low Pt-loading electrodes for polymerelectrolyte fuel cells[J]. J. Power Sources,2006,162(1):186-191
    [62] Sasaki K., Wang J., Balasubramanian M., et al. Ultra-low platinum content fuel cellanode electrocatalyst with a long-term performance stability[J]. Electrochim. Acta,2004,49(22-23):3873-3877
    [63] Saha M.S., Gullá A.F., Allen R.J., et al. High performance polymer electrolyte fuel cellswith ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition[J].Electrochim. Acta,2006,51(22):4680-4692
    [64] Taylor A.D., Kim E.Y., Humes V.P., et al. Inkjet printing of carbon supported platinum3-D catalyst layers for use in fuel cells[J]. J. Power Sources,2007,171(1):101-106
    [65] Kim K.H., Kim H.J., Lee K.Y., et al. Effect of Nafion gradient in dual catalyst layer onproton exchange membrane fuel cell performance[J]. Int. J. Hydrogen Energy,2008,33(11):2783-2789
    [66] Liu C.Y., Sung C.C.. A review of the performance and analysis of proton exchangemembrane fuel cell membrane electrode assemblies[J]. J. Power Sources,2012,220:348-353
    [67] Easton E.B., Pickup P.G.. An electrochemical impedance spectroscopy study of fuel cellelectrodes[J]. Electrochim. Acta,2005,50(12):2469-2474
    [68] Leng Y., Wang X., Hsing I.. Assessment of CO-tolerance for different Pt-alloy anodecatalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy[J]. J.Electroanal. Chem.,2002,528(1-2):145-152
    [69] Wagner N., Gülzow E.. Change of electrochemical impedance spectra (EIS) with timeduring CO-poisoning of the Pt-anode in a membrane fuel cell[J]. J. Power Sources,2004,127(1-2):341-347
    [70] Mueller J.T., Urban P.M.. Characterization of direct methanol fuel cells by ac impedancespectroscopy[J]. J. Power Sources,1998,75(1):139-143
    [71]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报,2001,30(4):53-61
    [72] Hombrados A., Gonzalez L., Rubio M., et al. Symmetrical electrode mode for PEMFCcharacterisation using impedance spectroscopy[J]. J. Power Sources,2005,151:25-31
    [73] Song S., Wang G., Zhou W., et al. The effect of the MEA preparation procedure on bothethanol crossover and DEFC performance[J]. J. Power Sources,2005,140(1):103-110
    [74] Li G., Pickup P.G.. Measurement of single electrode potentials and impedances inhydrogen and direct methanol PEM fuel cells[J]. Electrochim. Acta,2004,49(24):4119-4126
    [75] Zhao X., Fan X., Wang S., et al. Determination of ionic resistance and optimalcomposition in the anodic catalyst layers of DMFC using AC impedance[J]. Int. J.Hydrogen Energy,2005,30(9):1003-1010
    [76] Yuan X.Z., Wang H.J., Sun J.C., et al. AC impedance technique in PEM fuel celldiagnosis-A review[J]. Int. J. Hydrogen Energy,2007,32(17):4365-4380
    [77]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002:200-260
    [78] Gavach C., Pamboutzoglou G., Nedyalkov M., et al. AC impedance investigation of theinetics of ion transportation in Nafion perfluorosulfonic membranes[J]. J. Membr. Sci.,1989,45(1-2):37-53
    [79] Pourcelly G., Oikonomou A., Gavach C., et al. Influence of the water content on thekinetics of counter-ion transport in perfluorosulphonic membranes[J]. J. Electroanal.Chem.,1990,287(1):43-59
    [80] Ciureanu M., Roberge R.. Electrochemical impedance study of PEM fuel cells.Experimental diagnostics and modeling of air cathodes[J]. J. Phys. Chem. B,2001,105(17):3531-3539
    [81] Fu Q, Li W.X., Yao Y.X., et al. Interface-confined ferrous centers for catalyticoxidation[J]. Scince,2010,328(5982):1141-1144
    [82] Thungpraserta S., Sarakonsria T., Klysubunc W., et al. Preparation of Pt-based ternarycatalyst as cathode material for proton exchange membrane fuel cell by solution routemethod[J]. Journal of Alloys and Compounds,2011,509(24):6812-6815
    [83] Suzuki A., Sen U., Hattori T., et al. Ionomer content in the catalyst layer of polymerelectrolyte membrane fuel cell (PEMFC): Effects on diffusion and performance[J]. Int. J.Hydrogen Energy,2011,36(3):2221-2229
    [84] Ohma A., Fushinobu K., Okazaki K.. Influence of Nafion@film on oxygen reductionreaction and hydrogen peroxide formation on Pt electrode for proton exchangemembrane fuel cell[J]. Electrochim. Acta,2011,55(28):8829-8838
    [85] Wesselmark M., Wickman B., Lagergren C., et al. Hydrogen oxidation reaction on thinplatinum electrodes in the polymer electrolyte fuel cell[J]. Electrochem. Comm.,2010,12(11):1585-1588
    [86] Peighambardoust S.J., Rowshanzamir S., Amjadi M.. Review of the proton exchangemembranes for fuel cell applications[J]. Int. J. Hydrogen Energy,2010,35(17):9349-9384
    [87] Lim B., Jiang M.J., Camargo P.H.C., et al. Pd-Pt bimetallic nanodendrites with highactivity for oxygen reduction[J]. Scince,2009,324(5932):1302-1305
    [88] Dubaua L., Maillarda F,. Chateneta M., et al. Nanoscale compositional changes andmodification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchangemembrane fuel cell operation[J]. Electrochim. Acta,2010,56(2):776-783
    [89] Liao S.J., Holmes K.A., Tsaprailis H., et al. High performance PtRuIr catalysts supportedon carbon nanotubes for the anodic oxidation of methanol[J]. J. AM. CHEM. SOC.2006,128(11):3504-3505
    [90] Choi I., Ahn S.H., Kim J.J., et al. Preparation of Ptshell–Pdcorenanoparticle withelectroless deposition of copper for polymer electrolyte membrane fuel cell[J]. App. Cata.B.,2011,102(3-4):608-613
    [91] Zhu H., Li X.W., Wang F.H.. Synthesis and characterization of Cu@Pt/C core-shellstructured catalysts for proton exchange membrane fuel cell[J]. Int. J. Hydrogen Energy,2011,36(15):9151-9154
    [92] Zhang L., Kim J., Chen H.M., et al. A novel CO-tolerant PtRu core–shell structuredelectrocatalyst with Ru rich in core and Pt rich in shell for hydrogen oxidation reactionand its implication in proton exchange membrane fuel cell[J]. J. Power Sources,2011,196(22):9117-9123
    [93] Wu G., More K.L., Johnston C.M., et al. High-performance electrocatalysts for oxygenreduction derived from polyaniline, iron, and cobalt[J]. Scince,2011,332:443-447
    [94] Mougenot M., Caillard A., Brault P., et al. High performance plasma sputtered PdPt fuelcell electrodes with ultra low loading[J]. Int. J. Hydrogen Energy,2011,36(14):8429-8434
    [95] Gancs L., Kobayashi T., Debe M.K., et al. Crystallographic characteristics ofnanostructured thin-film fuel cell electrocatalysts: a HRTEM study[J]. Chem.Mater.2008,20(7):2444-2454
    [96] Hsieh C.T., Chen W.Y., Chen I.L., et al. Deposition and activity stability of Pt–Cocatalysts on carbon nanotube-based electrodes prepared by microwave-assistedsynthesis[J]. J. Power Sources,2012,199:94-102
    [97] George S.M.. Atomic layer deposition: An overview[J]. Chem. Rev.2010,110(1):111-131
    [98] Aaltonen T., Ritala M., Sammelselg V., et al. Atomic layer deposition of iridium thinfilms[J]. J. Electrochem. Soc.,2004,151(8):489-492
    [99] Shim J.H., Jiang X., Bent S.F., et al. Catalysts with Pt surface coating by atomic layerdeposition for solid oxide fuel cells[J]. J. Electrochem. Soc.,2010,157(6):793-797
    [100] Feng H., Elam J.W., Libera J.A., et al. Palladium catalysts synthesized by atomic layerdeposition for methanol decomposition[J]. Chem. Mater.2010,22(10):3133-3142
    [101] Chen R., Bent S.F.. Highly Stable Monolayer Resists for Atomic Layer Deposition onGermanium and Silicon[J]. Chem. Mater.2006,18(16):3733-3741
    [102] Park S.K., Kanjolia R., Anthis J., et al. Atomic layer deposition of Ru/RuO2thin filmsstudied by in situ infrared spectroscopy[J]. Chem. Mater.2010,22(17):4867-4878
    [103] Jiang X., Bent S.F.. Area-selective atomic layer deposition of platinum on YSZsubstrates using microcontact printed SAMs[J]. J. Electrochem. Soc.,2007,154(12):648-656
    [104] Liu C., Wang C.C., Kei C.C., et al. Atomic layer deposition of platinum nanoparticleson carbon nanotubes for application in proton-exchange membrane fuel cells[J]. Small,2009,5(13):1535-1538
    [105] Wang C., Waje M., Wang X., et al. Palladium-based electrocatalysts for hydrogenoxidation and oxygen reduction reactions[J]. Nano Letters,2004,4(2):345-348
    [106] Wee J.H., Lee K.Y., Kim S.H.. Fabrication methods for low-Pt-loading electrocatalystsin proton exchange membrane fuel cell systems[J]. J. Power Sources,2007,165(2):667-677
    [107] Miura A., Wang H., Leonard B.M., et al. Synthesis of intermetallic PtZn nanoparticlesby reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts[J].Chemistry of Materials,2009,21(13):2661-2667
    [108] Shao M.H.. Palladium-based electrocatalysts for hydrogen oxidation and oxygenreduction reactions[J]. J. Power Sources,2011,196(5):2433-2444
    [109] Kongkanand A., Kuwabata S., Girishkumar G., et al. Single-wall carbon nanotubessupported platinum nanoparticles with improved electrocatalytic activity for oxygenreduction reaction[J]. Langmuir,2006,22:2392-2396
    [120] Chetty R., Xia X., Kundu S., et al. Effect of Reduction Temperature on the Preparationand Characterization of Pt Ru Nanoparticles on Multiwalled Carbon Nanotubes[J].Langmuir,2009,25:3853-3860
    [121] Shao Y., Yin G., Zhang J., et al. Comparative investigation of the resistance toelectrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acidsolution[J]. Electrochim. Acta,2006,51:5853-5857
    [122] Zhou Y., King D.M., Liang X.H., et al. Optimal preparation of Pt/TiO2photocatalystsusing atomic layer deposition[J]. App. Cata. B.,2010,101(1):54-60
    [123] Li J.H., Liang X.H., King D.M., et al. Functionalization of fine particles using atomicand molecular layer deposition[J]. App. Cata. B.,2010,97(5):220-228
    [124] King J.S., Wittstock A., Biener J., et al. Synthesis of intermetallic PtZn nanoparticles byreaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts[J].Nano Letters,2008,8(2):2405-2408
    [125] Xing Y.. Synthesis and electrochemical characterization of uniformly-dispersed highloading Pt nanoparticles on sonochemically-treated carbon nanotubes[J]. J. Phy. Chem. B,2004,108(50):19255-19259
    [126] Yao Y.L., Ding Y., Ye L.S., et al. Two-step pyrolysis process to synthesize highlydispersed Pt–Ru/carbon nanotube catalysts for methanol electrooxidation[J]. Carbon,2006,44(1):61-66
    [127] Hsieh C.T., Hung W.M., Chen W.Y.. Electrochemical activity and stability of Ptcatalysts on carbon nanotube/carbon paper composite electrodes[J]. Int. J. HydrogenEnergy,2010,35(16):8425-8432
    [128] Kim S., Park S.J.. Effects of chemical treatment of carbon supports on electrochemicalbehaviors for platinum catalysts of fuel cells[J]. J. Power Sources,2006,159(1):42-45
    [129] Sun S., Zhang G., Geng D., et al. Synthesis and electrochemical characterization ofuniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbonnanotubes[J]. Angewandte Chemie International Edition,2011,50(7):422-426
    [130] Chen Y.H., Huang K.C., Chen J.G., et al. Titanium flexible photoanode consisting of anarray of TiO2nanotubes filled with a nanocomposite of TiO2and graphite fordye-sensitized solar cells[J]. Electrochim. Acta,2011,56(30):7999-8004
    [131] Koh S., Leisch J., Toney M.F., et al. Structure–activity–stability relationships of Pt–Coalloy electrocatalysts in gas-diffusion electrode layers[J]. J. Physical Chemistry B,2007,111(9):3744-.3752
    [132] Squadrito G, Barbera O, Giacoppo G, et al. Polymer electrolyte fuel cell stack researchand development [J]. Int. J. Hydrogen Energy,2008,33(7):1941-1946
    [133] Wang Y., Choi S., Lee E.. Fuel cell power conditioning system design for residentialapplication[J]. Int. J. Hydrogen Energy,2009,34(5):2340-2349
    [134] Rajalakshmi N., Pandian S., Dhathathreyan K.S.. Vibration tests on a PEM fuel cellstack usable in transportation application[J]. Int. J. Hydrogen Energy,2009,34(9):3833-3837
    [135] Chang H.P., Chou C.L., Chen Y.S., et al. The design and cost analysis of a portablePEMFC UPS system[J]. Int. J. Hydrogen Energy,2007,32(3):316-322
    [136] Sopian K., Wan Daud W.R.. Challenges and future developments in proton exchangemembrane fuel cells[J]. Renewable Energy,2006,31(5):719-727
    [137] Hung A.J., Chen Y.H., Sung L.Y., et al. Cost analysis of proton exchange membranefuel cell systems[J]. AlChE J.,2008,54(7):1798-1810
    [138] Ramaswamy N., Arruda T.M., Wen W., et al. Enhanced activity and interfacialdurability study of ultra low Pt based electrocatalysts prepared by ion beam assisteddeposition (IBAD) method[J]. Electrochim. Acta,2009,54(26):6756-6766
    [139] Su H.N., Liao S.J., Shu T., et al. Performance of an ultra-low platinum loadingmembrane electrode assembly prepared by a novel catalyst-sprayed membranetechnique[J]. J. Power Sources,2010,195(3):756-761
    [140] Gruber D., Ponath N., Müller J., et al. Sputter-deposited ultra-low catalyst loadings forPEM fuel cells[J]. J. Power Sources,2005,150:67-72
    [141] Anderson M.L., Stroud R.M., Rolison D.R.. Enhancing the activity of fuel cell reactionsby designing three dimesional nano structured architectures: catalyst modified carbonsilica composite aerogels[J]. Nano Letters,2002,2(3):235-240
    [142] Vinodgopal K., Haria M., Meisel D., et al. Fullerene based carbon nanostructures formethanol oxidation[J]. Nano Letters,2004,4(3):415-418
    [143] Girishkumar G., Vinodgopal K., Kamat P.V.. Carbon nanostructures in portable fuelcells: single walled carbon nanotube electrodes for methanol oxidation and oxygenreduction[J]. J. Phys. Chem. B,2004,108(52):19960-19966
    [144] Yu J.S., Kang S., Yoon S.B., et al. Fabrication of ordered uniform porous carbonnetworks and their application to a catalyst supporter[J]. J. Am. Chem. Soc.,2002,124(32):9382-9383
    [145] Britto P.J., Santhanam K.S.V., Rubio A., et al. Improved charge transfer at carbonnanotube electrodes[J]. Adv. Mater.,1999,11(2):154-157
    [146] Choi W.C., Woo S.I., Jeon M.K., et al. Platinum nanoclusters studded in themicroporous nanowalls of ordered mesoprous carbon[J]. Adv. Mater.,2005,17(4):446-451
    [147] Han S., Yun Y., Park K.W., et al. Simple solid phase synthesis of hollow graphiticnanoparticles and their application to direct methanol fuel cell electrodes[J]. Adv. Mater.,2003,15(22):1922-1925
    [148] Hyeon T., Han S., Sung Y.E., et al. High performance direct methanol fuel cellelectrodes using solid phase synthesized carbon nanocoils[J]. Angew. Chem. Int. Ed.,2003,42(36):4352-4356
    [149] Chai G.S., Yoon S.B., Kim J.H., et al. Spherical carbon capsules with hollowmacroporous core and mesoporous shell structures as a highly efficient catalyst support inthe direct methanol fuel cell[J]. Chem. Commun.,2004,4(23):2766-2767
    [150] Maruyama J., Abe I.. Structure control of a carbon-based noble-metal-free fuel cellcathode catalyst leading to high power output[J]. Chem. Commun.,2007,2879
    [151] Chan K., Ding J.,Ren J., et al. Support mixed metal nanoparticles as electrocatalysts inlow temperature[J]. Fuel Cells,2004,14:505-516
    [152] Sasaki K.. Core-protected platinum monolayer shell high-stability electrocatalysts forfuel-cell cathodes[J]. Angew. Chem. Int. Ed.,49:8602-8607
    [153] Adzic R.R., Zhang J., Sasaki K., et al. Platinum monolayer fuel cell electrocatalysts[J].Top. Catal.,2007,46:249-262
    [154] Mastumoto T., Komatsu T., Arai K., et al. Reduction of Pt usage in fuel cellelectrocatalysts with carbon nanotube electrodes[J]. Chem. Commun.,2004,840
    [155] Gamburzev S., Appleby A.J.. Recent progress in performance improvement of theproton exchange membrane fuel cell[J]. J. Power Sources,2002,107:5
    [156] Passalacqua E., Lufrano F., Squadrito G., et al. Nafion content in the catalyst layer ofpolymer electrolyte fuel cells: effects on structure and performance[J]. Electrochim. Acta,2001,46:799
    [157] Wang X., Wa J.M., Yan Y.S.. CNT-based electrodes with high efficiency for PEMFCs[J].J. Electorchem. Solid-State Lett.,2005,8:42
    [158] Kowal A., Shao M., Sasaki K., et al. Ternary Pt/Rh/SnO2electrocatalysts for oxidizingethamol to CO2[J]. Nat. Mater.,2009,8:325-330
    [159] Andresson K.J., Rossmeisl C.F., Chorkendorff I.. Adsorption-driven surface segregationof the less reactive alloy component[J]. J. Am. Chem. Soc.,2009,131:2404-2407
    [160] Greeley J.M.. Surface and subsurface hydrogen: adsoption properties on transitionmetals and near-surface alloys[J]. J. Phys. Chem. B,2005,109:3460-3471
    [161] Ferrin P.A.K., Zhang J., Adzic R.R., et al. Hydrogen on an in selected overlayernear-surface alloys and the effects of subsurface hydrogen on the reactivity of alloysurfaces[J]. J. Phys. Chem. C,2009,113:1411-1417
    [162] Sasaki K.W., Naohara J.X., Marinkovic H., et al. Recent advances on platinummonolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure andactivity of Pt shells on Pd cores[J]. Electrochim. Acta,2009,55:2645-2652
    [163] Weir M.G.K., Frenkel M.R., Crooks A.I.. Structural analysis of Pd-Au dendrimerencapsulated bimetallic nanoparticles[J]. Langmuir,2010,26:1137-1146
    [164] Wilson O..S., Garcia-Martinez R.W.J., Crooks J.C.. Synthesis, characterization andstructure-selective extraztion of1-3nm diameter AuAg dendrimer-encapsulated bimetallicnanoparticles[J]. J. Am. Chem. Soc.,2004,127:1015-1024
    [165] Ochal P., Fuente J.L.G., Tsypkin M., et al. CO stripping as an electrochemical tool forcharacterization of Ru@Pt core-shell catalysts[J]. J. Electroanal. Chem.,2011,655:140-146
    [166] Hsu I.J., Esposito D.V., Mahoney E.G., et al. Particle shape control using pulseelectrodeposition: Methanol oxidation as a probe reaction on Pt dendrites and cubes[J]. J.Power Sources,2011,196:8307-8312
    [167] Miyake M., Ueda T., Hirato T.. Potentiostatic electrodeposition of Pt nanoparticles on carbonblack[J]. J. Electrochem. Soc.,2011,158(9):590-593
    [168] Saejeng Y., Tantavichet N.. Preparation of Pt–Co alloy catalysts by electrodeposition for oxygenreduction in PEMFC[J]. J. Appl. Electrochem.,2009,39:123-134
    [169] Deborah L.B., Gregg A.D., Edward A.K.. Rapid synthesis of a Pt1Ru1/carbonnanocomposite using microwave iIrradiation: a DMFC anode catalyst of high relativeperformance[J]. Chem.Mater.,2001,13:891-900
    [170] Nicholas E.L., Krista M.S.. Preparation of ruthenium and osmium carbonyl complexesusing microwave heating: hemonstrating the use of a gas-loading accessory and real-timereaction monitoring by means of a digital camera[J]. Organometallics,2008,27(6):1254-1258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700