用户名: 密码: 验证码:
五自由度磁悬浮平面电机控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多高新技术领域,如集成电路制造、微型机械装配、生物细胞作业、超精密加工及测量和微外科手术等,都需要具有高速度和高精度的两维定位装置。然而传统的叠加式二维定位平台无法摆脱机械式传动机构和摩擦所带来的固有缺点:定位精度较低,响应速度慢,制造成本高。因此基于直接驱动的磁悬浮平面电机被人们提出来作为实现高速度和高精度定位的有效手段。与传统的两维定位装置相比,磁悬浮平面电机具有直接驱动、无摩擦和无反冲等优点。因此,开展平面电机的研究具有十分重要的现实意义。
     本文提出了一种多自由度磁悬浮平面电机,以分析和解决磁悬浮平面电机的悬浮控制和平面定位控制为主线,对平面电机中动力学建模、耦合分析、鲁棒解耦控制器策略以及控制系统集成等一系列问题进行了深入研究,取得了如下的成果:
     设计了基于直流吸引式的磁悬浮平面电机机械平台,该平台的定子在垂直方向布置4个U型电磁铁,水平方向布置8个I型电磁铁。通过垂直方向和水平方向的对动子的电磁吸引力驱动动子,使其在竖直方向实现悬浮,并在水平方向上进行平面运动。该磁悬浮平面电机具有以下特点:在垂直方向和水平方向的驱动方式上采用直流吸引式驱动提高了线圈的利用效率;工作台的悬浮与水平驱动部分互相独立,从结构上减少了电磁力相互之间的耦合;电机动子上不存在绕组与永磁阵列,避免了动子散热问题,便于对其进行精密控制。
     完成了基于PC机的磁悬浮平面电机集成控制方案。该控制集成方案在硬件上采用PC机上插入基于PCI总线的输入输出卡,并外接模拟线性功率放大芯片的方式。软件上采用Windows平台上安装第三方多任务实时控制软件RTX的方式,实现在windows环境下的定时控制,最小定时周期可达0.1ms。在该软件平台下,开发了磁悬浮平面电机的实时控制与检测软件。通过软、硬件设计表明所设计的集成控制方案结构合理、使用灵活、可靠性好,适合磁悬浮平面电机的实时控制与数据检测。
     为了提高悬浮方向上的控制性能,论文研究了磁悬浮电机在垂直方向上电磁力的建模方法,并针对电机垂直方向上的悬浮问题,设计了非线性鲁棒控制器。通过应用全局滑模算法,结合反馈线性化技术,提出了悬浮系统的抗参数不确定鲁棒控制器。通过仿真实验和控制实验验证了基于非线性技术的滑模控制器比传统PID控制器能够使磁悬浮系统获得更好的快速响应性和更强的抗干扰性能,并且能够在系统存在较大参数不确定时实现稳定控制。
     针对磁悬浮平面电机在垂直方向上的多输入多输出耦合问题,论文建立了悬浮平台刚体动力学模型;设计了鲁棒解耦控制器使得控制器能够对动子各轴上的旋转角与位移量在互不影响的情况下进行单独控制。该控制器使用模糊滑模控制策略,能够消除磁悬浮系统中的参数不确定影响,对系统的参数不确定项进行估计,柔化控制器的输出,消除“抖振”。同时,在控制器中还设计了扩张观测器以提高平台的抗干扰能力。并通过实验验证了所设计的解耦控制器能够对磁悬浮平面电机悬浮方向上的3个自由度进行解耦,有较强的适应参数不确定和抑制外部扰动的能力。
     研究了磁悬浮平面电机在XY平面内的控制方法。建立了磁悬浮平面电机动子在水平面内的动力学模型;针对平面定位的多输入多输出状态,提出了对X、Y轴负向驱动电磁线圈通以恒定电流以减少系统输入数量的控制方案,简化了控制量输入;应用模糊滑模控制算法与扩张观测器设计了3通道解耦鲁棒控制器,该控制器能够实现对悬浮动子多输入多输出耦合模型的解耦,并在控制过程中保持系统的鲁棒性。
     综上所述,本文所论述的磁悬浮平面电机实验平台,集成控制方案,提出的系统简化控制输入方案以及所设计的非线性解耦控制器能够实现磁悬浮平面电机的五自由度控制,并使电机在直接驱动下实现精确的平面定位。对于进一步开发高精度大行程的平面定位装置具有一定的理论意义与实用价值。
The two-dimensional positioning device with high speed and high accuracy is needed in many modern high technology manufacturing fields, such as IC manufacturing, micro mechanical assembly, cell operation, ultra-precision measurement and microsurgery. However the traditional cascaded2dimensional positioning device has its intrinsic drawbacks:the positioning accuracy is low, response speed is slow and the manufacturing cost is high. Therefore the Magnetic Levitated Planar Motor (MLPM) is considered to be an effective way to achieve high speed and high accuracy positioning. Compared with the conventional two-dimensional positioning devices, the planar motor possesses many advantages such as direct driving, low friction (no friction), no backlash and high precision, thus it can work with not only high speed, but also high precision.
     In this dissertation, a new design of multi-degree of freedoms magnetic levitated planar motor is proposed. We focus on the levitation control technique and planar positioning control technique. The key techniques of the MLPM control system, such as modeling technique, coupling analysis, robust control strategy, controller development and etc are studied deeply. And the main research contents and achievements are shown as follows:
     The mechanical platform of MLPM based on the attractive direct current principle is designed. In the planar motor mechanical design, it consists a stator and a mover. In the stator, there are4U-shape electro-magnets which are installed vertically and8I-shape electro-magnets which are installed horizontally. The attractive magnetic forces from vertical and horizontal directions will drive the mover to be levitated in space and positioning in the plane. The MLPM has following characters:the efficiency of the electro-magnets is increased since the attractive direct current forces are applied in the design; the coupling effect of the magnetic forces are avoided in the structure since the mover is driven by vertical magnetic forces and horizontal forces independently; the heat dissipation problem is avoided since there is no coil or permanent arrays in the mover.
     The integrated control system framework based on PC is proposed. In the control system, the hardwares of the control system consist of a PC, input&output card based on PCI bus and an analog linear power amplifier board. The software platform of the control system is Windows XP which is installed with multi-tasks real-time software:RTX. On this software platform, the minimal hard real-time period can be0.1ms. The real time control and measurement program for the MLPM is also developed on the software platform. This program can synchronously feedback the sensor data of the system, control the planar motor, and display the sensor data on the screen of the control PC. The control results of the experiments show that the integrated control system is practical and reliable, it is suitable for the real-time control&measurement of the MLPM.
     For the MLPM, control technique is key for the system. In order to improve the levitation performance of the MLPM, the modeling method of the magnetic force is studied, and designed a nonlinear robust controller for the suspending problem of the MLPM. In the nonlinear robust controller which is robust against parameter perturbation, the Global Sliding Mode Control (GSMC) algorithm combined with feedback linearization technique are employed. Experiment and simulation results show that compared with classic PID, the proposed nonlinear robust controller provides better transient response performance and better robustness against the nonlinear parameter perturbation and will stabilize the MLPM in the levitated direction with large parameter uncertainty in the system.
     In order to achieve the decoupling control for the MLPM in the vertical direction, we establish the3DOF rigid body dynamic model for the magnetic suspension; then the robust decoupling controller is designed to manipulate the mover to rotate along its axis or move along z axis independently. The proposed controller applies fuzzy sliding mode control algorithm to eliminate the effect of parameter uncertainty in the system model, moreover it will estimate the uncertainty of the system in control procedure, with the estimated uncertainty the sliding mode control output will be softened and the chattering phenomenon will be eliminated. Meanwhile, the extended state observer is employed in the controller to observe the external disturbance and improve the robustness against external disturbance. Experimental results show that the proposed controller can achieve the decoupling control in the3DOF of the MLPM while it is robust against internal parameter uncertainty and external disturbance.
     The control technique for planar positioning of the MLPM is studied. First, the planar rigid body dynamic model of the MLPM mover is established; second, in order to reduce the inputs of the MLPM planar drive, a simplified control scheme is proposed. In the proposed control scheme, the electro-magnets in the negative direction of the X/Y axises are energized with constant direct current to provide negative magnetic drive force while the electro-magnets in the positive direction of the X/Y axises are used as the control inputs; then,3DOF decoupling robust controller are designed. The controller applies fuzzy sliding mode control algorithm combining extended state observer. with the proposed controller, the MLPM could achieve2DOF planar positioning. Planar positioning experimental results show that the MLPM proposed in this thesis is capable of generating translation of2mm in the X and Y axes.
     To sum up, the magnetic levitation planar motor experimental platform, integrated control scheme, the proposed scheme to simplify the control input of the system and the design of nonlinear decoupling controller discussed in this paper can realize5DOF control of the magnetic levitation planar motor, and make the motor realize precision plane positioning in direct drive. For the further development of high precision large stroke plane positioning device, this paper has certain theoretical meaning and practical value.
引文
[1]Chou SY, Krauss PR, Renstrom PJ. Imprint of sub-25nm vias and trenches in polymers[J]. Appl Phys Lett,1995,67(21):3114.
    [2]2008-2010年中国半导体行业研究与发展预测分析报告[R1.2008.
    [3]姚汉民,周明宝,田宏.迈向21世纪的光刻技术[J].光电工程,1999,26(1):1-8
    [4]冯伯儒,张锦,侯得胜.微光刻技术的发展[J].微细加工技术,2000,1:1-9.
    [5]杨向荣,张明,王晓临,等.新型光刻技术的现状与发展.材料导报,2007,21(5):102-104.
    [6]彭袢帆,袁波,曹向群.光刻机技术现状及发展趋势.光学仪器,2010,32(4):80-87.
    [7]杨福兴.光学零件的超精密加工技术[J].航空制造技术,2004,(5):81-83.
    [8]李圣怡,戴一帆,彭小强.超精密加工机床及其新技术发展[J].国防科技大学学报,2000,22(2):95-100.
    [9]张从鹏,刘强.直线电机气浮精密定位平台设计与控制[J].北京航空航天大学学报,2008,34(2):224-228.
    [10]张春良,陈子辰,梅德庆.直线驱动新技术及其在加工装备上的应用[J].电工技术学报,2002,17(5):45-50.
    [11]万鸿俊,魏天水,刘莉.直线电机伺服系统的设计与应用研究[J].机械设计与制造,2006,12:9-11
    [12]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2002
    [13]刘伟.直线电机在微电子领域中的应用[J].光学精密工程,2001,9(4):311-314.
    [14]冯晓梅,张大卫,赵兴玉,等.基于音圈电机的新型高速精密定位系统设计方法[J].中国机械工程,2005,16(16):1414-1419.
    [15]Xu HQ, Ono T, Zhang DY, et al. Fabrication and characterizations of a monolithic PZT microstage[J]. Microsyst Technol,2006,12(9):883-890.
    [16]Georqiou HMS, Mrad RB. Dynamic electromechanical drift model for PZT[J]. Mechatronics,2008,18(2):81-89.
    [17]Kim WJ. High-precision planar magnetic levitation[D]. Cambridge:Massachusetts Institute of Technology,1997.
    [18]Choi KB, Kim SH, Choi BW, et al. Moving-magnet type precision miniature platform for fine positioning and compliant motion[J]. Mechatronics,2001,11(7):921-937.
    [19]许雯霞.基于DSP的永磁平面电机运动控制系统研究[D].武汉理工大学.2008:8-15
    [20]杨金明,吴捷,张宇,等.平面电机的现状及发展[J].微特电机,2003(6):31-35
    [21]曹家勇,朱煜,汪劲松,等.平面电动机设计、控制与应用技术综述[J].电工技术学报,2005(4):1-8
    [22]马春燕,王振民,陈燕.平面电动机发展现状[J].微电机,2008(1):35-38.
    [23]寇宝泉,张鲁,李力毅,等.平面电机技术发展综述[J].微电机,2010(11):66-72
    [24]寇宝泉,张赫,潘东华,等.平面电动机的发展现状(Ⅱ)[J].微特电机,2011(2):67-71
    [25]Swayer BA. Actuating system. US Patent,1974, No.3,857,078.
    [26]Edmond RP. Two-Axis Sawyer Motor for Motion Systems [J]. IEEE Control system magazine,1987,7(5):20-24
    [27]Shalom JI. Modeling of Sawyer Planar Sensor and Motor Dependence on Planar Yaw Angle Rotation [C]. Proc. of the IEEE Intc.1Conf on Robotics and Automation Albuquerque, New Mexico.1997:499-504.
    [28]Ohira Y, Yamamoto Y, Takeuchi K. Magnetic circuit analysis of X-Y linear induction motor[J]. Trans. IEE of Japan,1989,109, D:675-681
    [29]Fujii N, Kihara T. Surface induction motor for two dimensional drive[J]. Trans, of IEE of Japan,1998,118, D(2):221-228.
    [30]Fujii N, Fujitake M. Two-Dimensional Drive Characteristics by Circular Shaped Motor[J]. IEEE Trans. on Industry Applications,1999,35(4):167-173.
    [31]Fujii N, Fujitake M, Hara K. Two-Dimensional Motion with Circular Core and Plural Divided a windings Supplied separately[J]. IEEE Trans. on Magnetics,1999,35(5):4010-4012.
    [32]Peter Dittrich.3-DOF Planar Induction Motor[J]. IEEE International Conference on Electro/information Technology,2006:81-86.
    [33]Aly Flores Filho, Altamiro A, etl.. An Analytical Method to Predict the Static Performance of a Planar Actuator [J]. IEEE Transactions on magnetics,2003,39(5):3364-3366。
    [34]Gao W, Dejima S,Yanai H. A Surface Motor-Driven Planar Motion Stage Integrated with an xyθz Surface Encoder for Precision Positioning.Precision Eng.2003,(28):329-337
    [35]张东升.直流吸引式磁悬浮平面电机的研究[D].西安:西安交通大学,2008
    [36]Tomita Y, Koyanaqawa Y. Study on a surface-motor driven precise positioning system[J]. Journal of Dynamic System Measurement and Control Trans ASME,1995,117(3):311-319.
    [37]Kim WJ, Trumper DL. High-precision magnetic levitation stage for photolithography [J]. Precision Engineering,1998,22(2):66-77.
    [38]Yi J H, Park K H, etl. Force Control for magnetic levitation system using flux density measurement[C]. Proceedings of the34th conference on decision&control,1995,2153-2158.
    [39]Kim W J, Trumper D L, Lang J H. Modeling and vector control of a planar magnetic levitation[J]. IEEE, Industry application society,1997,30(4):349-356.
    [40]Kim W J. Precision Dynamic, stochastic modeling, and multivariable control of planar magnetic levitator[C]. Proceedings of American control conference,2002,4940-4945.
    [41]Compter J C. Electro-dynamic planar motor[J]. Precision Engineering,2004,28(2):171-180.
    [42]Cho H S, Im C H, Jung H K. Magnetic Field Analysis of2-D Permanent Magnet Array for Planar Motor[J]. IEEE Trans on Magn.,2001,37(5):3762-3766.
    [43]Compter J C. Displacement device. WO patent application2006/075291,2006-07-20.
    [44]Jansen J W, C M M van Lierop, A. Lomonova, etl. Vandenput,"Magnetically levitated planar actuator with moving magnet," IEEE Trans. On Industry Applications, vol.44, no.4, pp.1108-1115, July/August2008.
    [45]C M M van Lierop, J W Jansen, Damen, etl."Control of multi-degree-of-freedom planar actuators," in Proc. IEEE Int. CCA,Munich, Germany, pp.2516-2521, October2006.
    [46]Jansen J W, C M M van Lierop, Lomonova E A, etl."Modeling of magnetically levitated planar actuators with moving magnets,"IEEE Trans. Magn., vol.43, no.1, pp.15-25, January2007.
    [47]Jansen J W, C M M van Lierop, Lomonova E A, etl."Magnetically levitated planar actuator with moving magnets," in Proc. Electric Machines&Drives Conference, vol.1, pp.272-278, May2007.
    [48]D Ebihara, M Watada.Study of a Basic Structure of Surface Motor.IEEE Trans. Magn.1989,25(5):3916-3918
    [49]Junichi Tsuchiya,Gunji Kimura..Mover Structure and Thrust Characteristic of Moving-Magnet-type Surface Motor[C].The27th Annual Conf.of the IEEE Industrial Electronics Society,2001:1469-1474
    [50]Y Ueda, H Ohaski."A planar actuator with a small mover traveling over large yaw and translational displacements," IEEE Trans. on magnetics, vol.44,no.5, pp.609-616, May2008.
    [51]田延岭,张大卫,闫兵.二自由度微定位平台的研制[J].光学精密工程,2006,14(1):94-99.
    [52]Lee SQ, Gweon DG.. A new3-DOF Z-tilts micro positioning system using electromagnetic Actuators and air bearings[J]. Precision Engineering,2000,24(1):24-31.
    [53]Ho Yu. Design and control of a compact6-degree-of-freedom precision positioner with Linux-based real-time control.[D] Texas:Texas A&M University,2009
    [54]张鲁.复合电流驱动的永磁同步平面电机基础研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010
    [55]寇宝泉,贵献国,吴红星,等.复合电流驱动九相平面电机、直线-旋转电机及其驱动器:中国,200910138883,1[P].2009
    [56]李圣怡,戴一帆,彭小强.超精密加工机床及其新技术发展[J].国防科技大学学报,2000,22(2):95-100.
    [57]赵惠英,蒋庄德,田世杰.纳米级超精密切削表面精糙度若干影响因素分析[J].机械工程学报,2004,40(4):190-194.
    [58]吴鹰飞,周兆英.超精密定位工作台[J].微细加工技术,2002,(2):41-47.
    [59]冯晓梅,张大卫,赵兴玉,等.基于音圈电机的新型高速精密定位系统设计方法[J].中国机械工程,2005,16(16):1414-1419.
    [60]Mike H, David T. Magnetic/fluid-bearing stage for atomic-scale motion control (the angstrom stage)[J]. Precision Engineering,1996,18(1):38-49.
    [61]王延风,卢志山,宋文荣,等.磁悬浮纳米级步进扫描工作台CAD/CAE设计研究[J].机械设计与研究,2004,20(1):77-81.
    [62]Golob M, Tovornik B. Modeling and control of the magnetic suspension system.[J]. ISA Transactions,2003,42(1):89-100
    [63]Cao J Y, Zhu Y, Wang J S, etl. A novel synchronous permanent magnet planar motor and its model for control applications [J]. IEEE Trans On Magn,2005,41(6):2156-2163.
    [64]Shobhit Verma, Won-jong Kim, Huzefa Shakir. Multi-Axis Maglev Nanopositioner for Precision Manufacturing and Manipulation Applications [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS VOL.41, NO.5, SEPTEMBER/OCTOBER2005
    [65]Won-jong Kim, Shobhit Verma. Multiaxis Maglev Positioner With Nanometer Resolution Over Extended Travel Range[J]. Journal of Dynamic Systems, Measurement, and Control.2007, Vol.129November777-785
    [66]Won-jong Kim, S Verma, etl. Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems [J]. Precision Engineering31(2007)337-350
    [67]J Boeij, E Lomonova, Vandenput. Optimization of Contactless Planar Actuator With Manipulator.IEEE Trans.Magn.2008,44(6):1118-1121
    [68]Jeong Woo Jeon, Mitica Caraiani,Yong Joo Kim.Development of Magnetic Levitated Stage for Wide Area Movements[J].Proceeding of International Conference on Electrical Machines and Systems.2007:1486-1491
    [69]H. Yu and W J. Kim,"Controller design and implementation of six-degree-of freedom magnetically levitated positioning system with high precision," in Proc.of2008IMechE, Journal of Science and Control Engineering, vol.222, Part Ⅰ.
    [70]William G H, Werner H W. Electromagnetic design of a magnetic suspension system [J]. IEEE transactions on education,1997,40(2):124-130.
    [71]Mike H, David T. Magnetic/fluid-bearing stage for atomic-scale motion control (the angstrom stage)[J]. Precision Engineering,1996,18(1):38-49.
    [72]J H Choi, J H Park, Y S Back.Design and Experimental Validation of Performance for a Maglev Moving-Magnet-Type Synchronous PM Planar Motor.IEEE Trans. Magn.2006,42,(10):3419-3421
    [73]李黎川,丁玉成,卢秉恒.超精密磁悬浮工作台及其解耦控制[J].机械工程学报,2004,40(9):84-89.
    [74]李云钢.EMS型磁浮列车悬浮控制技术研究[D].长沙:国防科技大学,1997.
    [75]Paddison J E, Macleod C, Goodall R M. State variable Constraints on the Performance of Optimal Maglev suspension controllers [J]. Proceedings of the Third IEEE Conference on Control Application Glasgow, UK,1994,599-604
    [76]Macleod C, Goodall R M. Frequency-shaping LQ control of Maglev suspension systems for optimal Performance with deterministic and stochastic inputs [J]. Control Theory and Application. IEEE Proceedings1996,143(1):25-30
    [77]刘淑琴,富志宏,陈大融.径向磁悬浮轴承参数不确定控制的研究[J].机械科学与技术,2004,23(9):1009-1011.
    [78]刘峰,龙志强,尹力明.磁悬浮列车系统的鲁棒控制分析[J].机车电传动,1996,(05):23-26
    [79]徐德鸿,吴长春,封伟,等.基于H。理论的薄钢板磁浮控制研究[J].电工技术学报,2000,15(4):71-75
    [80]SungJun Joo, JiJoon Byun, Hyungbo Shim, etl. Design and Analysis of the Nonlinear Feedback Linearizing Controller for an EMS System [C]. Proceedings of the IEEE Conference on Control Applications, Glasgow, UK,1994,593-598
    [81]David L Trumper, Sean M Olson, Pradeep K Subrahmanyan. Linearizing Control of Magnetic Suspension Systems [J].IEEE Trans. On Control Systems Technology,1997,5(4):427-438
    [82]Tomohiko Mizutanil, HitoshiKatayama, AkiraIehikawa. Tracking Control of a Magnetic Levitation System by Feedback Linearization[C].SICE Annual Conference in Sapporo,August16,2004.Hokkaido Institute of Technology, Japan, PP.121-126
    [83]曹建荣,虞烈,谢友柏.磁悬浮电动机的状态反馈线性化控制[J].中国电机工程学报,2001,21(9)22-26
    [84]Sinha P K, Pechev A N. Model reference adaptive control of a maglev system with stable maximum descent criterion[J]. Automatica,1999,35(8):1457-146
    [85]刘恒坤,常文森.磁悬浮系统的简单自适应控制[J].电光与控制,2005,12(2):68-70
    [86]D Cho, Y.Kato, D.Spilman. Sliding mode and classical control magnetic levitations systems.Proc.IEEE Contr.Syst.Mag.,1993,(13):42-48
    [87]Young Chol Kim.Gain Scheduled Control of Magnetic Suspension System[C]. Proceedings of the American Control Conference,1994, June, PP.3127-3131
    [88]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-1
    [89]何凌云,佘龙华,赵春霞.磁浮列车悬浮系统的双环自抗扰控制[J].兵工自动化,2006,25(11):59-61
    [90]Earnshow S. On the nature of the molecular forces which regulate the constitution of the lumiferous ether [J]. Trans. Camb. Phil. Soc.,1842,7,97-112.
    [91]Braunbek W. Freischwebende Korper im elektrischen und magnetischen Feld[M]. Z.Phys.,1939,112:753-763.
    [92]张钢,虞烈,谢友柏.电磁轴承的发展与研究.轴承.1997(10):13
    [93]汪通悦,陈辽军,周峰,等.磁浮轴承的技术进展.现状·趋势·战略.2002,445(40):21
    [94]陈立群,张艳鸣,谢友柏.电磁轴承的发展与应用.西北轻工业学院学报.1996,3(14):1-3
    [95]Yi J H, Park K H, Kim S H, etl. Force Control for magnetic levitation system using flux density measurement[C]. Proceedings of the34th conference on decision&control,1995,2153-2158.
    [96]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006:65-68.
    [97]Yeou Kuang Tzeng, Wang T C. A novel compensating approach for self-sensing Maglev system with controlled-PM electromagnets [J]. IEEE Transactions on Magnetics,1995,31(6):4208-4210.
    [98]Morishita M, Azukizawa T, Kanda S, etl. A new MAGLEV system for magnetically levitated carrier system[J]. IEEE Transactions on Vehicular Technology,1989,38(4):230-236.
    [99]Tomono H, Kiwaki H. Controllability improvement of zero-power magnetically levitated system by dither[C]. Power Electronics Specialists Conference, PESC98Record,29th Annual IEEE,1998,1:588-593.
    [100]张德魁,周雷,赵鸿滨,等.基于PC机与RTLinux构建德新一代磁悬浮轴承控制器实验平台[J].电子技术应用,2003,(4):38-41.
    [101]Real-Time Extension for Control of Windows技术白皮书,北京:北京美斯比科技有限公司
    [102]杨铜,郑魁敬.基于Windows XP+RTX的PC数控软件关键技术的研究[M],制造技术与机床,2011,1:(61-63)
    [103]Jiangqiang Yi, Naoyoshi Yubazaki, Kaoru Hirota. A new fuzzy controller for stabilization of parallel-type double inverted pendulum system. Fuzzy Sets and Systems126(2002):105-119
    [104]许国峰,刘春生,王瑛.非线性倒立摆起摆和稳定控制研究[J].计算机仿真,2006,23(11):332-335.
    [105]肖力,彭辉.基于拉格朗日建模的单级倒立摆起摆与稳定控制[J].自动化技术与应用,2007,26(4):4-7.
    [106]班晓军,李士勇.倒立摆的一种Fuzzy—PD复合控制器的设计[J].哈尔滨工业大学学报,2003,35(11):1290-1293
    [107]张耀辉,刘小河.基于反馈线性化的电弧炉电极调节系统控制[J].机床与液压,2008,36(7),264-269.
    [108]王丽梅,石佳.基于反馈线性化的龙门数控机床磁悬浮系统滑模鲁棒控制[J].机床与液压,2008,36(5),254-256.
    [109]黑文静,安钢,林皓,等.输入一输出非线性反馈线性化方法在硬式空中加油控制系统设计中的应用[J].空军学报,2008,29(5):651一656
    [110]金勇俊,江友谊.反馈线性化导弹末制导自适应控制方法[J].火力与指挥控制,2008,33(1):48-52.
    [111]蔡自兴.应用非线性控制.北京:国防工业出版社.1992.
    [112]Jean Jacques, E Slotine&WeiPingLi [M]. APPlied Noulinear Control. China Machine Press.2006.4
    [113]Riccardo Marino, Patrizio Tomei. Nonlinear Control Design-Geometric, Adaptive and Robust. Publishing House of Electronics Industry.2006.8
    [114]Astrom K J, Wittenmark B. Adaptive Control [M].Addison-Wesley,1995.
    [115]Camacho E F, Bordons C. Model Predictive Control [M].Berlin:Speinger-Verlag,2004.
    [116]Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design [M].New York:Wiley,1995.
    [117]Utkin V. Sliding Mode in Control and Optimization [M].Berlin:Springer-Verlag,1992.
    [118]Draznenovic B. The Invariance Conditions in Variable Structure Control Systems [J]. Automatica,1969,5(2):287-295.
    [119]张晓宇,苏宏业.滑模变结构控制理论进展综述.化工自动化及仪表,2006,33(2):1-8.
    [120]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [121]冯勇,安澄全,李涛.采用双滑模平面减小一类非线性系统稳态误差.控制与决策,200015(3):361-364
    [122]Y.S. Lu, J.S. Chen. Design of global sliding-mode controller for a motor drive with bounded control. International Journal of Control,1995,62(5):1001-1019.
    [123]肖雁鸿,郑明才.基于期望特征的变结构鲁棒控制器,湖南大学学报,1999,26(6):48-51.
    [124]陈志梅,赵志诚,张井冈,等.离散时间系统的时变滑模变结构控制.系统仿真学报.2003,18(4):460-467.
    [125]袁士杰,吕哲勤.多刚体系统动力学[D]北京理工大学出版社1992
    [126]Zadeh L A. Fuzzy Sets, Information and Control,1964,8:338-353
    [127]Zadeh L A. Outline of a New Approach to the Analysis Complex Systems and Decision Processes. IEEE Transactions on System, Man and Cybernetics,1973,3:28-44
    [128]Mamdani E H. Applications of fuzzy algorithms for control of simple dynamic Plant[J]. Proc. IEEE,121(12):1585-1588,1974.
    [129]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [130]傅春,谢剑英.模糊滑模控制研究综述.[J].信息与控制,2001,30(5):434-439
    [131]Palm R. Robust control by fuzzy sliding mode, Automatica,1994,30(9):1429-1437
    [132]Nowacki, Z Owczarz, D Wozniak. On the robustness of fuzzy control of an overhead crane,IEEE International Symposium on Industrial lectronics,1996,1:433-437
    [133]Wu J C, Liu T S. Fuzzy control stabilization with applications to motorcycle control,IEEE Trans.Systems,Man and Cybernetics,Part B,1996,26(6):836-847
    [134]Wang W J, Lin H R.Fuzzy control design for the trajectory tracking on uncertain nonlinear systems,IEEE Trans.Fuzzy Systems,1999,7(1):53-62
    [135]Ha Q P, Rye D C, Durrant Whyte. Fuzzy moving sliding control with application to robotic manipulators,Automatica,1999,35:607-616
    [136]Abdelhameed M M. Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators,Mechatrionics,2005,15:439-458
    [137]Rojko A, Jezernik,K. Sliding-mode motion controller with adaptive fuzzy disturbance estimation, IEEE Transactions on Industrical Electronics,2004,51(5):963-971
    [138]R Palm, Robust control by fuzzy sliding mode, Automatica30(9)(1994)1429-1437.
    [139]S Glower, J Munighan. Designing fuzzy controllers from a variable structures standpoint, IEEE Transactions on Fuzzy Systems5(1)(1997)138-144.
    [140]Q P Ha, Q H Nguyen, D C Rye, etl. Fuzzy sliding mode controllers with applications, IEEE Transactions on Industrial Electronics48(1)(2001)38-46.
    [141]H Lee, E Kim, H J Kang, etl. A new sliding-mode control with fuzzy boundary layer, Fuzzy Sets and Systems120(1)(2001)135-143.
    [142]F J Lin, R J Wai. Adaptive and fuzzy neural network sliding-mode controllers for motor-quick-return servomechanism, Mechatronics13(5)(2003)477-506.
    [143]R J Wai, C M Lin, C F Hsu. Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy Sets and Systems143(2)(2004)295-310.
    [144]C L Hwang, H M Wu, C L Shih. Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle, IEEE Transactions on Control Systems Technology17(3)(2009)658-670.
    [145]C Y Chen, T-H S Li, Y-C Yeh. EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots, Information Sciences179(1-2)(2009)180-195.
    [146]M K Chang. An adaptive self-organizing fuzzy sliding mode controller for a2-DOF rehabilitation robot actuated by pneumatic muscle actuators, ControlEngineering Practice18(1)(2010)13-22.
    [147]Wei Wang, Jianqiang Yi, Dongbin Zhao, etl. Design of cascade fuzzy sliding-mode controller. In:2005American control conference June8-10,2005, Portland, OR, USA. p.4649-54.
    [148]L K Wong, F H F Leung, P K S Tam. A fuzzy sliding controller for nonlinear systems, IEEE Transactions on Industrial Electronics48(1)(2001)32-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700