用户名: 密码: 验证码:
储能飞轮优化设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源和环境问题日益严峻的今天,节能和环保技术已成为国内外研究的前沿和热点。储能技术是实现能源高效利用的重要途径,深受能源界和工业界的重视。飞轮储能技术具有储能密度大、功率密度大、效率高、寿命长、低污染等优点,在航空航天、汽车、电力系统等领域具有非常广泛的应用前景。高速旋转的飞轮是飞轮储能系统最核心的储能部件,因此,飞轮设计问题是实现飞轮系统储能的关键技术,将直接决定飞轮系统的储能性能。本论文在吸收现有研究成果的基础上,深入研究了影响飞轮储能性能的关键因素,针对各向同性材料飞轮、纤维增强复合材料飞轮及功能梯度材料飞轮,提出和改进了提高飞轮储能性能的方法和措施,进一步完善了高速储能飞轮优化设计的理论与方法,为设计和研制性能可靠、性价比高的储能飞轮,提供了重要的理论依据和实现途径。
     本文深入研究了各向同性材料飞轮的形状优化设计问题,分析了转速对飞轮形状的影响,通过将飞轮转速划分为低速、中速和高速三个阶段,采用最优控制理论,直接得到了飞轮最优形状的解析表达式,克服了飞轮一般形状优化方法效率低的缺点;通过比较实心、空心飞轮低速、中速和高速情况下的最优形状,揭示了各向同性材料实心和空心飞轮最优形状随转速改变呈阶段性变化的规律。最后,根据飞轮形状优化的研究结果,设计了低成本、低转速工况的金属材料飞轮的最优结构,并将其用作汽车碰撞试验系统的动力牵引装置,以仅30kW功率的电机,完成了某微型客车的实车正碰试验,验证了飞轮储能在汽车碰撞试验系统中应用的可行性。
     本文在深入分析传统渐进结构拓扑优化方法存在的问题和不足的基础上,引入新的材料插值模型和新的性能收敛指标,改进了传统的基于von Mises应力的双向渐进结构优化(BESO)算法。并结合有限元软件Abaqus和编程语言Matlab实现了该改进的BESO算法。运用改进BESO算法,本文又进一步研究了各向同性材料飞轮的拓扑结构优化问题,并得到了结构合理、边界清晰的飞轮最优拓扑结构。最后,分析和总结了飞轮的最优拓扑结构随结构控制体积、旋转周期数改变的变化规律及特点。
     本文指出并分析了多层过盈装配的混合复合材料飞轮可能产生的多种失效形式:除了离心力作用下复合材料飞轮沿环向被拉断和沿径向被拉裂以外,还有可能存在层问过盈压力过大把飞轮压坏或者层间过盈压力过小导致飞轮外层圆环脱落的失效现象。利用本文提出的可以解决约束非线性优化问题的且具有全局收敛性和较高计算效率的两阶段增广Lagrange粒子群优化算法(TS-ALPSO),研究了多层混合复合材料飞轮的成本优化问题。分析了飞轮材料价格不变时,材料次序、分层数及过盈量对飞轮储能性能的影响;最后,得到和总结了飞轮单位成本储能最大时,飞轮分层半径、层间过盈量及转速随飞轮材料价格改变的变化规律。
     对于功能梯度材料(FGM)飞轮,本文首先修正和改进了轴对称平面应力理论,克服了飞轮轴向厚度较厚时,平面应力(PS)解误差大的问题,并推导了FGM材料飞轮的三维修正平面应力(MPS)解:其次,基于分段三次保形插值法,提出了自适应保形(ASP)插值算法,解决了飞轮形状优化时,形状控制点位置难选取、数量难确定的问题,提高了飞轮形状优化的精度;最后,采用基于ASP插值的序列二次规划(SQP)算法,同时优化设计了FGM材料飞轮的形状和材料分布,进一步均匀化了飞轮的应力分布,提高了飞轮材料的利用率。通过对计算结果的分析,总结了FGM材料飞轮的形状及材料参数对其储能性能的影响规律。
Today, with the environment and energy problems growing, techniques for energy saving and environment protectiing become the hotspots and frontiers in current researches. Energy storage technology is an important way to utilize the energy efficiently, and is paid more attention to by energy sectors and industrial circles. Flywheel is proved to be an ideal form of energy storage on account of its high energy density, high power density, high efficiency, long lifetime, low environmental impact, etc. It is finding increasing use in aerospace, vehicles and power system. A high-speed rotating flywheel is a key component in the flywheel energy storage system. So the design of the flywheel is very crucial and important, which will directly determine the energy storage ability of the flywheel system. Based on assimilating current research findings, factors that affect energy storage performances of the flywheel are fully researched in this paper. Approaches and measures for improving energy storage ability of isotropic material, composite and founctionally graded material (FGM) flywheels are proposed and modified respectively. Works in this paper further round out the optimization design theory and methods for high-speed flywheels for energy storage, and provide important theory basses and effective approaches for designing and manufacturing a reliable and cost-effective flywheel for energy storage.
     In this paper, shape optimization of the isotropic material flywheel is researched. To overcome the shortcomings that the calculation efficiency of the ordinary method is low in the flywheel shape optimization, effects of rotating speed on the optimal shapes of the flywheel are analyzed, and brief analytic expressions of the flywheel optimal shapes are directly gained adopting the optimal control theory by dividing the rotating speed into low, medium and high speed intervals. Through comparing the optimal shapes of the isotropic solid and hollow flywheels at low, medium and high speed respectively, change rules of the optimal shapes with the rotating speed are revealed. Based on the research results above, a low cost, low speed metal flywheel is designed to use as the power traction device for automobile crash test system in this paper. At last, a microbus front crash test is conducted by this new power traction device using merely a30kW motor and validates the availability of applying the energy storage flywheel to the automobile crash test system.
     After analyzing the problems and flaws in the previous evolutionary structural topology method, the previous bi-directional evolutional structural optimization (BESO) method based on von Mises stress is improved by introducing a new material interpolation model and a new performance convergence index in this paper. For the implementation of the modified BESO method, a combination of finite element software Abaqus with programming language Matlab is used. Adopting this modified BESO method, the topology optimization of the flywheel is further researched in this paper, and the optimized flywheels with rational structures and clear profiles are found. At last, variation characteristics of the flywheel optimal topology are analyzed and summarized as the structure volume and rotationally period are changing.
     For the press-fit multi-rim composite flywheel, the possible material failures that except radial crack drawn by the centrifugal force, too high interference press may crush the composite and too low interference press may separate the outer rims while the flywheel is rotating are pointed out and analyzed in this paper. And then, using the two-stage Augmented Lagrange Particle Swarm Optimization (TS-ALPSO) algorithm proposed in this paper, which can solve nonlinear optimization problems with constraints and has global convergence and higher computational efficiency, cost optimization of the multi-rim hybrid composite flywheel is researched. For a certain material price, the influences of material sequence, rims number and interferences on the energy storage performance of flywheel are discussed. At last, as the prices of materials change continuously, variation rules of radius of each rim, interferences and rotating speed are revealed and summarized for the composite flywheel when its stored energy per unit cost is maximized.
     For the functionally graded material flywheel, firstly, a modified plane stress theory is presented by extending the2D PS theory in order to make up for the shortcomings that with thickness of the flywheel increasing, the plane stress(PS) solution becomes inaccurate. Then, a3D modified plane stress (MPS) solution of the functionally graded material flywheel is derived. Secondly, based on the piecewise cubic shape-preserving interpolation method, an adaptive shape-preserving (ASP) interpolation method is proposed to solve the problem that in the shape optimization, the locations and number of the control points are difficult to determine. Using this interpolation method, the accuracy of shape optimization is improved significantly. At last, using the sequential quadratic programming (SQP) optimization method based on the ASP interpolation method, shape and material distribution of FGM flywheel is optimized simultaneously. Both of the shape and material optimization produces a really better flywheel in which the stress is more even and the material is made better use of. Through analyzing the optimization results, influences of the shape and material properties on the energy storage performance of FGM flywheel are summarized.
引文
[1]Bolund B, Bernhoff H, Leijon M. Flywheel energy and power storage systems. Renewable and Sustainable Energy Reviews,2007,11:235-258.
    [2]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状.太阳能学报,2000,21(4):427-433.
    [3]卫海岗,戴兴建,张龙等.飞轮储能技术研究新动态.太阳能学报,2002,23(6):748-753.
    [4]赵韩,杨志轶,王忠臣.新型高效飞轮储能技术及其研究现状.中国机械工程,2002,13(17):1521-1524.
    [5]Christopher D A, Beach R. Flywheel technology development program for aerospace applications. Aerospace and Electronic Systems Magazine, IEEE, 1998,13(6):9-14.
    [6]Holm S R. Modelling and optimization of a permanent magnet in a flywheel: [disertation]. Delft:Delft University of Technology,2003,29-32.
    [7]Thomas C, Carlen M W. Theory of ragone plots. Journal of Power Sources,2000, 91:210-216.
    [8]Von Jouanne A, Enjeti P N, Banerjee B. Assessment of Ride-Through Alternatives for Adjustable-Speed Drives. IEEE Transactions on Industry Applications,1999,35:908-916.
    [9]Darrelmann H. Comparison of high power short time flywheel storage systems. In:Proceedings of 21st IEEE International Telecommunications Energy Conference, Copenhagen,1999,2-9.
    [10]Hebner R, Beno J, Walls A. Flywheel batteries come around again. IEEE Spectrum,2002,46-51.
    [11]Wagner R C, Boyle D R, Decker K. Commercialization of flywheel energy storage technology on the international space station. In:Proc of the Intersociety Energy Conversion Engineering Conference, Washington,2002,146-150.
    [12]Varatharajoo R. A combined energy and attitude control system for small satellites, Acta Astronautica,2004,54(10):701-712.
    [13]Karden E, Ploumen S, Fricke B, et al. Energy storage devices for future hybrid electric vehicles. Journal of Power Sources,2007,168(1):2-11.
    [14]Nelson R F. Power requirements for batteries in hybrid electric vehicles. Journal of Power Sources,2000,91:2-26.
    [15]Van Mierlo J, Van den Bossche P, Maggetto G. Models of energy sources for EV and HEV:fuel cells, batteries, ultracapacitors, flywheels and engine-generators. Journal of Power Sources,2004,128:76-89.
    [16]Tsao Perry I-Pei. An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive:[dissertation]. Berkeley:University of California,1997,5-7.
    [17]Briat O, Vinassa J M, Lajnef W, et al. Principle, design and experimental validation of a flywheel-battery hybrid source for heavy-duty electric vehicles. IET Electric Power Applications,2007,1(5):665-674.
    [18]Thelen R F, Herbst J D, Caprio M T. A 2MW Flywheel for Hybrid Locomotive Power. In:Proc of IEEE 58th Vehicular Technology Conference. Orlando,2003, 3231-3235.
    [19]Swett D W, Blanche J G. Flywheel charging module for energy storage used in high-voltage pulsed and multimode mobility hybrid electric military vehicle power system. In:Proc of IEEE international power modulator conference. San Francisco,2004,153-156.
    [20]Colin T. Revolutionary flywheel energy storage system for quality power special feature:electrical energy storage. Power Engineering Journal,1999,13(3): 159-163.
    [21]Daryl R B, William D C. Flywheel energy storage:an alternative to batteries for UPS systems. Energy Engineering:Journal of the Association of Energy Engineering,2005,102(5):7-26.
    [22]Swett D W, Blanche J G. Flywheel charging module for energy storage used in Electromagnetic Aircraft Launch System. IEEE Transactions on Magnetics 2005, 41(1):525-528.
    [23]李俄收,王远,吴文民.超高速飞轮储能技术及应用研究.微特电机,2010,38(6):65-68.
    [24]杨志轶.飞轮电池储能关键技术研究:[合肥工业大学博士学位论文].合肥:合肥工业大学,2002,4-5.
    [25]Antoni Szumanowski混合电动车辆基础.陈清泉,孙逢春译.北京:北京理工大学出版社,2001,92-93.
    [26]秦勇.复合材料飞轮应力分析和强度设计:中国科学技术大学博士学位论文].合肥:中国科技大学工程科学学院,2004.
    [27]Lee S Y, Springer G S. Filament winding cylinders:I. process model. Journal of Composite Materials,1990,24:1270-1298.
    [28]Andrew A C, Bakis C E. Optimal design of pree-fitted filament wound composite flywheel rotors. Composite Structures,2006,72:47-57.
    [29]闫晓磊,钟志华,查云飞等.功能梯度材料飞轮转子优化设计.机械工程学报,2011,47(2):72-79.
    [30]杨志轶,赵韩,王勇等.飞轮电池磁轴承系统结构及控制.合肥工业大学学报,2002,25(6):1107-1111.
    [31]邓志刚,王家素,王素玉等.高温超导飞轮储能技术发展现状.电工技术学报,2008,23(12):1-10.
    [32]王健,戴兴建,李奕良.飞轮储能系统轴承技术研究新进展.机械工程师,2008,4:71-73.
    [33]汤双清,杨家军,廖道训.飞轮储能系统研究综述.三峡大学学报(自然科学版),2002,24(1):78-82.
    [34]汤双清.飞轮储能技术及应用.武汉:华中理工大学出版社,2007.
    [35]卫海岗,戴兴建,沈祖培.储能飞轮风损的理论计算与试验研究.机械工程学报,2005,41(6):188-193.
    [36]Kress G R. Shape optimization of a flywheel. Structural and Multidisciplinary Optimization,2000,19:74-81.
    [37]Arslan M A. Flywheel geometry design for improved energy storage using finite element analysis. Materials and Design,2008,29(2):514-518.
    [38]Lautenschlager U, Eschenauer H A, Mistree F. Multiobjective flywheel design:a DOE-based concept exploration task. In:Proc of ASME Design Engineering Technical Conferences. California,1997.
    [39]Eby D, Averill R, Goodman E, et al. The optimization of flywheels using an injection island genetic algorithm. In:Evolutionary Design by Computers. San Francisco,1999,167-190.
    [40]王炳乐,宋立权,周首光.飞轮形状的优化设计.机械,1992,19(3):16-20.
    [41]王述彦.变厚度回转构件的优化设计.机械科学与技术,2002,21(5):717-719.
    [42]吴光强,陈礼璠,王国林.高速储能飞轮现代动态设计与分析方法.机械工程学报,1997,33(3):32-37.
    [43]郭振宇,叶敏,程博等.基于差异演化算法的高速储能飞轮形状优化设计.吉林大学学报(工学版),2008,38(1):80-83.
    [44]Bendsφe M P, Sigmund O. Topology optimization:theory, method and application. Berlin:Springer,2003.
    [45]Zheng B, Gea H C. Topology optimization considering gravitational and centrifugal forces. In:Proc of IDETC/CIE2006, Philadelphia,2006,677-684.
    [46]魏学敏,汤继强.高温超导磁悬浮储能飞轮轮毂结构的优化设计.中国机械工程,2010,21(15):1784-1787.
    [47]郭中泽,陈裕泽,侯强等.旋转惯性过载作用下结构拓扑优化设计研究.宇航学报,2007,28(5):1353-1357.
    [48]Lopes R A, Stump F V, Silva E C N. Topology optimization of three dimensional structures under self-weight and inertial forces. In:6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro,2005.
    [49]Ha S K, Jeong H M, Cho Y S. Optimum design of thick-walled composite rings for an energy storage system. Journal of Composite Materials,1998,32(9): 851-873.
    [50]Ha S K, Yang H I, Kim D J. Optimal design of a hybrid composite flywheel with a permanent magnet rotor. Journal of Composite Materials,1999,33(16): 1544-1575.
    [51]Ha S K, Yoon Y B, Han S C. Effects of material properties on the total stored energy of a hybrid flywheel rotor. Archive of Applied Mechanics,2000,70: 571-584.
    [52]Ha S K, Kim D, Sung T H. Optimum design of multi-ring composite flywheel rotor using a modified generalized plane strain assumption. International Journal of Mechanical Sciences,2001,43:993-1007.
    [53]Ha S K, Kim J H, Han Y H. Design of a hybrid composite flywheel multi-rim rotor system using geometric scaling factors. Journal of Composite Materials, 2008,42(8):771-785.
    [54]Fabien B C. The influence of failure criteria on the design optimization of stacked-ply composite flywheels. Structural and Multidisciplinary Optimization, 2007,33:507-517.
    [55]Gowayed Y, Abel-Hady F, Flowers G T, et al. Optimal design of multi-direction composite flywheel rotors. Polymer Composites,2002,23(3):433-441.
    [56]Arvin A C, Bakis C E. Optimal design of press-fitted filament wound composite flywheel rotors. Composite Structures,2006,72:47-57.
    [57]Herbst J D, Manifold S M, Murphy B T, et al. Design, fabrication and testing of 10MJ composite flywheel energy storage rotors. In:Proc of SAE Aerospace Power Systems Conference, Virginia.1998,235-244.
    [58]Takahashi K, Kitade S, Morita H. Development of high speed composite flywheel rotors for energy storage systems. Advanced Composite. Materials. 2002,11(1):40-49.
    [59]赵韩,杨志轶.复合材料飞轮的设计分析.机械强度,2003,25(2):163-166.
    [60]赵韩,王勇,杨志轶.复合材料飞轮结构设计.农业机械学报,2004,35(4):140-143.
    [61]白越,黎海文,吴一辉等.复合材料飞轮转子设计.光学精密工程,2007,15(6):852-857.
    [62]廖芳,马力,杨橙等.复合材料高速储能飞轮的设计与仿真.机械设计,2004,21(3):20-22.
    [63]戴兴建,李奕良,于涵.高储能密度飞轮结构设计方法.清华大学学报(自然科学版),2008,48(3):378-381.
    [64]王保林,韩杰才,张幸红.非均匀材料力学.北京:科学出版社,2003.
    [65]韩杰才,徐丽,王保林等.功能梯度材料的研究进展及展望.固体火箭技术,2004,27(3):207-215.
    [66]Yeh K Y, Han R P S. Analysis of high-speed rotating disks with variable thickness and inhomogeneity. Journal of Applied Mechanics,1994,61(1): 186-191.
    [67]You L H, Tang Y Y, Zhang J J, Zheng C Y. Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. International Journal of Solids and Structures,2000,37(52):7809-7820.
    [68]Hojjati M H, Hassani A. Theoretical and numerical analyses of rotating discs of non-uniform thickness and density. International Journal of Pressure Vesssels and Piping,2008,85:694-700.
    [69]Farshi B, Jahed H, Mehrabian A. Optimum design of inhomogeneous non-uniform rotating discs. Computer and Structures,2004,82:773-779.
    [70]Bayat M, Saleem M, Sahari B B, et al. Analysis of functionally graded rotating disks with variable thickness. Mechanics Research Communicstions,2008,35(5): 283-309.
    [71]Huang J H, Fadel G M, Blouin V Y, et al. Bi-optimization design of functionally graded materials. Materials and Design,2002,23:657-666.
    [72]Stump F V, Silval E C N, Paulino G H. Optimization of material distribution in functionally graded structures with stress constraints. Communications in Numerical Methods in Engineering,2007,23:535-551.
    [73]Morvan S, Fadel G M, Loves J, et al. Manufacturing of a heterogeneous flywheel on a LENS apparatus. In:Proc of Solid Freeform Fabrication Symposium, Austin, TX,2001,553-560.
    [74]钟志华,张维刚,曹立波等.汽车碰撞安全技术.北京:机械工业出版社,2003,196-205.
    [75]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,2003,258-259.
    [76]A.E.布赖森,何毓琦.应用最优控制-最优化估计控制.北京:国防工业出版社,1982.
    [77]闫晓磊,钟勇,钟志华.HEV传动系统动力平顺切换最优控制的研究.汽车工程,2008,30(4):309-311.
    [78]胡寿松.自动控制原理.北京:科学出版社,2001.
    [79]曹立波.汽车前碰撞安全性的试验与仿真技术研究:[湖南大学博士学位论文].长沙:湖南大学,2001,18-22.
    [80]白中浩.基于虚拟仪器技术的汽车碰撞试验测控系统研究:[湖南大学硕士学位论文].长沙:湖南大学,2002,21-22.
    [81]张金换,杜汇良,马春生等.汽车碰撞安全性设计.北京:清华大学出版社2010.37-41.
    [82]钟志华,曹立波.电动机械储能式汽车碰撞试验装置.中国发明专利.ZL02113933.4.2002-7-31.
    [83]卜炎.中国机械设计大典:第3卷.南昌:江西科学出版社,2002,30-31.
    [84]Bendsφe M P, Kikuchi N. Generating optimal topologies in structural design using homogenization method. Computer Methods in Applied Mechanics and Engineering,1988,71:197-224.
    [85]Bendsφe M P. Optimal shape design as a material distribution problem. Structural and Multidisciplinary Optimization,1989,1:193-202.
    [86]Zhou M, Rozvany G I N. The COC algorithm, part Ⅱ:topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering,1991,89:309-336.
    [87]Sigmund O. On the design of compliant mechanism using topology optimization. Mechanics of Structures and Machines,1997,25(4):493-524.
    [88]Rietz A. Sufficiency of a finite exponent in SIMP (power law) methods. Structural and Multidisciplinary Optimization,2001,21:159-163.
    [89]Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics,2000,163: 489-528.
    [90]Wang M Y, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering,2003, 192:227-246.
    [91]Wang X, Wang M Y, Guo D. Structural shape and topology optimization in a level-set-based framework of region representation. Structural and Multidisciplinary Optimization,2004,27:1-19.
    [92]Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics,2004,194: 363-393.
    [93]Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures,1993,49:885-896.
    [94]Xie Y M, Steven G P. Evolutionary structural optimization. London:Springer, 1997.
    [95]Querin O M, Steven G P, Xie Y M. Evolutionary structural optimization (ESO) using a bi-directional algorithm. Engineering Computations,1998,15: 1034-1048.
    [96]Yang X Y, Xie Y M, Steven G P, et al. Bidrectional evolutionary method for stiffness optimization. AIAA Journal,1999,37(11):1483-1488.
    [97]Huang X, Xie Y M. Evolutionary topology optimization of continuum structures methods and applications. Chichester:John Wiley and Sons Ltd,2010.
    [98]Sui Yunkang, Yang Deqing. A new method for structural topological optimization based on the concept of independent continuous variables and smooth model. ACTA Mechanica Sinica,1998,18(2):179-185.
    [99]杨德庆,刘正兴,隋允康.连续体结构拓扑优化设计的ICM方法.上海交通大学学报,1999,33(6):734-736.
    [100]谢亿民,黄晓东,左志豪等.渐进结构优化法(ESO)和双向渐进结构优化法(BESO)的近期发展,2011,41(4):462-471.
    [101]荣见华,郑建龙,徐飞鸿.结构动力修改及优化设计.北京:人民交通出版社,2002,249-250.
    [102]Querin O M, Young V, Steven G P, et al. Computational efficiency and validation of bi-directional evolutionary structural optimization. Computer Methods in Applied Mechanics Engineering,2000,189(2):559-573.
    [103]Huang X, Xie Y M, Burry M C A new algorithm for bidirectional evolutionary structural optimization. JSME International Journal Series C,2006,49(4): 1091-1099.
    [104]Li Q, Steven G P, Xie Y M. A simple checkerboard suppression algorithm for evolutionary structural optimization. Structural and Multidisciplinary Optimization,2001,22:230-239.
    [105]张波.渐进结构拓扑优化方法研究与应用:[山东建筑大学硕士学位论文].济南:工程力学研究所,2009,15-16.
    [106]Huang X, Xie Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design,2007,43:1039-1049.
    [107]Sigmund O. Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization,2007,33: 401-424.
    [108]王勖成.有限单元法.北京:清华大学出版社,2003,56-61.
    [109]Harber R B, Jog C S, Bendsφe M P. A new approach to variable-topology shape design using a constraint on the perimeter. Structural and Multidisciplinary Optimization,1996,11:1-11.
    [110]Sigmund O. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization,2001,21:120-127.
    [111]Hibbitt D, Karlsson B, Sorensen P. Abaqus Analysis User's Manual Version 6.8, Simulia,2008.
    [112]Krack M, Secanell M, Mertiny P. Cost optimization of hybrid composite flywheel rotors for energy storage. Structural and Multidisciplinary Optimization,2010,41:779-795.
    [113]Tai S W, Wu E M. A general theory of strength for anisotropic materials. Journal of Composite Materials,1971,5(1):58-80.
    [114]Kennedy J, Eberhart R. Particle swarm optimization. In:Proceedings of the international conference on neural networks. Perth,1995,1942-1948.
    [115]沈艳,郭兵,古天祥.粒子群遗传算法及其与遗传算法的比较.电子科技大学学报,2005,34(5):696-699.
    [116]刘惟信.机械最优化设计.北京:清华大学出版社,1994,224-226.
    [117]Sedlaczek K, Eberhard P. Using augmented lagrangian particle swarm optimization for constrained problems in engineering. Structural and Multidisciplinary Optimization,2006,32:277-286.
    [118]于颖,於孝春,李永生.扩展拉格朗日乘子粒子群算法解决工程优化问题.机械工程学报,2009,45(12):167-172.
    [119]李春明.优化方法.南京:东南大学出版社,2009,80-82.
    [120]Kordkheili S A H, Naghdabadi R. Thermoelastic analysis of a functionally graded rotating disk. Composite Structures,2007,79:508-516.
    [121]赵学仁.弹性力学基础.北京:北京理工大学出版社,1994,252-254.
    [122]Hashin Z, Shtrikman S. A variational approach of the theory of elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids,1963, 11:127-140.
    [123]Paulino G H, Silva E C N, Le C H. Optimal design of periodic functionally graded composites with prescribed properties. Structural and Multidisciplinary Optimization,2009,38:469-489.
    [124]Goupee A J, Vel S S. Multi-objective optimization of functionally graded materials with temperature-dependent material properties. Materials and Design,2007,28:1861-1879.
    [125]Na K S, Kim J H. Optimization of volume fractions for functionally graded panels considering stress and critical temperature. Composite Structures,2009, 89:509-516.
    [126]Sim K S, Wee M Y, Lim W K. Image Signal-to-Noise Ratio Estimation Using Shape-Preserving Piecewise Cubic Hermite Autoregressive Moving Average Model. Microscopy Research and Technique,2008,71:710-720.
    [127]Huang J H, Fadel G M. Heterogeneous flywheel modeling and optimization. Materials and Design,2000,21:111-125.
    [128]Grujicic M, Cao G, Fadel G M. Effective materials properties:determination and application in mechanical design and optimization. Proc Instn Mech Engrs, Part L,2001,215(4):225-234.
    [129]Sun G Y, Li G Y, Hou S J, et al. Crashworthiness design for functionally graded foam-filled thin-walled structures. Materials Science and Engineering: A,2010,527:1911-1919.
    [130]Almeida F S, Awruch A M. Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Composite Structures,2009,88(3):443-454.
    [131]Rahnamayan S, Tizhoosh H R, Salama M M A. Learning Robust Object Segmentation from User-Prepared Samples. WSEAS Transactions on Computers,2005,4(9):1163-1170.
    [132]Boggs P T, Tolle J W. Sequential Quadratic Programming. Acta Numerica, 1995,4:1-51.
    [133]Nocedal J, Wright S J. Numerical optimization. Science Press, Beijing,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700