用户名: 密码: 验证码:
特高压输电塔线体系的抗风可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高压输电塔线体系作为大型复杂的重要生命线工程,与普通输电塔线体系相比,具有塔体高、跨度大和电压等级高等特点,属于典型的风荷载敏感结构。因此,风荷载作用下特高压输电塔线体系可靠度的研究需求日益迫切。然而,与塔线耦合体系的结构建模和分析相比,其抗风可靠度理论的研究尚处于初期。本文在发展可靠度理论的基础上,对特高压输电塔线体系的风振静力可靠度、抗风动力可靠度和基于性能水准的塔体可靠度等问题展开系统研究,主要包括以下几方面内容:
     1)基于风荷载随机模型对输电塔线体系的风振响应进行时程分析。首先采用谐波合成法基于随机Fourier谱拟合出适于塔线风振响应分析的风荷载时程,再由数值算例验证模拟时程的功率谱与目标谱的吻合程度;利用有限元程序对单塔和塔线体系分别进行时程分析,验证塔线有限元模型中各杆件简化处理的合理性,并为后续可靠度分析提供了有利的工具。
     2)提出了基于变量结构分析的自适应响应面法,并结合等价极值事件原理建立了基于响应面法的体系可靠度分析思路;同时,在等效静风荷载随机模型的基础上,建议了输电塔线体系的风振静力可靠度分析框架。根据单变量分析结果判断响应面中各变量项次,进而构造出合理的高次响应面形式,并结合数论选点方案建立相应的实现算法;利用等价极值事件原理将体系可靠度问题转化为单一功能函数的简单可靠度问题,然后采用自适应响应面法重构该等效的单一功能函数,建立基于响应面的体系可靠度分析方法;将该建议方法与等效静风荷载随机模型相结合对塔线体系的风振静力可靠度展开研究。
     3)基于等价极值事件和自适应响应面法,建立了塔线体系的动力可靠度分析方法。根据等价极值事件原理,将结构体系的动力可靠度转化为仅涉及单一功能函数的简单可靠度问题,并结合自适应响应面法和风荷载的随机Fourier谱合成,建立了一般结构体系的动力可靠度分析方法。基于此建议方法,提出了塔线体系的风振动力可靠度计算方法。
     4)借鉴基于性能的抗震设计理论,提出特高压输电塔线体系的抗风性能水准,进而对基于性能的输电塔线体系可靠度展开研究。首先结合灾害实例对塔线体系中输电塔的破坏形式和失效规律进行分析,以塔顶位移和局部变形为性能目标,给出了塔体结构抗风性能4阶段水准的定性描述;根据试验和规范确定出输电塔的性能水准量化模型,再利用有限元法建立检验量化取值合理与否的力学模型,综合二者给出既满足规范要求又便于工程设计需要的输电塔性能水准量化模型;利用前文建议的塔线体系风振可靠度方法分析,对不同塔型的性能可靠度进行了系统地分析。
The line system of UHV transmission tower, as an important large and complexlifeline project, compared with the line system of ordinary transmission tower, ischaracterized by high tower body, large span and high voltage grade and etc, belongingto typical wind load sensitive structure, therefore, the research of the reliability of linesystem of UHV transmission tower under the action of wind load is coming to be moreand more imperative. However, compared with the architecture modeling and analysisof tower-line coupling system, the study of its wind resisting reliability theory is just inearly stage. This paper, on the basis of development of reliability theory, makes asystematic research on the issues such as the wind vibration static reliability, windvibration dynamic reliability and tower body reliability based on the performance level,of the line system of UHV transmission tower, mainly including the following aspects:
     1) In this paper, the time-history analysis based on the wind vibration response ofwind load random model to the line system of transmission tower is made. First, theharmonic synthesis method based on random Fourier spectrum is adopted to fit the windload time-history suitable for the wind vibration response analysis of tower line, beforeverifying the coincidence of simulated time-history power spectrum with targetspectrum by means of numerical example; then using finite element program to maketime-history analysis of single tower and tower-line system respectively so as to verifythe reasonability of simplified treatment of each rod piece in finite element model oftower line, and provide favorable tool for subsequent reliability analysis.
     2) This paper puts forward a adaptive response surface method based on theanalysis of variable structure and sets up a thought, combined with the principle ofequivalent extreme events, for analyzing the system reliability, based on responsesurface method; at the same time, on the basis of equivalent static wind load randommodel, this paper gives a suggestion of the frame for analyzing wind vibration staticreliability of the line system of transmission tower, and furthermore, constructs areasonable high order response surface form by judging each variable item according tothe result of univariate analysis and sets up a corresponding actual algorithm bycombination with the scheme of the selecting points in number theory; and convertssystem reliability problem to a simple reliability problem of sing performance functionby use of the principle of equivalent extreme events, then adopts the adaptive responsesurface method to reconstruct the equivalent single performance function so as to set up a system reliability analysis method based on response surface; then, combined thesuggested method with equivalent static wind load random model to study the windvibration static reliability of tower line system.
     3) In this paper, based on the equivalent extreme events and the adaptive responsesurface method, the method for analyzing the dynamic reliability of tower line system isset up. According to the principle of equivalent extreme events, the dynamic reliabilityof structural system is converted to a simple reliability problem only involving singleperformance function and combined with adaptive response surface method and therandom Fourier spectrum synthesis of wind load, the method for analyzing the dynamicreliability of general structural system is set up. Based on this solution, this paper putsforward the method for calculation of the reliability of wind vibration of tower linesystem.
     4) Using for reference of the seismic design theory based on performance, thispaper proposes wind resisting performance level of the line system of UHVtransmission tower, and further, starts a research of the reliability of the line system ofUHV transmission tower based on performance. First, combined with the example ofdisasters, it analyzes the destruction form and failure rules of transmission tower intower line system, taking the displacement and partial deformation of tower top forperformance objectives, gives out a qualitative description of the4thstage level of windresisting performance of tower body structure; the paper confirms the quantitativemodel of performance level of power transmission tower according to test and standard,using finite element method to establish a mechanical model for examination of whetherquantitative value is reasonable or not, before synthesizing the both to give out thequantitative model of performance level of power transmission tower, not only meetingstandard requirements but also convenient for the needs of engineering design; thispaper makes systematic analysis of the performance reliability of different tower modelsby the analysis of the methods of wind vibration reliability of tower line systemsuggested as above.
引文
[1] Alam M.J., Natarajan K.&Santhakumar A.R.1992. Design wind speeds for transmission linestructures [J]. International Journal of Structures.12:1-19.
    [2] Alam M.J.&Santhakumar A.R.1994. System reliability analysis of transmission line towers[J]. Computer&Structures.53(2):343-350.
    [3] Ang A.H-S.&Amin M.1975. Reliability of Structures and Structural Systems [J]. Journal ofthe Engineering Mechanics Division.101(Em4):671-691.
    [4] Ang A H-S.&Tang W. H.1984. Probability Concepts in Engineering Planning and Design [M].New York: John Wiley&Sons.
    [5] Ballio G., Meberini and Solari G.1992. A60year old100m high steel tower: limit states underwind action [J]. Journal of Wind Engineering and Industrial Aerodynamics.41-44:2089-2100.
    [6] Box G.E.P.&Wilson B.1951. On the experimental attainment of optimum conditions[J].Journal of the Royal Statistical Society. Series B (Methodological),13(1):1-45.
    [7] Brenner C.E.&Bucher C.1995. A contribution to the SFE-based reliability assessment ofnonlinear structures under dynamic loading [J]. Probabilistic Engineering Mechanics.10:265-273.
    [8] Bucher C.G.&Bourgund U.1990. A fast and efficient response surface approach for structuralreliability problems [J]. Structural Safety.7:57-66.
    [9] Chandler A.M.&Mendis P.A.2000. Performance of reinforced concrete frames using force anddisplacement based seismic assessment methods [J]. Engineering Structures.22(4):352-363.
    [10] Chandler A.M&Nelson T.K.L..2001.Performance—based design in earthquake engineering:a multi-disciplinary review[J]. Engineering Structures.23(12):1525-1543.
    [11] Coleman J.J..1959. Reliability of aircraft structures in resisting failure [J]. OperationsResearch7(5):639-645.
    [12] Cornell C.A..1967. Bounds on the reliability of structural systems [J]. Journal of theEngineering Mechanics Division. ASCE, ST1,93:171-200.
    [13] Cornell C.A.1969. Structural Safety Specification Based on Second-Moment Reliability[J].Sym. International Association for Bridge and Structural Engineering.120(12):2180-2207.
    [14] Cramer H.1966. On the intersections between the trajectories of a normal stationary stochasticprocess and a high level [J]. Arkiv for Matematik.6(4-5):337-349.
    [15] Davenport A.G..1961a. The application of statistical concepts to the wind loading of structures[J]. Proceedings of the Institution Civil Engineers.19:449-472.
    [16] Davenport A.G.1961b. The spectrum of horizontal gustiness near the ground in high winds [J].J. Royal Meteorol, soc.87:194~211.
    [17] Davenport A.G.1962. The response of slender, link-like structures to a gust wind [J].Proceedings of the Institution Civil Engineers.23:449-472.
    [18] Davenport A.G..1962.The response of slender, link-like structures to a gust wind [J].Proceedings of the Institution Civil Engineers.23:389-409.
    [19] Davenport A.G.1967. Gust loading factors [J]. Journal of the Structural Division, ASCE,93(3):11-34.
    [20] DavenportA.G..1968. The dependence of wind load upon meteorological parameters. Inproceedings of the international research seminar on wind effects on building and structures
    [D]. University of Toronto Press. Toronto19-82.
    [21] Ditlevsen O.1979. Narrow Reliability Bounds for Structural System [J]. Journal ofEngineering Mechanics.7(4):453-472.
    [22] Freudenthal A.M.1947. The Safety of Structures [J]. ASCE Trans.112:125-129
    [23] Freudenthal A.M.1956. Safety and the Probability of Structural Failure. ASCE Trans.121:1337-1397.
    [24] Faravelli L.1989. A Response surface approach for reliability analysis [J]. Journal ofEngineering Mechanics,115(12):2763-2781.
    [25] Federal Emergency Management Agency (FEMA).1997. NEHRP Guidelines for the seismicrehabilitation of buildings [R]. FEMA Report273.
    [26] Federal Emergency Management Agency (FEMA).2000. Prestandard and commentary for theseismic rehabilitation of buildings [R]. FEMA Report356.
    [27] Gasparini D.A.1979. Response of MDOF systems to non-stationary random excitation [J].Journal of the Engineering Mechanics Division.105(1):13-27.
    [28] Gavin H.P.&Yau S.C.2008. High-order limit state functions in the response surface methodfor structural reliability analysis [J]. Structural Safety.30:162-179.
    [29] Ghobarah A.2001. Performance—based design in earthquake engineering: state ofdevelopment[J]. Engineering Structures.23(8):878—884.
    [30] Glanville M.J.&Kwok K.C.S.1995. Dynamic characteristics and wind induced response of asteel frame tower [J]. Journal of Wind Engineering and Industrial Aerodynamics.54-55:133-149.
    [31] Gong J.X.2003. Computation method for structural reliability [M]. Dalian: Dalian Universityof Technology Press.
    [32] Guan X.L.&Melchers R.E.1997. Multitangent-Plane surface method for reliabilitycalculation [J]. Journal of Engineering Mechanics.113(10):996-1002.
    [33] Guan X.L.&Melchers R.E.2001. Effect of response surface parameter variation on structuralreliability estimates [J]. Structural Safety,23:429-444.
    [34] Hasofer A.M.&Lind N.C.1974. Exact and Invariant Second-Moment Code Format [J].Journal of the Engineering Mechanics Division. ASCE.100(1):111-121.
    [35] Helmstrom C.W.1959. Note on a Markov Envelop Process, Institute of Radio EngineersTransaction on Information Theory, IT-5.
    [36] Hiroshi K.1994. Wind tunnel test on500kV transmission tower with solid web brackets [J].Journal of Wind Engineering.58:54-60.
    [37] Hohenbichler M.&Rackwitz R.1981. Non-Normal Dependent Vectors in Structural Safety[J]. Journal of the Engineering Mechanics Division. ASCE,107(Em6):1227-1238.
    [38] Holmes J.D.1994. Along-wind response of lattice towers: part I: derivation of expressions forgust response factors [J]. Engineering structures.16:287-292.
    [39] Holmes J.D.1996. Along-wind response of lattice towers: part III: effective load distributions[J]. Engineering structures.18:489-494.
    [40] Jain A., Srinivasan M. and Hart G.C.2001. Performance based design extreme wind loads on atall building [J]. The Structural Design of Tall Buildings.10(1):9-26.
    [41] Jensen H.&Iwan W.D.1992. Response of systems with uncertain parameters to stochasticexcitation [J]. Journal of Engineering Mechanics.118(5):1012-1025.
    [42] Kasperski M&Niemann H J.1992. The LRC method-a general method for estimatingunfavorable wind load distributions for linear and nonlinear structural behavior [J]. Journal ofwind engineering and industrial aerodynamics,41-44:1753-1763.
    [43] Katsuki S.&Frangopol D.M.1994. Hyperspace Division Method for Structural Reliability [J].Journal of Engineering Mechanics,120(11):2405-2427.
    [44] Kim S.H.&Na S.W.1997. Response surface method using vector projected sampling points[J]. Structural Safety,19(1):3-19.
    [45] Kiureghian A.D.&Ke J.1985. Finite element based reliability analysis of frame structures [J].Proc. of4th Int. Conf. on Struct. Safety and Reliability, Kobe, Japan,109:395-404.
    [46] Kiureghian A.D.&Ke J.1986. Finite element methods in structural safety studies. StructuralSafety Studies.40-52.
    [47] Kiureghian A.D.&Ke J.1988. Stochastic mite element method in structural reliability [J].Probabilistic Engineering Mechanics.3(2):83-91.
    [48] Liepmann H.W.1952. On the application of statistical concepts to the buffeting problem [J].Journal of Aeronaut Science,19:793-800.
    [49] Li Q.S., Fang J.Q&Liu D.K.1999. Evaluation of structural dynamic response by stochasticfinite element method [J]. Structural Engineering and Mechanics.8(5):477-490.
    [50] Liu Y.W.&Moses F1994. A sequential response surface method and its application in thereliability analysis of aircraft structural systems [J]. Structural Safety,16:39-46.
    [51] Lu Y, Hao H, Carydis P.G, Mouzakis H.2001.Seismic performance of RC frames designed forthee different ductility levels [J]. Engineering Structures.23(5):537-547.
    [52] Marshall R.D.&Yokel F.Y.1995. Recommended Performance-Based Criteria for the Designof Manufactured Home Foundation Systems to Resist Wind and Seismic Loads. Building andFire Research Laboratory National Institute of Standardsand Technology Gaithersburg, MD20899.
    [53] Medhekar M.S.&Kennedy D.J.L.2000. Displacement-based seismic design of buildings-theory[J]. Engineering Structures.22(3):201-209.
    [54] Medhekar M.S.&Kennedy D.J.L.2000. Displacement-based seismic design of buildings-application[J]. Engineering Structures.22(3):210-221.
    [55] Melchers R E.1987. Structural reliability analysis and prediction [M]. Ellis Horwood Limited.
    [56] Miranda.E.1995. Performance—based engineering of building [C]. Vision2000Committee,Seismology Committee of the Structure Engineer Association of California, Oakland: Wileylnc.
    [57] Moses F..1982. System reliability developments in structural engineering [J]. Structural Safety.1(1):13-13.
    [58] Moses. F..1990. New directions and research needs in system reliability research [J].Structural Safety.7(2-4):93-100.
    [59] Murotsu Y., Okada H., Niwa K., et. al.1980. Reliability analysis of truss structures by usingmatrix method [J]. Trans. ASME, J. Mech. Design,102(4):749-756.
    [60] Natarajan K..1991. Wind load analysis-probabilistic approach National seminar on Analysisand Design for Wind Loads [J]. Indian Concrete Institute (ICI), Madras, p:35-46.
    [61] Natarajan K.&Santhakumar A.R..1993.Reliability-based optimization of transmission linetowers [J]. Computers&Structures.55(3):387-403.
    [62] Park S, Choi S, Sikorsky C, et al.2004. Efficient method for calculation of system reliabilityof a complex structure [J]. Solids and Structures.41:5035-5050.
    [63] Peyrot A. H.&Dagher H. J.1984. Reliability based design of transmission lines [J]. J.Engineering Structures. ASCE,110(11):2758-2777.
    [64] Piccardo G.&Solari G.1998. Closed form prediction of3-D wind-excited response of slenderstructures, Journal of wind engineering and industrial aerodynamics.74-76:697-708.
    [65] Piccardo G.&Solari G.2000.3-D wind-excited response of slender structures: closed formsolution [J]. Journal of structure engineering, ASCE,126:936-943.
    [66] Quesada M.G.2003. Topics in the optimization of response surface and parameter designproblems [D]. Ph.D Dissertation of the Pennsylvania State University. Supervisor: CastilloE.D.
    [67] Rackwitz R.&Fiessler B.1978. Computer and Structures, reliability under combined randomload sequence.9:489-494.
    [68] Rajashekher M.R.&Ellingwood B.R.1993. A new look at the response surface approach forreliability analysis [J]. Structural Safety,12:205-220.
    [69] Reed J.W.1971. Wind-induced motion and human discomfort in tall buildings [M].Cambridge, Structures Publication.
    [70] Rice S.O.1944. Mathematical analysis of random noise [J]. Bell System Technical Journal,23:282-332.
    [71] Rice S.O..1945. Mathematical analysis of random noise [J]. Bell System Technical Journal,24:52-162.
    [72] Roos D., Bucher C.G., Bayer V.1999. Polyhedral Response Surfaces for Structural ReliabilityAssessment [C]. in: R. E. Melchers and M. G. Stewart (eds.), Proc.8th Int. Conf. onApplications of Statistics and Probability, Sydney, Australia, Balkema, Rotterdam,109-115.
    [73] Siegert A.J.F.1951. On the first-passage time probability problem [J]. Physical Review,81:617-623.
    [74] Simiu E.1976. Equivalent static wind loads for tall buildings design [J]. Journal of theStructural Division, ASCE,102:19-37.
    [75] Simiu E.1980. Revised procedure for estimating along wind response [J]. Journal of structuresdivision, ASCE,106:1-10.
    [76] SEAOC Vision2000Committee.1995. Performance based seismic engineering of buildings
    [R]. April3.
    [77] Stevenson J.&Moses F.1970. Reliability analysis of frame structures [J]. Journal ofStructural Division.96(ST11):2409-2427.
    [78] Teran-Gilmore A, Avila E, Rangel G..2003. On the Use of plastic energy to establish strengthrequirements in ductile structures[J]. Engineering Structures.25(8):965-980.
    [79] Thoft-Christensen P.&Sorensen. J.D.1982. Reliability of structural systems with correlatedelements [J]. Applied Mathematical Modelling.6:171-178.
    [80] Thoft-Christensen P.&Baker M.J..1982. Structural reliability theory and its application [M].Berlin: Springer.
    [81] Vellozzi J&Cohen E.1967. Gust response factors [J]. Journal of the Structural Division,ASCE,94(6):1295-1313.
    [82] Vickery B.J.1974. On the reliability of gust loading factors, Proceedings of the techniciansmeet concerning wind loads on buildings and structures [M]. Washington D. C.: Nat Burstandards.
    [83] Wirsching P.H.1985. Literature Review on Mechanical Reliability and Probabilistic Design
    [R]. In Probabilistic Structural Analysis Methods for Select Space Propulsion SystemComponents (PSAM). NASA Contractor Report189159.1992. Southwest Research Institute.San Antonio, Texas.
    [84] Visweswara Rao. G.1995. Optimum designs for transmission line towers [J]. Computers&Structures.57(1):81-93.
    [85] Wong S.F.1984. Uncertainties in dynamic soil-structure interaction [J]. Journal of EngineeringMechanics.110(2):308-324.
    [86] Wong S.M., Hobbs R.E. and Onof C.2005. An adaptive response surface method forreliability analysis of structures with multiple loading sequences [J]. Structural Safety.27:287-308.
    [87] Yang J.N.&Shinozuka M.1971. On the first excursion probability in stationary narrow bandrandom vibration [J]. Journal of Applied Mechanics.38:101-1022.
    [88] Yu L., Das P.K.and Zheng Y.2002. Stepwise response surface method and its application inreliability analysis of ship hull structure [J]. Transactions of the ASME,124:226-230.
    [89] Zhao Y.G.&Ang A.H-S..2003. System Reliability Assessment by Method of Moments[J].Journal of Structural Engineering.129(10):1341-1349.
    [90] Zheng Y.&Das P.K..2000. Improved response surface method and its application tostiffened plate reliability analysis [J]. Engineering Structure.22(5):446-458
    [91]白海峰,李宏男.2008.输电线路杆塔疲劳可靠性研究[J].中国电机工程学报.28(6):25-31.
    [92]曹宏,李桂青.1985.高耸结构动力可靠性与分析[J].武汉建材学院学报.4:52-68.
    [93]陈建兵,李杰.2006.结构随机响应概率密度演化分析的数论选点法[J].力学学报.1(28):134-140.
    [94]邓洪州,王肇民.2000.输电铁塔结构系统极限承载力及可靠性研究[J].电力建设.2:12-14.
    [95]董聪.2001.结构系统可靠性分析的统一理论[J].土木工程学报.34(3):35-40.
    [96]方开泰,王元.1996.数论方法在统计中的应用[M].科学出版社.
    [97]范文亮.2008.基于非线性发展过程的结构体系可靠度分析[D].同济大学申请博士学位论文,指导老师:李杰.
    [98]冯元生,董聪.1991.枚举结构主要失效模式的一种方法[J].航空学报.12(9):537-541.
    [99]高险峰,马人乐.2001.风载下塔架结构的可靠度分析[J].特种结构.18(4):32-35.
    [100]高险峰,屠海明.2004.江阴长江大跨越输电塔节段静力试验模型可靠度分析[J].特种结构.21(3):15-17.
    [101]贡金鑫,赵国藩.1998.考虑抗力随时间变化的结构可靠度分析[J].大连理工大学学报.19(5):43-51.
    [102]贡金鑫,赵国藩.2002.结构疲劳累积损伤与极限承载能力可靠度[J].大连理工大学学报.42(6):714-718.
    [103]贡金鑫.2003.工程结构可靠度计算方法[M].大连:大连理工大学出版社.
    [104]国家电力公司东北电力设计院.2002(第二版).电力工程高压送电线路设计手册[S].北京:中国电力出版社.
    [105]顾明,周印,张锋等.2000a.用高频动态天平方法研究金茂大厦的动力风荷载和风振响应[J].建筑结构学报.21(4):55-61.
    [106]顾明,周印,张锋等.2000b.金茂大厦风致振动的实验研究[J].振动工程学报.13(2):188-193.
    [107]关华,朱忠义,牟在根,李洪泉.2009.利用Davenport谱求解荷载风振系数[C].第九届全国现代结构工程学术研讨会.济南.
    [108]郭勇,孙炳楠,叶尹,沈国辉,楼文娟.2007.大跨越输电塔线体系气弹模型风洞试验[J].浙江大学学报(工学版).(9):1482-1486.
    [109]郭勇.2006.大跨越输电塔线体系的风振响应及振动控制研究[D].浙江大学申请博士学位论文,指导老师:孙炳楠.
    [110]韩枫,肖正直,李正良等.2009.1000kV汉江大跨越输电塔线体系三维脉动风场模拟[J].高电压技术.35(9):1000-1004.
    [111]华罗庚,王元.1981.数论在近似分析中的应用[M].北京:科学出版社.
    [112]蒋洪平,张相庭.1993.高耸结构的耦联阵风响应[J].应用力学学报.10:65-74.
    [113]蒋洪平,张相庭.1994.变截面高耸结构的横向风振研究[J].振动与冲击,1:46-54.
    [114]李桂青,曹宏.1983.动力可靠性评述[J].地震工程与工程振动. NO3.1983.
    [115]李桂青,1988.结构动力可靠性[J].武汉工业大学学报校庆专辑.
    [116]李桂青,曹宏,李秋胜.1989.我国结构动力可靠度理论的进展[J].工程抗震.3:30-33.
    [117]李桂青.1993.结构动力可靠性理论及其应用[M].北京:地震出版社.
    [118]李宏男,白海峰.2007.高电压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报.40(2):39-46.
    [119]李宏男,陆鸣,王前信.1990.大跨越自立式高压输电塔-电缆体系的简化抗震计算[J].地震工程与工程振动,10(2):73-87.
    [120]李宏男,王前信.1997.大跨越书店塔线体系的动力特性[J].土木工程学报.30(5):28-36.
    [121]李杰,何军,李天.2002.大型电力网络系统抗震可靠度分析[J].哈尔滨建筑大学学报.35(1):7-11.
    [122]李杰.1995.随机结构分析的扩阶系统方法(I)扩阶系统方程.地震工程与工程振动[J].15(3):111-118.
    [123]李杰.1995.随机结构分析的扩阶系统方法(II)结构动力分析[J].地震工程与工程振动.15(4):27-35.
    [124]李杰.1996.复合随机振动分析的扩阶系统方法[J].力学学报.28(1):66-75.
    [125]李杰,张琳琳,2004.脉动风速功率谱与随机Fourier幅值谱的关系研究[J].防灾减灾工程学报,24(4):363-369.
    [126]李杰,张琳琳,2007.实测风场随机Fourier谱研究[J].振动工程学报,20(1):66-72.
    [127]李杰,阎启,2009,结构随机动力激励的物理模型:以脉动风速为例[J].工程力学,26(2):175-183.
    [128]李继华等编著.1990.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社.
    [129]李茂华,李正,任吉华等.2008.500kV输电线路杆塔结构的可靠性分析[J].电网技术.32(23):91-94.
    [130]李秋胜,曹宏.1986.风荷载作用下可连续化的高层建筑和高耸结构的动力可靠性分析[J].工程力学.4(1):117-124.
    [131]李晓莉,吴敏哲,郭棣.2004.基于性能的结构抗震设计研究.世界地震工程[J].20:153-156.
    [132]李正,杨靖波,韩军科,等.2009.2008年输电线路冰灾倒塔原因分析[J].电网技术.33(2):31-35.
    [133]李正良,肖正直,韩枫等.2008.1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验[J].电网技术.32(12):1-5.
    [134]李正良,魏奇科,孙毅.2010.山地地形对输电塔风振响应的影响[J].电网技术.34(11):214-219.
    [135]李正良,任坤,肖正直等.2011.特高压输电塔线体系气弹模型设计与风洞试验[J].空气动力学学报.29(1):102-106.
    [136]李正良,肖正直.2011.基于高频天平测力试验的特高压输电塔等效风荷载研究[J].电网技术.35(5):27-32.
    [137]李应斌,刘伯权,史庆轩.2003.结构的性能水准与评价指标,世界地震工程[J].19(2):132-137.
    [138]梁枢果,乐俊旺,瞿伟廉.1993.结构风工程研究的新进展及其应用[M].同济大学出版社,
    [139]楼文娟,孙炳楠.1996.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报,9:318-322.
    [140]楼文娟,孙炳楠.1999.高耸塔架横风向动力风效应[J].土木工程学报.32:67-71.
    [141]楼文娟,孙炳楠.2000.风与结构的耦合作用及风振响应分析[J].工程力学.17:16-22.
    [142]刘长虹等.2000.复杂结构系统失效模式的响应面法[J].机械强度.22(1):72-74.
    [143]刘惟信.1996.机械可靠性设计[M].北京:清华大学出版社.
    [144]刘艳辉,赵世春,强士中.2010.城市高架桥抗震性能水准的量化[M].西南交通大学学报.45(1):54-58.
    [145]罗乃东.2001.基于可靠度的高层建筑、高耸结构抗风分析[D].大连理工大学申请博士学位论文.
    [146]罗文斌,钱稼茹.2003.钢筋混凝土框架基于位移的抗震设计[J].土木工程学报.(5):22-29.
    [147]欧进萍,王光远.1986.基于模糊破坏准则的抗震结构动力可靠性分析[J].地震工程与工程振动.6(1):1-11.
    [148]欧进萍,段宇博,叶骏.1994.等效随机静风荷载的模型及其参数确定[J].哈尔滨建筑工程学院学报.27(2):1-8.
    [149]欧进萍,段宇博.1995.结构抗风可靠度分析与设计的等效随机静风荷载[J].建筑结构.(7):27-33.
    [150]钱稼茹,罗文斌.2001.建筑结构基于位移的抗震设计[J].建筑结构.(4):3-6.
    [151]秦文科.2008.钢管输电塔法兰联结节点螺栓脱落损伤诊断的研究[D].武汉理工大学申请博士学位论文.
    [152]石少卿等.1997.极值型风荷载作用下大型结构可靠性分析[J].应用力学学报,13(4):142-147.
    [153]王杨.2008.风荷载下输电塔体系动力可靠性分析[D].大连理工大学申请硕士学位论文.
    [154]王世村.2005.高耸结构风振响应和风振疲劳研究[D].浙江大学申请博士学位论文.
    [155]王显利,王秋平,张海波.2004.结构系统主要失效模式识别算法的研究进展[J].北华大学学报.5(1):84-87.
    [156]汪梦甫,周锡元.2003.基于性能的建筑结构抗震设计.建筑结构,(3):59-61.
    [157]汪秀丽.2006.特高压输电技术的发展[J].水利电力科技,32(2):6-16.
    [158]汪之松,李正良,肖正直,等.2009.1000KV双回路特高压输电塔等效静风荷载研究[J].电网技术,33(14):6-12.
    [159]汪之松.2009.特高压输电塔线体系风振响应及风振疲劳性能研究[D].重庆大学申请博士学位论文.
    [160]汪之松,李正良,肖正直,晏致涛.2010.输电塔线耦合体系的风振疲劳时域分析[J].华南理工大学学报(自然科学版).38(4):106-111
    [161]吴世伟.1988.结构可靠度分析[M].北京:交通出版社
    [162]小谷俊介.2000.日本基于性能结构抗震设计方法的发展[J].建筑结构.6:3-9
    [163]肖正直.2009.特高压输电塔风振响应及等效风荷载研究[D].重庆大学申请博士学位论文
    [164]肖正直,李正良.2011.基于高频天平测力试验的特高压输电塔等效风荷载研究[J].电网技术.35(5):27-32
    [165]肖刚,苏光辉,李天柁.2000.计算高可靠性系统失效概率的统计估计蒙特卡罗方法[J].核科学与工程.20(1):25-31
    [166]谢强,张勇,李杰.2006.华东500kV任上5237线飑线风致倒塔事故调查分析[J].电网技术.30(10):59-63
    [167]谢强,严承涌.2010.1000kV特高压交流同塔双回输电塔线耦联体系风洞试验[J].高电压技术.36(4):900-906
    [168]徐幼麟,张相庭.1991.高耸结构风振响应的准静态效应[J].建筑结构学报.12:61-69
    [169]谢礼立.1999.抗震性态设计和基于性态的抗震设防[R].大型复杂结构的关键科学问题及设计理论研究论文集.大连理工大学出版社
    [170]熊铁华,常晓林.2006.响应面法在结构体系可靠度分析中的应用[J].工程力学.4(23):58-61
    [171]田颖,钱稼茹,刘凤阁.2001.在用RC框架结构基于位移的抗震性能评估[J].建筑结构.(7):53-56
    [172]杨成永,张弥,白小亮.2001.用于结构可靠度分析的多响应面法[J],北方交通大学学报.25(1):1-4
    [173]叶其孝,沈永欢.2010.实用数学手册[M],北京:科学出版社
    [174]赵国藩,曹居易,张宽权.1984.工程可靠度[M].北京:水利水电出版社
    [175]张琳琳,李杰.2005.风荷载作用下输电塔结构动力可靠度分析[J].福州大学学报(自然科学版).33:36-41
    [176]张琳琳,李杰.2006a.脉动风速互随机Fourier谱函数[J].建筑科学与工程学报.23(2):57-61
    [177]张琳琳,李杰.2006b.基于随机Fourier谱的风场仿真[J].同济大学学报.34(9):1142-1146
    [178]张琳琳.2006c.随机风场研究与高耸、高层结构抗风可靠性分析[D].同济大学申请博士学位论文
    [179]张相庭.1978.在脉动风压下结构风振系数的探讨[J].同济大学学报.1:133-144
    [180]张相庭.1982.高耸高层结构随机风振空间相关性及折算系数[J].同济大学学报.2:29-38.
    [181]张相庭.1983.高耸结构风振系数的理论研究和应用[J].同济大学学报.2:41-52.
    [182]张相庭.1990.工程结构风荷载理论和抗风计算手册[M].上海:同济大学出版社.
    [183]张相庭.1991.风力下双曲冷却塔壳体的风振理论及实际应用[J].上海力学.12(1):21-420.
    [184]张相庭.1994.结构顺横风振综合被动控制的研究[J].同济大学学报.22(4):415-420.
    [185]张相庭.2006.结构风工程[M].北京:中国建筑工业出版社.
    [186]周云,汪大洋,陈小兵.2009.基于性能的结构抗风设计理论框架[J].防灾减灾工程学报.29(3):244-251.
    [187]中华人民共和国建设部.2006.建筑结构荷载规范GB5009-2001[S].北京:中国建筑工业出版社.
    [188]中华人民共和国建设部.2003.钢结构设计规范GB50017-2003[S].北京:中国建筑工业出版社.
    [189]中华人民共和国住房和城乡建设部.2010.110kV~750kV架空输电线路设计规范(GB50545-2010))[S].北京:中国电力出版社.
    [190]中华人民共和国国家经济贸易委员会.2002.架空送电线路杆塔结构设计技术规定(DLT5154-2002)[S].北京:中国电力出版社.
    [191]中国新闻网.2011.四川西昌恶劣天气造成电力线路月普线故障. http://www.chinanews.com/df/2011/12-10/3522576. shtml.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700