用户名: 密码: 验证码:
毛细辐射空调技术的传热及流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和人民生活水平的提高,空调能耗迅猛增加,传统空调采用温湿度耦合处理技术,消耗了大量高品位的能量,低碳经济催生低碳空调,辐射空调系统应运而生。
     辐射空调以其舒适、健康、环保、节能的优越性得到世人的青睐,而利用多孔介质微细通道内的强迫对流换热已被证实是最具发展潜力的高效冷却解决方案之一,本文结合辐射板空调技术及热管理论创新地提出了毛细吸液芯辐射换热板空调系统。针对辐射空调的对流换热和辐射换热,以及冷媒介质在多孔介质内部的流动特性进行了研究。
     本文的毛细吸液芯辐射换热板技术源于热管技术,在该毛细吸液芯辐射换热板中,为了获得最大的冷(热)量,需要毛细吸液芯有足够的毛细抽吸力,较小的流动阻力。首先对吸液芯多孔介质的孔隙率,疏水速度、平均孔隙半径和承压强度进行了研究。并通过添加缓凝剂得到了最佳配比。
     通过比较传统辐射空调末端换热技术,在不断改进的的基础上设计了第三代毛细吸液芯辐射换热板,通过搭建实验模型空间,对冷媒不同进口温度和改变发射率条件下的毛细吸液芯换热板的换热了进行了测试,并比较了相同条件下蛇形辐射换热盘管的换热量,分析了不同板面温度下的空间温度分布,结果表明:在冷水进口温度为11℃-16℃的条件下,制冷量提高了37%-57.7%,相比现在经常采用的蛇形辐射换热盘管,毛细吸液芯辐射换热板增加了换热面积,板面温度分布更加均匀,而且可以做为吊顶层并承担一定的压力。表面发射率改变后,空间温度分布相对于改变前更均匀,主要是因为表面发射率增大后,辐射换热量增加,空间温度波动更小。根据毛细吸液芯辐射换热板空调系统的热交换过程,分析了冷媒介质与毛细吸液芯壁面换热、毛细吸液芯辐射换热板与装饰层换热、天花板表面装饰层与房间空气的对流换热及各表面的辐射换热。得到了天花板壁面温度的计算公式以及毛细吸液芯辐射换热板空调系统的综合换热系数。共同构成了毛细吸液芯辐射换热板对室内传热的数学描述。为毛细吸液芯辐射换热板在以后的应用过程中奠定了一定的理论计算基础。
     通过对多孔介质流动理论分析,结合Hagen-Poiseuille方程,建立了毛细吸液芯辐射换热板流动阻力模型,所得到的模型是孔隙率、孔隙半径、颗粒直径、流体性质、流体速度、迂曲度的函数。该模型不含经验常数,每个参数都有明确的物理意义。通过比较可知,本模型和Ergun方程、实验数据符合得较好,证明了该模型的合理性。比较分析了毛细吸液芯辐射换热板和传统的蛇形辐射换热盘管的阻力,并利用ICP-Optional Emission Spectrometer对循环水在毛细吸液芯辐射换热板内部运行钙离子浓度进行了测试。
     对传统空调和辐射空调的耗能进行了分析,通过热力学第一定律提出了综合散热度和集中散热度揭示了辐射空调节能的原因,指出辐射空调的设计温度相比常规空调的设计温度高2~3℃。并通过热力学第二定律火用值理论分析了毛细吸液芯辐射空调的节能优势。
     最后,通过理论分析,采用C语言编程,CFD计算模拟,分析了毛细吸液芯辐射换热空间内温度梯度分布及内部多孔介质流动压降,并将数值模拟结果与实验数据、本模型公式、厄根公式做了对比。验证了实验和模型的合理性,为毛细吸液芯辐射换热板在辐射空调中的应用奠定了一定的理论基础。
The radiation air conditioning has been gradually developed for its comfort, lowenergy consumption, and take advantage of the forced convection heat transfer inmicrochannel of the porous medium the has been proved to be one of the mostdevelopment potential and efficient cooling solutions. This paper propose a newdevelopment direction of air-condition combined with radiation air-conditioningtechnology and forced convection heat transfer of porous medium. In this paper, studieshas been done direct at the capillary wick radiation air-conditioning system of the heatexchanger plates, convection and radiation heat transfer, radiation air conditioningrefrigerant medium in the internal flow characteristics of the porous medium. The maincontents are as follows:
     The heat transfer panel of capillary imbibition core technology of this paper isderived from the heat pipe technology, which need to enough capillary pumped forceand smaller flow resistance in the capillary wick heat exchanger plates to obtain themaximum cooling capacity (heating capacity). First, the porosity of the porous medium,hydrophobic speed, the pore radius and the bearing strength of the porous medium wasstudied. The best ratio of the material was found by adding the retarder.
     Through comparing with the ending equipment heat exchange technology of thetraditional radiation air conditioning, the third generation heat transfer panel of capillaryimbibition core was designed on the basis of the experiment. According to buildingexperimental model space, heat exchange capacity of the heat transfer panel of capillaryimbibition core was test under the conditions of the different refrigerant inlettemperature and transmission rate, and compared with the serpentine radiation under thesame conditions, analyzes the spatial temperature distribution in different plate surfacetemperature, the experimental results show that: cooling capacity increase of37%~57.7%compared with conventional serpentine radiant tube under the conditions of thecold water inlet temperature from10℃to16℃. When increasing the surface emissivity,the spatial temperature distribution is more uniform, mainly because as the surfaceemission rate increases, an increase in the radiation heat transfer, the spatial temperaturefluctuations is smaller. The paper analyzed the continuous heat exchange process andproposed the heat exchange between the refrigerant medium and capillary wick wallsurface, the heat transfer panel of capillary imbibition core and the decorative layer, ceiling surface and the room air and radiation heat transfer in different surfaces. Get theceiling surface temperature and the integrated heat transfer coefficient calculationformula of the heat transfer panel of capillary imbibition core air conditioning system.All of these constitute the mathematical description of heat transfer between capillarywick radiation heat transfer plate and indoor space. It laid a certain theoretical basis forapplication of the heat transfer panel of capillary imbibition core.
     The flow resistance model of capillary wick radiation was build basis on the flowtheory of the porous medium and the Hagen-Poiseuille equation that is the function ofthe porosity, pore radius, particle diameter, fluid properties, fluid velocity and tortuousdegree. The model does not contain empirical constants and each parameter has a clearphysical significance. With comparison, the model fit well with hagen equation and theexperimental data, to prove the rationality of the model. Comparative analysis the flowresistance of the heat transfer panel of capillary imbibition core and conventionalradiation heat exchange serpentine tube, and use of the ICP-Optional EmissionSpectrometer on the circulation of water in the heat transfer panel of capillaryimbibition core running the calcium ion concentration tested.
     The paper analyzed energy consumption of conventional air-condition and theradiation air-condition and proposed the integrated cooling degree and centralizedcooling degree based on the first law of thermodynamics, then energy-saving reasons ofradiation air condition was revealed, that is the radiation air condition designtemperature is lower2~3℃than the design temperature of the conventional airconditioning. Then the paper analyzed the energy-saving advantages of the capillarywick radiation air conditioning basis on the second law of thermodynamics exergy valuetheory.
     Finally, the capillary wick radiation temperature gradient within the heat exchangerspace and internal porous medium flow pressure drop were analyzed according totheoretical analysis, C programming language and CFD numerical simulation method.The numerical results verify the reasonableness of the experiment and modelcomparison with experimental data, the model formula and the Hagen formula. Theselaid the theoretical foundation for heat transfer panel of capillary imbibition coreradiation air conditioning.
引文
[1]王子介.法国的建筑节能与法规[J].暖通空调,1995,25(6):36-39.
    [2]涂逢祥.走向21世纪的英国节能建筑[J].建筑节能,1996,(3):42-48.
    [3]建设部.建筑节能九五计划和2010年规划,1996.
    [4]建设部.建筑节能技术政策,1996.
    [5]薛红香.毛细管空调系统舒适性及气流组织的研究:[山东建筑大学硕士学位论文].山东:山东建筑大学,2009.
    [6] P.Courtin.Queleques notions du confort humain dans differentes ambiances[J].Chaud froidplomberie2001,(636):75-79.
    [7]金招芬,朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2001.
    [8] K. Kitagava,N. Komoda,ect. Effect of humidity and small air movement on thermalcomfort under a radiant cooling ceiling by subjective experiments[J].Energy andBuildings,1999,(30):185-193.
    [9] T.Miyanaga.Simplified body model for evaluating thermal radiant environment in a radiantcooling space[J].Building and Environment,2001,(6):801-808.
    [10] S.G.Hodder. Thermal comfort in chilled celing and displacement ventilation environments:vertical radiant temperature asymmetry effects[J].Energy and Buildings,1998,(27):167-173.
    [11]王子介.低温辐射供暖与辐射供冷[M].北京:机械工业出版社,2004.
    [12]陈启,马一太.辐射顶板空调系统的优势[J].节能技术,2005,23(1):40-43.
    [13]亢燕铭等.地板辐射采暖的节能效应分析[J].全国暖通年会论文集,2000:32-35.
    [14]苏夺,陆琼文.辐射空调及其发展方向[J].制冷空调电力机械,2003,24(93):165-172.
    [15] H.E.Feustel,C.Stetiu. Hydronic radiation cooling-preliminary assesment[J].Energy andBuildings,1995,(26):193-205.
    [16] J.l.z.zhang. Energy saving pltential of chilled-ceiling combined with desiccant cooling in hotand humid climates[J]. Energy and Buildings2000(34):487-495.
    [17]何婧,杜静,寿青云等.浅议辐射供冷空调系统在工程中的应用[J].制冷空调与电力机械,2008,(29):59-61.
    [18]高志宏,刘晓华,江亿.毛细管辐射供冷性能试验研究[J].太阳能学报.2011.32(1):101-106.
    [19]高攀,赵力.辐射式空调器的设计与数值模拟[J].机械工程学报,2008,2(44):238-241.
    [20]葛凤华.平均辐射温度与辐射供暖、辐射供冷[J].吉林建筑工程学院学报,2006,23(2):45-48.
    [21]马景骏,孙丽颖.冷却顶板系统的热舒适性分析[J].哈尔滨工程大学学报,2001,22(5):27-30.
    [22]闫全英,齐正新,王威.无保温楼板辐射供冷系统热过程的研究[J].建筑热能通风空调2005,24(1):1-6.
    [23]朱能,刘珊.置换通风与冷却顶板的热舒适性研究[J].制冷学报,2000,21(4)::64-70.
    [24]任艳丽,李德英,张于峰.地板供冷与置换通风的模拟与分析[J].沈阳建筑大学学报:自然科学版,2008,6(24):1066-1069.
    [25]孙丽颖,马最良.冷却吊顶供水方式对系统运行能耗的影响[J].暖通空调,2003,33(1):107-109.
    [26]刘学来.毛细管格栅空调系统的动态仿真与实验研究:[中国石油大学博士论文].山东:中国石油大学,2011.
    [27] P.VANGTOOK, S.CHIRARATTANANON An experimental investigation of application ofradiant cooling in hot humid climate[J].Energy and Buildings,2006,38:273–285.
    [28] Helmut E. Feustel, Corina Stetiu. Hydronic radiant cooling-preliminary assessment[J].Energy and Buildings22(1995)193-205.
    [29] Nestor Fonseca. Experimental analysis and modeling of hydronic radiant ceiling panels usingtransient-state analysis[J]. International journal of refrigeration.2011,34:958-967.
    [30] Melanie Fauchoux, Mohit Bansal, etal. Testing and modelling of a novel ceiling panel formaintaining space relative humidity by moisture transfer[J]. International Journal of Heat andMass Transfer.53(2010)3961–3968.
    [31] J. Miriel, et al. Radiant ceiling panel heating–cooling systems: experimental and simulatedstudy of the perormances, thermal comfort and energy consumptions[J]. Applied ThermalEngineering,2002,22:1861–1873.
    [32] T. IMANARI, TOSHIAKI OMORI, KAZUAKI, BOGAKI. Thermal comfort and energyconsumption of the radiant ceiling panel system: comparison with the conventional all-airsystem[J]. Energy and Buildings,1999,30:167–175.
    [33] J.W. Jeong, et al. Practical cooling capacity estimation model for a suspended metal ceilingradiant cooling panel[J]. Building and Environment,2007,42:3176–3185.
    [34] Refet Karadag. New approach relevant to total heat transfer coefficient including the effect ofradiation and convection at the ceiling in a cooled ceiling room[J]. Applied ThermalEngineering,29(2009)1561–1565.
    [35] Maxime Tye-Gingras, Louis Gosselin. Investigation on heat transfer modeling assumptionsfor radiant panels with serpentine layout[J]. Energy and Buildings,43(2011)1598–1608.
    [36] Taeyeon Kim, Shinsuke Kato. Indoor cooling/heating load analysis based on coupledsimulation of convection, radiation and HVAC control[J]. Building and Environment36(2001)901–908.
    [37] Corina Stetiu. Energy and peak power savings potential of radiant cooling systems in UScommercial buildings[J]. Energy and Buildings30_1999.127–138.
    [38] Koichi Kitagawa, Noriko Komoda. Effect of humidity and small air movement on thermalcomfort under a radiant cooling ceiling by subjective experiments[J]. Energy andBuildings,301999.185–193.
    [39] F. Sodec. Economic viability of cooling ceiling systems[J]. Energy and Buildings,1999,30(2):195-201.
    [40] AtilaNovoselace, JelenaSrebrice. A critical review on the performance and design ofcombined cooled ceiling and displacement ventilation systems[J]. Energy and Buildings,2002,34:497-509.
    [41] Peter Simmonds,Stefan Holst. Using radiant cooled floors to conditioning large space andmaintain comfort condition[J]. ASHRAE Transactions, Symposia2000, DA-00-8-3:695-701.
    [42]何婧,杜静,寿青云等.浅议辐射供冷空调系统在工程中的应用[J].制冷空调与电力机械,2008,(29):59-61.
    [43]任杰,兰海,周井明.毛细管网平面辐射空调系统应用与推广[J].供热制冷,2008,(6):27-29.
    [44]薛志峰.超低能耗建筑技术及应用[M].北京:中国建筑工业出版社,2005.
    [45] Albusairi B, Hsu J T. Application of Shape Factor to Determine the Permeability of PerfusiveParticle[J]. Chemical Engineering Journal,2002,89:173~183.
    [46] Ergun S. Fluid Flow through Packed Columns[J]. Chemical Engineering Progress,1952,48:89~94.
    [47] Carman P C. Fluid Flow through Granular Beds. Transactions-Institution of ChemicalEngineers,1937,150-166.
    [48] F.R. Villatoro, J. Perez, J.L.G. Santander, etal. Perturbation analysis of the heat transfer inporous media with small thermal conductivity. Journal of Mathematical Analysis andApplications,374(2011)57–70.
    [49] J. Raymond, R. Therrien, L. Gosselin, etal. Numerical analysis of thermal response tests witha groundwater flow and heat transfer model. Renewable Energy,36(2011)315-324.
    [50] Jiang P X, Li M, Lu T J et al.Experimental Research on Convection heat Transfer in SinteredPorous Plate Channels[J]. International Journal of Heat and Mass Transfer,2004,47:2085~2096.
    [51] Jiang P X, Wang Z, Ren Z P et al. Experimental Research of Fluid Flow and Convection HeatTransfer in Plate Channels Filled with Glass or Metallic Particles[J]. Experimental Thermaland Fluid Science,1999,20:45~54.
    [52] Gray W G.. Thermodynamics and Constitutive Theory for Multiphase Porous-media FlowConsidering Internal Geometric Constraints[J]. Advances in Water Resources,1999,22(5):521~547.
    [53] Fergui O, Bertin H, Quintard M. Transient Aqueous Foam Flow in Porous Media:Experiment and Modeling[J]. Journal of Petroleum Science and Engineering,1998,20:9~29.
    [54] Teng H, Zhao T S. An Extension of Darcy’s Law to Non-Stokes Flow in PorousMicrosoftedia[J]. Chemical Engineering Science,2000,55:2727~2735.
    [55] Chikh S, Boumedien A, Bouhadef K. Analysis Solution of Non-Darcian Forced Convectionin an Annular Duct Partially Filled with a Porous Medium[J]. International Journal of Heatand Mass Transfer,1995,38(9):1543~1551.
    [56] Bortolozzi R A, Deiber J A. Comparison between Twoand One-Field Models for NaturalConvection in Porous Media[J]. Chemical Engineering Science,2001,56:157~172.
    [57] Jiang P X, Si G S, Li M et al. Experimental and Numerical Investigation of ForcedConvection Heat Transfer of Air in Non-sintered Porous Media[J]. Experimental Thermaland Fluid Science,2004,28:545~555.
    [58] Izadpanah M R, Müller-Steinhagen H, Jamialahmadi M. Experimental and TheoreticalStudies of Convective Heat Transfer in a Cylindrical Porous Medium[J]. InternationalJournal of Heat and Fluid flow,1998,19:629~635.
    [59] Jiang P X, Xu Y J, Lv J et al. Experimental Investigation of Convection Heat TakeCordially,are,Ransfer of CO2at Super-critical Pressures in Vertical Mini-tubes and in PorousMedia[J]. Applied Thermal Engineering,2004,24:1255~1270.
    [60] Antohe B V, Lage J L, Price D C, et al. Experimental Determination of Permeability andInertia Coefficients of Mechanically Compressed Aluminum Porous Matrices[J]. Journal ofFluids Engineering,1997,119(2):404-412.
    [61] Polyaev V M, Mozhaev A P, Galitseysky B M, et al. A Study of Internal Heat Transfer inNonuniform Porous structures[J].Experimental Thermal and Fluid Science,1996,12(4):426-432.
    [62]胥蕊娜,姜培学,李勋,等.微细多孔介质中流动及换热实验研究[J].工程程热物理学报,2006,27(l):103一106.
    [63]陈威,张爱国,刘倩等.含湿多孔介质应用于建筑墙体的制冷性能分析[J].四川建筑科学研究,2011,37(6):252-257.
    [64]窦智,周志芳,李兆峰.多孔介质油水两相k~s~p关系数学模型的实验研究[J].水科学进展.2012,23(2):201-208.
    [65] Jiang P X, Ren Z P, Wang B X. Numerical Simulation of Forced Convection Heat Transfer inPorous Plate Channels Using Thermal Equilibrium and Nonthermal Equilibrium Models.Numerical Heat Transfer(Part A),1999,35(1):99-113.
    [66]吴金随.多孔介质里流动阻力分析:[华中科技大学硕士论文].湖北:华中科技大学,2006.
    [67]白鹏飞.多孔型微细通道强化传热结构的设计制造及传热性能研究:[华南理工大学博士论文].广东:华南理工大学,2010.
    [68]张云.多孔介质中流动的格子Boltzmann模拟[中国石油大学博士学位论文].山东:中国石油大学,2011.
    [69] Nan Liu,Zhixian Gao,Huanying Zhou,Yonghong He.Study of oligonucleotide fixation onbilaryer lipid membranes by patch-clamp pipette support[J].Rare Metal Materials andEngineering,2006,35(1):324-326.
    [70]彭家惠,陆明凤,瞿金东,等.柠檬酸对建筑石膏水化的影响及其机理研究[J].建筑材料学报,2005,8(1):94-99.
    [71]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.
    [72]彭家惠,王凤仙,张建新等.柠檬酸对石膏析晶过饱和度和微结构的影响[J].武汉理工大学学报,2006,28(11):44-47.
    [73]黄凤萍,李缨,陈利红等.绿色高效外加剂对模型石膏性能的影响[J].非金属矿,2007,30(6):18-20.
    [74]张巨松,郑万荣,陈华,张添华.影响ɑ半水石膏粒度、形貌及强度的因素[J].沈阳建筑大学学报,2006,26(6):930-933.
    [75] Liu Chun-yang,Guan Bao-hong,Wu Zhong-biao.Characterization and precipitationmechanism of α-calcium sulfate hemihydrate growing out of FGD gypsum in salt solution[J].Science in China Series E: Technological Sciences,2009,52(3):125-129.
    [76] Tydlitat.V,Tesarek.P. Effects of the type of calorimeter and use of plasticizers andhydrophobizers on the measured hydration heat development of FGD gypsum[J].Journal ofThermal Analysis and Calorimetry,2008,91(15):225-229.
    [77]王青豪,郑辉,欧阳健明.柠檬酸钾对尿石患者和正常人尿液凝胶中草酸钙晶体生长的影响[J].人工晶体学报,2006,35(5):1099-1102.
    [78]何国欣,姬长发.多孔介质在暖通空调领域的应用与分析[J],制冷与空调,2009,23(3):26-30.
    [79]布文峰,王世洪.户型冷板辐射式空调系统研究[J].制冷与空调,2002,4(2):25-27.
    [80]金梧凤,余铭锡等.毛细管网系统供冷性能的实验研究[J].暖通空调,2010,40(9):102-107.
    [81]童明伟,胡鹏,吴中正.毛细吸液芯换热板的设计与实验研究[J],重庆大学学报,2011,34(8):8-12.
    [82]田胜元,萧日嵘.实验设计与数据处理[M].北京:化学工业出版社出版社,2000.
    [83]胡鹏,童明伟,陈才等.毛细吸液芯冷却顶板流动阻力及制冷特性[J].化工学报,2012,63(1):57-61.
    [84] Kandlikar S.G., Grande W.J.Evolution of Microchannel Flow Passages-ThermohydraulicPerformance and Fabrication Technology[J]. Heat Transfer Engineering,2002,25(1):3-17.
    [85] Kawaji M., Chung P.M.Y.. Unique Characteristics of Adiabatic Gas-Liquid Flows inMicrochannels Diameter and Shape Effects on Flow Patterns, Void Fraction and PressureDrop[A]. Proceedings of the First International Conference on Microchannels andMinichannels[C]. New York: ASME.2003:115-127.
    [86] Ali M.I, Sadatomi M., Kawaji M. Two-Phase Flow in NarrowChannels between Two FlatPlates[J]. canadian journal of chemical engineering,1993,71(5):449-456.
    [87] Celata G.P. Heat Transfer and Fluid Flow in Microchannels[M]. New York: Begell House Inc,2004.
    [88] Meijuan Yun, Boming Yu, Peng Xu, Jinsui Wu, Geometrical Models for Tortuosity ofStreamlines in Three-Dimensional Porous Media, The Canadian Journal of ChemicalEngineering,84,301-309,2006.
    [89] Yu B.M and Cheng P., A fractal permeability model for bi-dispersed porous media, Int. J.Heat and Mass Transfer,2002,Vol.45(14)2983-2993.
    [90] Yu B.M., Cheng P., A fractal model for permeability of bi-dispersed porous media. Int.J.ofHeat and Mass Transfer.2002Vol.45,2983-2993.
    [91] Yu B.M., Li J.H., Some fractal characters of porous media, Fractals,2001.9(3),365-372.
    [92] Yu B.M., Lee L J, Cao H Q, Fractal characters of pore microstructures of textile fabrics.Fractals,2001.9(2):155-163.
    [93]张也影,流体力学,高等教育出版社(pp142,pp251).
    [94] GB/T7476-1987《水质钙的测定EDTA滴定法》.
    [95] GB/T11905-1989《水质钙和镁的测定原子吸收分光光度法》.
    [96]王静斌,权瑞,文德振.水中钙离子现场快速测定方法研究[J],环境污染治理技术与设备,2002,3(4):9-12.
    [97]刘丽娟,赵国雄,邹健等.电感耦合等离子体原子发射光谱仪(ICP-AES)测定重组酵母乙肝疫苗中硫柳贡的含量[J],中国药事,2010,24(8):795-797.
    [98]刘栓强,刘晓华,江亿.温湿度独立控制空调系统中独立新风系统的研究[J].暖通空调,2010,40(12):85-90.
    [99]刘学来,薛红香,李永安,等.毛细管平面辐射空调房间室内计算温度研究[J].煤气与热力,2010,30(3):A24-A29
    [100]马玉奇,刘学来,李永安等.冷却项板结露问题分析[J].山东建筑大学学报,2007,22(6):537—540.
    [101]马玉奇,刘学米,李永安等.冷却顶板热工参数分析[J].山东建筑大学学报,2007,22(5):425-429.
    [102]张立志.除湿技术[M].北京:化学工业出版社,2005.
    [103]谢海敏.空调系统中的除湿技术及其节能分析[J].应用能源技术,2008,(04):35-40.
    [104]马丽君.固体干燥剂转轮除湿特性的理论与实验研究(D)天津商业大学,2011.
    [105]王高飞.转轮除湿空调系统研究[D].广州大学,2007.
    [106]江亿,李震,陈晓阳,等.溶液式空调及其应用[J].暖通空调,2004,(11):88.97.
    [107]袁秋霞,刘俊杰,谢慧.液体除湿系统在低湿洁净环境中的应用研究[J].河北建筑科技学院学报,2005,23(3):21.23.
    [108]代彦军,王如竹.混合式除湿空调节能特性研究[J].工程热物理学报,2003,(02):205-207.
    [109]王保国,文湘华,陈翠仙.膜分离技术在石油化工中应用研究现状[J].化工进展,2002,21(12):880.884.
    [110]张立志,江亿.膜法空气除湿的研究与进展[J].暖通空调,1999,(06):28.32.
    [111]汪洋.冷辐射空调及其节能原理[J].建筑热能通风空调,2010,29(3):71-74.
    [112]马玉奇,刘学来,李永安等.“火用”分析方法在毛细管空调系统的节能性分析中的应用[J].中国住宅设施,2007,(11):58-59.
    [113]杨世铭,陶文铨.传热学[M].第4版.北京:高等教育出版社,2006:365—371.
    [114]陶文栓.数值传热学(第2版)[M].西安交通大学出版社,2003.
    [115]陶文铨.计算流体力学与传热学[M].中国建筑工业出版社,1991.
    [116]邓彩华,童亮,陈壁峰等.多孔介质流动的直接数值模拟[J].武汉理工大学学报(交通科学与工程版),2011,35(12):1257-1260.
    [117]汪明.基于封闭式冷却塔的毛细管辐射空调冷源研究[D].山东建筑大学,2011.
    [118]李永安,尚丰伟,焦明先.空调用封闭式冷却塔热工性能的动态仿真及实验研究[J].制冷学报,1998,(4):66-70.
    [119]徐今强,冯自平,肖睿,等.冰蓄冷中央空调预热泵流量模糊控制[J].排灌机械工程学报,2010,28(3):260-267.
    [120]童明伟,胡鹏,孙亚辉等.热泵空调机组水循环流动特性的试验研究[J].排灌机械工程学报,2012,30(1):1-5.
    [121]郭晓艳.吸收系数对炉膛传热计算的影响[J].中国石油大学学报(自然科学版),2009,33(5):156-158.
    [122]余其铮.辐射换热原理[M].哈尔滨工业大学出版社,2000.
    [123]金文,张鸿雁,何文博.多孔介质壁面条件下微尺度流动的数值模拟[J].排灌机械工程学报,2010,28(3):271-278.学报,2012,30(1):1-5.
    [124]陆亚俊主编.暖通空调.北京:中国建筑工业出版社,2002.
    [125]王雪.冷却顶板和太阳辐射对置换通风系统影响的模拟与分析[D].哈尔滨工业大学硕论文,2005.6.
    [126] Bear J.多孔介质流体动力学.李竟生,崇希,译[M].北京:中国建筑工业出版社,1983.
    [127]金仁喜,淮秀兰.多孔介质高强度传热传质的理论研究[J].工程热物理学报,2005,26(6):152-154.
    [128]杨世铭,肖宝成,杨强生.多孔介质内部热质传递的等效耦合扩散模型[J].上海交通大学报,1992.26(6):52-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700