用户名: 密码: 验证码:
腐蚀环境和风振疲劳耦合作用下输电塔线体系疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电塔线体系作为复杂的生命线工程系统,投资巨大、影响深远,属于重要的生命线工程。然而,输电塔线体系同时具有高耸结构和大跨度结构的共同特点,对风荷载作用响应十分敏感。整个服役期间由于长期处于环境腐蚀和风致振动作用下,结构会产生疲劳损伤累积,致使体系的抗力和性能逐步退化,从而降低结构抵抗极端环境作用的能力,导致事故的发生。本文在理论推导和试验研究的基础上,对环境腐蚀和风振疲劳耦合作用下输电塔线体系的疲劳性能展开研究,主要包括以下几方面内容:
     1)基于试验结果研究腐蚀对Q345等边角钢材料力学性能的影响规律,建立材料力学性能参数退化模型。首先基于重庆地区降雨时间及其分布特点建立混合分布模型和酸雨腐蚀模型,再通过该腐蚀模型研究Q345钢材的腐蚀速率随酸雨PH值、腐蚀方式和腐蚀时间的变化规律;根据弹性模量、极限强度和伸长率等力学参数随腐蚀时间、腐蚀方式和PH值的退化情况,给出相应的退化模型。
     2)基于试验结果通过改进后的单点-似然法,建立Q345等边角钢纯疲劳和不同腐蚀时间的腐蚀疲劳S-N曲线模型。基于相关系数优化法对单点-似然法进行改进,提出确定疲劳S-N曲线表达式参数的改进回归分析方法,构造与之对应的实现算法;根据不同腐蚀时间作用下Q345等边角钢构件的疲劳试验结果,分析腐蚀时间对构件腐蚀状态和疲劳破坏模式的影响情况;由构件疲劳寿命随腐蚀时间的变化规律,建立构件P-S-N和γ-P-S-N曲线模型;根据曲线模型中各参数随腐蚀时间的变化规律,建立Q345等边角钢构件的t-P-S-N曲面模型,并采用该模型探讨不同腐蚀时间内Q345等边角钢构件疲劳寿命的变化规律。
     3)基于试验结果通过改进后的单点-成组法,建立不同腐蚀方式作用下Q345等边角钢的腐蚀疲劳S-N曲线模型。对单点-成组法进行改进的基础上,提出S-N曲线表达式参数回归分析方法及其实现算法;根据不同腐蚀方式用下Q345等边角钢构件的疲劳试验结果,观察各腐蚀方式中构件的腐蚀状态和疲劳破坏模式;分析各腐蚀方式中构件疲劳寿命的变化规律,建立相应的构件P-S-N和γ-P-S-N曲线模型;结合理论推导及参数分析建立各腐蚀方式作用下Q345等边角钢构件的P-S-N曲面模型,然后,采用该模型探讨不同可靠度条件下腐蚀方式对Q345等边角钢构件疲劳寿命的影响规律。
     4)通过腐蚀、疲劳以及腐蚀和疲劳耦合作用下Q345等边角钢构件在低周往复加载作用下的试验结果,建立腐蚀和疲劳耦合作用下构件各力学性能参数的退化模型。首先采用腐蚀、疲劳以及腐蚀和疲劳耦合作用对试件进行预损伤处理,然后,再对各试件进行低周往复加载试验,通过与无损伤试件的试验结果进行对比分析,观察构件承载力、刚度、延性耗能和滞回性能等在不同损伤工况下的变化规律,并建立相应的退化模型;最后,将腐蚀和疲劳损伤作用下力学性能参数的退化模型相结合建立联合模型,再根据耦合作用下试验结果的实际变化规律确定联合模型中的耦合参数值,从而建立构件各力学性能参数在不同耦合作用下的退化模型。
     5)基于试验结果建立的构件疲劳S-N曲线模型和性能退化模型,对输电塔线体系的疲劳性能以及结构性能退化情况进行确定性研究。根据试验结果建立的Q345等边角钢构件S-N曲线模型分析腐蚀方式和腐蚀时间对输电塔体结构疲劳损伤和疲劳寿命的影响规律;同时,由不同腐蚀工况下的材性参数建立塔线体系并进行时程分析,再由材料疲劳S-N曲线模型分析各工况下塔体构件疲劳性能的变化规律;根据两种方法的计算结果对比分析材料疲劳模型和构件疲劳模型在输电塔线体系风振疲劳中的差异;通过腐蚀、疲劳以及腐蚀和疲劳耦合作用下构件性能退化模型分析了输电塔线体系在不同损伤情况下抵抗外荷载能力的退化情况。
     6)基于构件S-N曲线模型和建议自适应响应面法对输电塔线体系进行了风振疲劳随机性分析。首先,基于乘法定理以重庆市日极值风向风速气象数据,建立了风速条件概率密度的混合模型和风向角的概率密度函数模型,将两者相结合建立了风向风速的离散-连续混合联合分布模型;然后,根据构件腐蚀疲劳S-N曲线模型,对不同腐蚀方式和不同腐蚀时间作用下输电塔线体系的疲劳性能进行研究;同时,通过严格的数学推导给出了极限状态曲面中交叉项是否存在的判断准则,将该准则与完全二次多项式相结合建立了更加合理的自适应的响应面法,并构造了与之对应的实现算法;采用此自适应响应面法以腐蚀时间和风速为随机变量分析了输电塔线体系的疲劳可靠性。
Transmission tower-line system belongs to the important lifeline engineeringwhich is a project with enormous investment and profound influence. Transmissiontower-line system has the feature of high-rise structure and large-span structure,therefore, it is sensitive to wind. During the whole service stage, the structure wouldproduce fatigue damage accumulation affected by enviorment corrosion and windinduced vibration,which leads to the resistance and property of the system graduallydeteriorating. The capacity of the structure to resist the extreme load would bedecreased. In this paper, we should do research on the fatigue properties of transmissiontower-line system under the enviorment corrosion and wind-induced fatigue on the baseof theoretical derivation and experimental study. Mainly include the following contents:
     1) Based on the influence law of experimental results about Q345equilateral steelangle, a parameters degradation model of the material mechanic capability isestablished. Firstly, an acid rain corrosion model is established based on the rainfall ofchongqing and distributional characteristics.The change low of corrosion rates of Q345studied by this corrosion model varying with acid rain ph value、corrosion means andcorrosion time. A corresponding degradation model is establised on the base of theelastic modular, ultimate strength、elongation and so on.
     2) Based on the experimental results and improved single point-likelihood method,the S-N curve model which is about corrosion fatigue of Q345equilateral steel angle isestablised.A improved regression analysis method is given to ascertain S-N curveexpression argument on the base of improved single point-likelihood method. Theeffects of the corrosion time on the corrosion state of member and the fatigue damagemode are analyzed by fatigue experiment results. The P-S-N and γ-P-S-N curve modelof members is establised on the change law of members’ fatigue life with corrsion time.Based on the change law of parameter with time, the t-P-S-N curve model of membersis establised. The change law of fatigue life of Q345equilateral steel angle duringdifferent corrsion time is investigated by the model.
     3) By means of improved Single Point-Group Method based on the experimentalresults, this article establishes corrosion fatigue S-N curve model of the Q345equalangle steel under the action of different corrosion ways. This article proposes theregression analysis method of S-N curve expression parameters and its implementation algorithm based on the improved Single Point–Group Method, and observes thecorrosion state and fatigue failure model of the member in every corrosion wayaccording to the results of the Q345equal angle steel fatigue experiment under theaction of different corrosion ways, and establishes the corresponding member P-S-Nand γ-P-S-N curve model by analyzing the varying pattern of the member fatigue life inevery corrosion way, and explores the influence pattern that corrosion way to the fatiguelife of the Q345equal angle steel member under different reliability conditions usingthe P-S–N curve model of the Q345equal angle steel member that established bycombining theoretical derivation and parameters analysis under the action of differentcorrosion ways.
     4) The model of material mechanical properties under the effect of corrosion andfatigue will be taken out in the dissertation through the low cyclic loading test results ofQ345equilateral angle steel components. Those components above got differentdamage by corrosion, fatigue or corrosion couple with fatigue effect. First the specimenwill be treated with the damage of corrosion, fatigue or corrosion couple with fatigue inthree groups. Then all of the components in the three groups and some non-damagespecimen will be taken the low cyclic loading tests. The capacity of strength, stiffness,ductility and hysteretic behavior can be proved by the test of the components underdifferent damage condition before. The damage degradation model will be establishedthrough the test result. Finally, the combination parameters damage model of bothcorrosion and fatigue was established. This joint model of the degradation of thecorrosion and fatigue damage must be modified based on the actual variation of the testresults. So far the model of the degradation of the mechanical parameters in differentdamage was complimented.
     5) Based on the component fatigue S-N curve model and the performancedegradation model established by the test results, the fatigue properties of thetransmission line system and structural performance degradation are definitively studied.According to the S-N curve model of Q345equal angle steel established by the testresults, this paper analyzes the variation law of corrosion way and time to thetransmission tower structure fatigue damage and fatigue life. At the same time, thispaper establishes the tower line system by different corrosion conditions of materialparameters, and then, does the time-history analysis of the previous tower line system.Further, this paper analyzes the variation law of tower component fatigue performance at the different conditions. Based on the calculation results of two above-mentionedmethods, this paper comparatively analyzes the Wind-induced vibration fatiguedifferences of the material fatigue model and the component fatigue model intransmission towers system. According to the component performance degradationmodel affected by corrosion, fatigue and coupling corrosion fatigue, this paper analyzesthe degradation of the structure resisted external loads in different injury cases of thetransmission towers system.
     6) The fatigue property of transmission tower-line system has been studied basedon the proposed S-N models and adaptive response surface method. The jointdistribution model for both wind direction and wind speed is obtained by multiplyingthe distribution model of wind speed and wind direction together. Then the method forcalculating the wind-induced fatigue of transmission tower-line coupled system isproposed by combined with the joint distribution model and the Miner law. At last, thewind-induced fatigue of ultra-high voltage transmission tower-line coupled system isalso studied by the proposed method. A criterion for judging the existence of cross termsis derived mathematically in the present work. Combing this criterion with quadraticpolynomial of all possible terms via an indicative function, an adaptive response surface,which is more rational than traditional response surface, is proposed. And animplementation algorithm for judging criterion is put forward; the Structural reliabilityof ransmission tower-line system has been studied by the adaptive response surfacemethod.
引文
[1] Akpan U.O. et al..2002. Risk assessment of aging ship hull structures in the presence ofcorrosion and fatigue [J]. Marine Structures.15:211-231.
    [2] Alexander T.&Jana K..2000. Assessment of corrosion damage of steel bridges via a parallelprocessing wave approach [J]. Computers and Structures.78:671-680.
    [3] ANSI.1976. American society for testing and materials ASTME468-76[S]. New York:American Society of Civil Engineers.
    [4] ANSI.2002. Design of latticed steel transmission structures ASCE10-1997[S].New York:American Society of Civil Engineers.
    [5] ANSI.2002. Design of latticed steel transmission structures ASCE10-1997[S].New York:American Society of Civil Engineers.
    [6] Assefpour-Dezfuly M.&Ferguson W.G..1988. Effect of low concentrations of hydrogensulfide in seawater on fatigue crack growth in a CMn structural steel [J]. Corrosion.44(7):443-449.
    [7] Austen I.M.&Walker E.F..1977. I. Mech. E [M]. Conference Publication.
    [8] Bendat JS&Piersol AG.2000. Random data: analysis and measurement procedures [M].NewYork: John Wiley&Sons Inc.
    [9] Beretta S. et al..2008. An investigation of the effects of corrosion on the fatigue strength ofAlN axle steel [J]. Proc. IMechE Vol.222Part F.129-143.
    [10] Box GEP, Wilson B.1951. On the experimental attainment of optimum conditions [J]. Journalof the Royal Statistical Society, Series B(Methodological).13(1):1-45.
    [11] Bucher CG, Bourgund U.1990. A fast and efficient response surface approach for structuralreliability problems [J]. Structural Safety.7:57-66.
    [12] Bucher CG, Most T.2008. A comparison of approximate response function in structuralreliability analysis [J]. Structural Safety.23:154-163.
    [13] Chen B., Xu Y.L. and Qu W.L..2005. Evaluation of atmospheric corrosion damage to steelspace structures in coastal areas. International Journal of Solids and Structures [J].42:4673-4694.
    [14] Crandall S H, Mark W D.1963. Rand vibration in mechanical systems [M]. New York:Academic press.
    [15] Daeubler M.A. et al..1991. Metall. Trans.22A:521-529.
    [16] Davenport A.G..1966. The estimation of load repetitions on structures with application to windinduced fatigue and overload [J]. Proc. Int. Symp. on the Effects of Repeated Loading ofMaterials and Structures, RILEM-Instituto de Ingeneria, Mexico City, Mexico.
    [17] Dionne M.&Davenport A.G..1988. A simple relationship between the gust response factor andfatigue damage [J]. Journal of Wind Engineering and Industrial Aerodynamics.30:45-54.
    [18] Evans U.R.&Simnad M.T.1947. The mechanism of corrosion fatigue of mild steel [M]. Proc.R. Soc. Lond.372-392.
    [19] Ewalds H.L., Van Door F.C. and Sloof W.G..1983. Influence of environment and specimenthickness on fatigue crack growth data correction by means of Elber type equation [C].Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry and Engineering. ASTM STP801:115-134.
    [20] Faravelli A.1989. Response surface approach for reliability analysis [J]. Journal of EngineeringMechanics.115(12):2763-2781.
    [21] Flamand O., et al..1996. Fatigue calculation on the roof sustaining cables of a large stadium inParis [J]. Journal of Wind Engineering and Industrial Aerodynamics.64:127-134.
    [22] Forman R.G., Kearney V.E. and Engle R.M.1967. ibid.89:459-465.
    [23] Genel K., Demirkol M. and Gulmez T..2000. Corrosion fatigue behaviour of ion nitrided AISI4140steel [J]. Materials Science and Engineering. A288:91-100.
    [24] Gentle JE.2002. Elements of computational statistics [M].New York: Springer-Verlag, Inc.
    [25] Ghobarah A, Abou-Elfath H and Biddah.1999. Response-based damage assessment ofstrutures[J]. Earthquake Engineering&Structures. Dyn.28:79~104.
    [26] Goswami T.K.&Hoeppner D.W..1995. Pitting corrosion fatigue of structural materials [M]. In:Chang C.I., Sun C.T., editors. Structural integrity in aging aircraft. New York, ASME. p.47.
    [27] Gu M. et al..1999. Fatigue life estimation of steel girder of Yangpu cable-stayed Bridge due tobuffeting [J]. Journal of Wind Engineering and Industrial Aerodynamics.80:383–400.
    [28] Guan XL, Melchers RE.2001. Effect of response surface parameter variation on structuralreliability estimates [J]. Structural Safety.23:429-444.
    [29] Haldar A, Mahadevan S.2000. Reliability assessment using stochastic Finite elementanalysis[M]. New York: John Wiley&Sons.
    [30] Haque M.E.&Sudhakar K.V..2001. Prediction of corrosion–fatigue behavior of DP steelthrough artificial neural network [J]. International Journal of Fatigue.23:1-4.
    [31] Havard DG&Perry OC.2000. Lattice tower member fatigue and its control using a noveldamping scheme [J]. Power Engineering Society Summer Meeting. IEEE, Seattle, WA, USA,4:2560-2565.
    [32] Harlow D.G.&Wei R.P..1994. Probability approach for corrosion and corrosion fatigue life [J].AIAA J.32(10):2073-2079.
    [33] Hoeppner D.W..1979. Fatigue mechanics [M]. ASTM Special Technical Publication. No.675.841-852.
    [34] Holmes J.D..2002. Fatigue life under along-wind loading-closed-form solutions [J].Engineering Structures.24:109-114.
    [35] Horstmann M., Gregory J.K. and Schwalbe K.H..1995. Geometry effects on corrosion-fatiguein offshore structural steels [J]. International Journal of Fatigue.17(4):293-299.
    [36] Ibrahim M.A. et al..1994. Influence of atmospheric corrosion on the mechanical properties ofreinforcing steel [J]. Construction and Building Materials.8(1):35-41.
    [37] Jing Ling and Jwo Pan.1997. A maximum likelihood method for estimating P-S-N curves [J].International Journal of Fatigue.19(5):59-69.
    [38] Jones RH.1976. Fitting a circular distribution to a histogram [J].Journal of AppliedMeteorology.1976,15:94-98.
    [39] Kayser J.R.1988. The effects of corrosion on the reliability of steel girder bridges [D]. ThePhD. Dissertation of the university of Michigan, Supervisor:Nowak A.
    [40] Kim SH, Na SW.1997. Response surface method using vector projected sampling points [J].Structural Safety.19(1):3-19.
    [41] Konda Y..1989. Prediction of Fatigue crack initiation life based on pit growth. Corrosion [J].45(1):7-11.
    [42] Kondo T. et al..1972. Corrosion fatigue of ASTM A302B steel in high temperature water [J].Corrosion fatigue (NACE-2). p.539.
    [43] Krajcinovic D, Lemaitre J.1987. Continuum damage mechanics: Theory and Application [J].Berlin: Springer Verlag.
    [44] Kumar K.S..2000. Prediction of wind-induced fatigue on claddings of low buildings [J].Computers&Structures.75:31-44.
    [45] Kumar K.S.&Stathopoulos T..1998. Fatigue analysis of roof cladding under simulated windloading [J]. Journal of Wind Engineering and Industrial Aerodynamics.77&78:171–183.
    [46] Lin C.K., Fan W.C. and Tsai W.J.2002. Corrosion fatigue of precipitation-hardeningmartensitic stainless steel [J]. Corrosion.58(11):904-911.
    [47] Liu YW, Moses F.1994. A sequential response surface method and its application in thereliability analysis of aircraft structural systems [J]. Structural Safety.16:39-46.
    [48] McAdam D.1926. Proc. ASIM.26(11):224.
    [49] Mikitarenko M.A.&Perelmuter A.V..1998. Safe fatigue life of steel towers under the action ofwind vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics.74-76:1091-1100.
    [50] Murtaza G.&Akid R..1995. Corrosion fatigue short crack growth behaviour in a high strengthsteel [J]. International Journal of Fatigue.18(8):557-566.
    [51] Myers RH, Montgomery DC.1995. Response surface methodology [M]. New York: John Wileyand Sons.
    [52] Nishijima S.1987. Statistical analysis of small sample fatigue data [C]. In: Statistical researchon fatigue and fracture. New York: Elsevier Applied Science,1-19.
    [53] Peil U.&N lle H..1994. On fatigue of guyed masts due to wind load. Proceedings ofICOSSAR’93, Structural Safety and Reliability [R]. Rotterdam, Balkema.1719-1722.
    [54] Peil U.&Mehdianpour M..1997. Assessment of life cycle of steel structures under fatigueloading by monitoring and parallel testing [J]. Int. Conf. On Non Destructive Testing in CivilEngineering NDT’97. Livepool.
    [55] Rackwitz R.2001. Reliability analysis-a review and some perspectives [J]. Structural Safety.23:365-395.
    [56] Repetto MP&Solari G.2001. Dynamic alongwind fatigue of slender vertical structure [J].Engineering Structure.23:1622-1633.
    [57] Repetto MP&Solari G.2002. Dynamic crosswind fatigue of slender vertical structures [J].Wind and Structures.5(6):527-542.
    [58] Repetto MP&Solari G.2004. Directional wind-induced fatigue of slender vertical structure [J].Journal of Structure Engineering.130(7):1032-1040.
    [59] Repetto MP&Solari G.2006. Bimodal alongwind fatigue of structures [J]. Journal of StructureEngineering.132(6):899-908.
    [60] Peil U.&Mehdianpour M..1999. Life cycle prediction via monitoring [M]. In “Safety andReliability, ESREL1999”, Schueller G.&Kafka P.(ed.). Munchen.551-556.
    [61] Peil U.&Mehdianpour M..2000. Fatigue life prediction of steel structures via monitoring andtesting [M]. In: Proc. Int. Workshop “The Present and the Future in Health Monitoring”.Weimar.
    [62] Petrov A.A.1998. Dynamic response and life prediction of the steel structures under windloading [J]. Journal of Wind Engineering and Industrial Aerodynamics.74-76:1057-1065.
    [63] Rahgozar R.2009. Remaining capacity assessment of corrosion damaged beams usingminimum curves [J]. Journal of Constructional Steel Research.65:299-307.
    [64] Rajashekher MR, Ellingwood BR.1993. A new look at the response surface approach forreliability analysis [J]. Structural Safety.12:205-220.
    [65] Ramsamooj D.V.&Shugar T.A..2001. Modeling of corrosion fatigue in metals in anaggressive environment [J]. International Journal of Fatigue.23:S301-S309.
    [66] Repetto M.P.&Solari G..2001. Dynamic alongwind fatigue of slender vertical structures [J].Engineering Structures.23:1622-1633.
    [67] Repetto M.P.&Solari G..2002. Dynamic crosswind fatigue of slender vertical structures [J].Wind and Structures.5:527-542.
    [68] Repetto M.P.&Solari G..2004. Directional Wind-Induced Fatigue of Slender VerticalStructures [J]. Journal of Structural Engineering.130(7):1032-1040.
    [69] Repetto M.P.&Solari G..2007. Wind-induced fatigue of structures under neutral andnon-neutral atmospheric conditions [J]. Journal of Wind Engineering and IndustrialAerodynamics.95:1364-1383.
    [70] Robertson A.P., Holmes J.D. and Smith B.W..2004. Verification of closed-form solutions offatigue life under along-wind loading [J]. Engineering Structures.26:1381-1387.
    [71] Rokhlin S.I. et al..1999. Effect of pitting corrosion on fatigue crack initiation and fatigue life[J]. Engineering Fracture Mechanics.62:425-444.
    [72] Rubinstein RY, Kroese DP.2008. Simulation and the Monte Carlo Method[M]. New York:John Wiley&Sons.
    [73] Ryder J.T.&Gallagher J.P..1972. Temperature influence on corrosion fatigue behavior ofHY-130steel [J]. Corrosion.28(12):470.
    [74] Sarveswaran V..1996. Remaining capacity of corrosion damaged steel structures [D]. ThePhD. Dissertation of University of Bristol.
    [75] Sarveswaran V., Smith J.W. and Blockley D.I..1998. Reliability of corrosion-damaged steelstructures using interval probability theory [J]. Structural Safety.20:237-255.
    [76] Scott P.M., Truswell A.E. and Druce S.G..1984. Corrosion fatigue of pressure vessel steels inPWR environments-influence of steel sulfur content [J]. Corrosion.40(7):350-357.
    [77] Sheldon M.2009. Introduction to probability models [M]. Beijing: Posts&telecom press.
    [78] Shi P.&Mahadevan S..2001. Damage tolerance approach for probabilistic pitting corrosionfatigue life prediction [J]. Engineering Fracture Mechanics.68:1493-1507.
    [79] Shoji T. et al..1978. Effects of stress intensity rate dK/dt and stress ratio R on corrosionfatigue crack growth enhancement below KISCC [J]. Corrosion.34(8):276-282.
    [80] Sivaprasad S. et al.2006. Corrosion fatigue crack growth behaviour of naval steels [J].Corrosion Science.48:1996-2013.
    [81] Tavara S.A. et al..2001. Influence of nickel on the susceptibility to corrosion fatigue ofduplex stainless steel welds [J]. International Journal of Fatigue.23:619-626.
    [82] Tsai W.T.&Lo I.H..2008. Effects of potential and loading frequency on corrosion fatiguebehavior of2205duplex stainless steel [J]. Corrosion.64(2):155-163.
    [83] Tsai W.T., Moccari A. and Macdonald D.D..1983. Effect of silicate and phosphate on thefatigue crack growth rates in type403stainless steel in concentrated sodium chloride andsodium hydroxide solutions [J]. Corrosion.39(1):1-12.
    [84] Tseng C.M., Liou H.Y. and Tsai W.T..2003. The influence of nitrogen content on corrosionfatigue crack growth behavior of duplex stainless steel [J]. Materials Science and Engineering.A344:190-200.
    [85] Wang Y.&Akid R..1996. Role of nonmetallic inclusions in fatigue, pitting, and corrosionfatigue [J]. Corrosion.52(2):92-102.
    [86] Wang Z.F. et al..1995. The influence of loading waveform on corrosion fatigue crackpropagation [J]. Corrosion Science.37(10):1551-1565.
    [87] Wei R.P.&Gao M..1983. Reconsideration of the superposition model for environmentallyassisted fatigue crack growth [J]. Scripta Metallurgica.17(7):959-962.
    [88] Wei R.P.&Landes J.D..1969. Met. Res. Std. ASTM9.25.
    [89] Wei R.P.&Speidel M.O..1972. Phenomenological aspects of corrosion fatigue, criticalintroduction. Corrosion Fatigue: Chemistry, Mechanics and Microstructure [C]. NACE-2.379-380.
    [90] Wilson I.L.M.&Roberts B.W..1972. The metallography of corrosion fatigue in type403stainless steel [J]. Corrosion.28(12):469.
    [91] Winterstein S R.1986. No-linear vibration models for extremes and fatigue [J]. Journal ofengineering mechanics. ASCE,114:1772-1790.
    [92] Wirsching P H.1980. Fatigue under wide band random stresses [J]. Journal of the structuraldivision.106:1593-1607.
    [93] Wong FS.1984. Uncertainties in dynamic soil-structure interaction [J]. Journal of EngineeringMechanics.110(2):308-324.
    [94] Wyatt T. A..1984. An assessment of the sensitivity of lattice towers to fatigue induced bywind gusts [J]. Engineering Structures.6:256-261.
    [95] Wyatt T.A..2004. Determination of gust action stress cycle counts for fatigue checking ofline-like steel structures [J]. Journal of Wind Engineering and Industrial Aerodynamics.92:359–374.
    [96] Xu Y.L..1997. Fatigue damage estimation of metal roof cladding subject to wind loading [J].Journal of Wind Engineering and Industrial Aerodynamics.72:379-388.
    [97] Yu L, Das PK, Zheng Y.2002. Stepwise response surface method and its application inreliability analysis of ship hull structure [J]. Journal of Offshore Mechanics and ArcticEngineering.124(4):266-270.
    [98] Zhang R.&Mahadevan S..2001. Reliability-based reassessment of corrosion fatigue life [J].Structural Safety.23:77-91.
    [99] Zheng Y, Das PK.2000. Improved response surface method and its application to stiffenedPlate reliability analysis [J]. Engineering Structures.2000,22:544-551.
    [100]白海峰.2007.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学博士学位论文,指导老师:李宏男.
    [101]畅航.2002.重庆地区输电铁塔腐蚀与防腐蚀研究[D].重庆大学申请硕士学位论文,指导老师:张胜涛.
    [102]陈隽,赵旭东.2009.总体样本风速风向联合概率分析方法[J].防灾减灾工程学报,2009.29(1):63-70.
    [103]陈美英,牛康民.1990. GC-4高强钢腐蚀疲劳裂纹扩展的研究[J].航空材料学报10(Sup):44-50,52.
    [104]陈晓龙,施庆生,邓晓卫.2011.概率论与数理统计[M].南京:东南大学出版社.
    [105]邓洪洲,屠海明,王肇民.2003.桅杆结构随机风振疲劳研究[J].土木工程学报.36(4):19-23.
    [106]邓洪洲,温应龙,何鹏飞.2004.格构式桅杆顺风向风振疲劳可靠性分析[J].特种结构.21(2):31-35.
    [107]东方财富网.2008.电力设备:电网建设交货高峰来临. http://news2.eastmoney.com/080715,881870.html
    [108]傅惠民.1989. a-N(a-t)曲线三参数幂函数拟合法[J].航空学报.10(12): B666-670.
    [109]傅惠民.1993. ε-N曲线三参数幂函数公式[J].航空学报.14(3):A173-176.
    [110]傅惠民.1994.三参数幂函数回归分析[J].航空学报.9(2):186-190.
    [111]高镇同.疲劳性能测试[M].北京:国防工业出版社,1980.
    [112]高镇同,熊俊江.1986.疲劳应用统计学[M].北京:国防工业出版社.
    [113]高镇同,熊俊江.2000.疲劳可靠性[M].北京:北京航空航天大学出版社.
    [114]葛耀君等.2006.大型桥梁全寿命结构设计理论与方法.学科发展战略研究报告(2006年~2010年)——建筑、环境与土木工程Ⅱ(土木工程卷)[R].北京:科学出版社.26-37.
    [115]郭毅军.2008.高压直流输电系统的现状及发展概述[J].中国西部科技.7(15):12-13,30.
    [116]韩恩厚等.1993.应力比和频率对低合金钢腐蚀疲劳裂纹扩展机理的影响[J].金属学报.29(5):A223-A228.
    [117]韩玉梅等.1994. X56管线钢的腐蚀疲劳寿命试验研究[J].机械强度.16(1):77-79.
    [118]黄健,娄宇.2006.桅杆结构风振疲劳的时域分析[J].特种结构.23(3):25-26,30.
    [119]贺国京,阎奇武,袁锦根.2005.工程结构弹塑性地震反应[M].北京:中国铁道出版社.
    [120]机械工程材料性能数据手册编委会.1995.机械工程材料性能数据手[M].北京:机械工业出版社.
    [121]蒋兴良等.2005.输电线路冰害事故及原因分析[J].中国电力.38(11):27-30.
    [122]李桂青,李秋胜.2001.工程结构时变可靠度理论及其应用[M].北京:科学出版社.
    [123]李强.1998. NaCl水溶液中含缺陷结构腐蚀疲劳裂纹扩展特性的研究[D].南京:南京工业大学硕士学位论文.
    [124]李强等.2000.加载频率变化的腐蚀疲劳裂纹扩展速率数学模型[J].南京化工大学学报.22(1):32-36.
    [125]李庆峰等.2008.全国输电线路覆冰情况调研及事故分析[J].电网技术.32(9):33-36.
    [126]李正良,肖正直,韩枫等.2008.1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验[J].电网技术.32(12):1-5.
    [127]梁仁杰.1986.模拟重庆地区酸雨对金属材料危害的研究[J].重庆环境保护.02:6-10.
    [128]凌复华,殷学纲,何治奇.1990.常微分方程数值方法及其在力学中的应用[M].重庆:重庆大学出版社.
    [129]刘慷,张毅然,臧启山.1992.海洋用钢弯曲腐蚀疲劳行为及Ni-P镀层保护作用的研究[J].腐蚀科学与防护技术.4(1):66-68.
    [130]刘晓坤等.1994.热处理对40CrMnSiMoVA超高强度钢腐蚀疲劳裂纹扩展的影响[J].机械强度.16(3):74-76.
    [131]路民旭等.1992.超高强度钢腐蚀疲劳裂纹扩展的温度效应及物理机制[J].西北工业大学学报.10(3):285-292.
    [132]路民旭等.1993.波形和频率对GC-4钢腐蚀疲劳裂纹扩展特性的影响[J].航空学报.14(1):A49-A55.
    [133]路民旭,郑修麟.1993.300M钢腐蚀疲劳裂纹萌生的超载特性[J].金属学报.29(11):B496-B503.
    [134]路民旭,郑修麟.1994.环境介质与应力比对300M钢腐蚀疲劳裂纹萌生寿命的影响[J].航空学报15(3):378-382.
    [135]默增禄,程志云.2004.输电线路杆塔的腐蚀与防治对策[J].电力建设.25(1):22-23,36.
    [136]穆志韬,曾本银等.2009.直升机结构疲劳[M].北京:国防工业出版社.
    [137]牛康民,陈美英,居美宁.1990.30CrMnSiNi2A钢在飞机环境下的腐蚀疲劳裂纹扩展研究[J].航空学报.11(8):B400-B404.
    [138]欧进萍,叶俊.1993.结构风振的概率疲劳累积损伤[J].振动工程学报.6(2):164-169.
    [139]钱友荣,何向东.1989.高强度钢腐蚀疲劳裂纹扩展的温度效应和过载迟滞效应[J].金属学报.25(6):A444-A448.
    [140]权高峰,黄淑菊,宋余九.1988.载荷频率对低碳马氏体钢腐蚀疲劳的影响[J].中国腐蚀与防护学报.8(3):207-215.
    [141]沈为.1995.损伤力学[M].武汉:华中理工大学出版社.
    [142]盛明强.2008.基于滞回耗能的结构抗震性能评价方法研究[D].上海:同济大学博士学位论文.
    [143]石伯美等.2007.腐蚀疲劳裂纹扩展的马尔可夫链模型[J].飞机设计.27(5):20-23.
    [144]孙金坤.2008.旧有钢筋混凝土框架结构地震作用延续使用寿命评定[D].武汉:武汉理工大学硕士学位论文.
    [145]唐雪松,郑健龙,蒋持平.2005.连续损伤理论与应用[M].北京:人民交通出版社.
    [146]童志深等.1987.16MnRE钢腐蚀疲劳的研究[J].金属学报.23(5):671-675.
    [147]屠海明,邓洪洲1999.基于频域的桅杆结构风振疲劳分析[J].特种结构.16(4):34-36.
    [148]屠海明,邓洪洲.2001.桅杆结构风振疲劳分析[J].四川建筑科学研究.27(2):6-8.
    [149]屠海明,邓洪洲,王肇民.1999.基于频域的桅杆结构风振疲劳分析[J].四川建筑.19(4):14-16
    [150]王慧婷,洪少贤,马长青.1993.模拟酸雨对材料腐蚀试验[J].环境科学研究.6(3):60-64.
    [151]王钦华,顾明.2008a.钢质天线结构风振疲劳寿命估算方法比较研究[J].振动与冲击.27(2):78-81,177.
    [152]王钦华,顾明.2008b.钢质天线风致疲劳研究[J].同济大学学报.36(8):1040-1044.
    [153]王荣.1998.腐蚀疲劳裂纹扩展的断裂模型[J].中国腐蚀与防护学报.18(2):87-94.
    [154]王荣.2001.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社.
    [155]王世村,孙炳楠,叶尹.2005.自立式单杆输电塔顺风向风振疲劳分析[J].浙江大学学报(工学版).39(12):1880-1884.
    [156]王世村.2005.高耸结构风振响应和风振疲劳研究[D].杭州:浙江大学博士学位论文.
    [157]王正,王志奇.1996.腐蚀疲劳裂缝扩展的韧带模型[J].中国腐蚀与防护学报16(3):161-169.
    [158]王之宏.1994.桅杆结构的风振疲劳分析[J].特种结构.11(3):1,3-8.
    [159]汪之松.2009.特高压输电塔风振响应及风振疲劳性能研究[D].重庆:重庆大学博士学位论文.
    [160]汪之松,李正良,肖正直等.2009.1000KV双回路特高压输电塔等效静风荷载研究[J].电网技术,2009,33(14):6-12.
    [161]汪之松,李正良,肖正直等.2010.输电塔线耦合体系的风振疲劳时域分析[J].华南理工大学学报(自然科学版).38(4):106-111.
    [162]魏瑞演.2001.钢结构在海洋气候腐蚀条件下的力学性能试验研究[J].福建建筑高等专科学校学报.3(3/4):37-42.
    [163]毋玲.2006.环境腐蚀及其应力耦合的损伤力学方法与结构性能预测研究[D].西安:西北工业大学博士学位论文.
    [164]吴荫顺,1993.金属腐蚀研究方法[M].北京:冶金工业出版色.
    [165]肖明葵刘纲白绍良2002滞回恢复力模型中求折点的一种方法[J].重庆大学学报.25(1)13-16.
    [166]肖正直.2009.特高压输电塔风振响应及等效风荷载研究[D].重庆:重庆大学博士学位论文.
    [167]谢强,李杰.2006.电力系统自然灾害的现状与对策[J].自然灾害学报.15(4):126-131.
    [168]谢伟平,曹宏,李桂青.1992.抗风结构疲劳损伤分析[J].武汉工业大学学报.14(1):56-60.
    [169]熊俊江.2008.疲劳断裂可靠性工程学[M].北京:国防工业出版社.
    [170]熊俊江,黄新宇,高镇同.1996.极大似然法对比试验研究及其试验数据处理[J].航空学报.17(5):539-542.
    [171]徐建波,邓洪洲,王肇民.2004.考虑非高斯和宽带修正的桅杆风振疲劳分析[J].同济大学学报.32(7):889-892.
    [172]徐伟,张敏.2006.受腐蚀桥梁钢丝的力学性能和剩余强度[J].桥梁建设.2:54-58.
    [173]徐永祥等.2002.大气环境中涂层下金属的腐蚀和涂层的失效[J].中国腐蚀与防腐学报.22(4):249-256.
    [174]徐志跃.1990.海洋结构用钢的临界腐蚀疲劳试验研究[J].西南石油学院学报.12(2):84-91.
    [175]薛以年等.1992.国产海上平台钢E36-Z35焊接接头腐蚀疲劳的试验研究[J].钢结构.1:42-51.
    [176]杨正瑞,徐培元.1982.40CrNiMoA钢在水介质中的腐蚀疲劳行为[J].上海金属.4(1):53-65.
    [177]姚卫星.2003.结构疲劳寿命分析[M].北京:国防工业出版社.
    [178]袁迎曙,余索.1997.锈蚀钢筋混凝土梁的结构性能退化[J].建筑结构学报.18(4):51-57.
    [179]臧启山等.1989.频率、pH值和温度对A537海洋用钢腐蚀疲劳性能的影响[J].腐蚀科学与防护技术.1(2):10-14.
    [180]张春涛,李正良,王汝恒等.2012.冷弯薄壁方钢管梁柱加腋节点抗震性能研究[J].振动与冲击.31(15):60-67,78.
    [181]张行,赵军.1998.金属构件应用疲劳损伤力学[M].北京:国防工业出版社.
    [182]郑战光,蔡敢为,李兆军.2010.一种新的疲劳损伤演化模型[J].工程力学.27(2):37-40.
    [183]赵国藩.1984.工程结构可靠度[M].北京:水利出版社.
    [184]周春良,梁枢果.2005.风荷载作用下钢塔架的疲劳寿命预估[J].建筑技术开发.32(3):1-3.
    [185]中华人民共和国建设部.1986.金属拉伸试验试样GB6397-86[S].北京:中国建筑工业出版社.
    [186]中华人民共和国建设部.1998.钢及钢产品力学性能试验取样位置及试样制备GB/T2975-1998[S].北京:中国建筑工业出版社.
    [187]中华人民共和国建设部.2001.建筑抗震设计规范GB50011-2001[S].北京:中国建筑工业出版社.
    [188]中华人民共和国国家经济贸易委员会.2002.架空送电线路杆塔结构设计技术规定(DLT5154-2002)[S].北京:中国电力出版社.
    [189]中华人民共和国建设部.2002.建筑结构可靠度设计统一标准GB50068-2001[S].北京:中国建筑工业出版社.
    [190]中华人民共和国建设部.2003.钢结构设计规范GB50017-2003[S].北京:中国建筑工业出版社.
    [191]中华人民共和国住房和城乡建设部.2010.110kV~750kV架空输电线路设计规范(GB50545-2010))[S].北京:中国电力出版社.
    [192]中华人民共和国建设部.2012.建筑结构荷载规范GB50009-2012[S].北京:中国建筑工业出版社.
    [193]朱镜清.2002.结构抗震分析原理[M].北京:地震出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700