用户名: 密码: 验证码:
拱形抗滑桩墙结构体系工作性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统抗滑治理结构受力不合理、变形较大的问题,本文将抗滑桩布置成拱形,桩顶设置一定刚度的帽梁,抗滑桩悬臂段受到滑体推力作用,桩头和嵌固段分别受到帽梁和滑床的约束,桩、帽梁和滑床共同形成半刚性的空间抗滑结构,称之为拱形抗滑桩墙结构体系。在滑坡推力逐渐增大的过程中,拱形抗滑桩墙结构内力的变化和调整以及由此引起的变形和破坏受到滑体、滑床和抗滑结构本身的共同影响。
     本文以采用矢跨比为1:10的拱形抗滑桩墙结构进行治理的某黄土滑坡为原型,通过几何相似比为1:20的大型物理模型试验和数值试验,研究拱形抗滑桩墙结构体系的工作性能,即其受力特征、荷载传递模式、变形破坏规律等,为滑坡治理的理论研究和工程优化实践提供基础资料。本文所做的工作及主要成果有:
     1.针对传统抗滑结构受力和控制变形方面的不足,结合滑坡形成与作用为三维应力场的事实和空间抗滑结构的研究成果,系统阐述了拱形抗滑桩墙结构体系的基本思想。
     2.以陕北某黄土滑坡为原型,从桩土间应力协调的基本要求出发,推导了满足几何相似比为1:20的模型试验相似关系,定义了配筋系数的概念,解决了原型结构和模型结构等效配筋的问题。
     3.研制了满足相似关系的模型混凝土和模型钢筋,通过模型单桩的抗弯试验,研究了模型材料的工作性能。试验结果表明,模型单桩和原型桩具有大致相同的受弯变形破坏特征,且任意截面受拉钢筋的应变与其对应的弯矩存在确定的映射关系,为由钢筋应变反求截面弯矩提供了依据。
     4.设计和实施了1:20的大型物理模型试验,对桩身土压力、受拉钢筋应变和桩头位移进行了量测和分析。结果表明滑坡推力呈现出明显的中部大两翼小的空间特征,拱形抗滑桩墙结构体系可以将中部较大的滑坡推力有效地传递到两翼受力较小的桩体上,使其“联合作战”,减小了中部桩体首先破坏,然后相邻桩体渐次破坏的可能性。但这种结构未能改变传统抗滑结构破坏的基本模式,当拱形抗滑桩墙结构体系达到极限荷载时,各单桩仍为受弯破坏。
     5.进行了拱形抗滑桩墙结构体系、传统抗滑结构、锚碇拱形抗滑桩墙结构体系和拉杆拱形抗滑桩墙结构体系的数值试验。与传统抗滑结构相比,拱形抗滑桩墙结构体系各桩受力和变形不均衡的状况明显改善,桩头位移量减少约60%,体系总控制弯矩降低约6%。体系两端的1“桩和11#桩扩大为锚碇后,与之相邻的2“桩和10#桩弯矩明显降低,但受力最大的6#桩弯矩变化不大,从而使得2#桩和10#桩的受弯和变形与6#桩差距加大。在1“桩和11“桩之间增设拉杆后,限制了帽梁x方向的位移,增强了其对各桩受力和变形不协调的约束能力,滑床土更多的参与进抗滑体系,体系内各桩的控制弯矩分布更加合理,抗滑体系总控制弯矩相对于传统抗滑结构降低约10%~12%,桩头位移量减少约70%。
     6.提出结构稳健的概念,定义结构对参数随机性的适应和调整能力为结构的稳健性,并采用结构稳健度Ds作为其数值量度。拉杆拱形抗滑结构和拱形抗滑结构可以更好的适应和调整滑坡在各桩间不均衡的推力,因而具有更高的结构稳健度,而传统抗滑结构的结构稳健度较低。满足同一滑坡5%结构失效概率的治理目标时,拉杆拱形抗滑结构、拱形抗滑结构和传统抗滑结构的安全系数分别应为1.72、1.32和1.23。由于工程造价和结构安全系数的正相关关系,拉杆拱形抗滑结构和拱形抗滑结构相对于传统抗滑结构工程造价分别降低29%和24%。
According to the problems that the stress state in the traditional anti-sliding treatment structure is unreasonable and the deformation is bigger, the anti-slide piles are arranged into arch and the top-beam with certain stiffness is set on the top of the pile in this paper. Under the action of the sliding mass thrust on the anti-slide pile cantilever segments, the pile head and the embedded pile are restrained respectively by top-beam and slide bed. The pile, top-beam and slide bed together form a semi-rigid space anti-sliding structure, which is called arch anti-slide pile-wall supporting structure system. In the process of the residual down-slide thrust increasing, the internal stress change and adjustment of arch anti-slide pile-wall supporting structure system, as well as the deformation and the destruction caused by that are all influenced by the slide body, slide bed and anti-sliding structure itself.
     The study takes the loess landslide as the prototype. The loess landslide is governed with arch anti-slide pile-wall structure whose rise-span ratio is for1:10. By the large physical model test whose geometric similar ratio is for1:20and numerical experiments, the performance of the arch anti-slide pile-wall supporting structure system, such as the mechanical character, load transfer mode and deformation and damage rule, are studied. The research results will provide basic data for subsequent landslide treatment research and engineering practice. The main research results are as follows:
     1.The basic idea of the arch anti-slide pile-wall supporting structure system is systematically described according to the deficiency of traditional anti-sliding structural stress and control deformation, combining successful practices of the arch supporting structure in the excavation engineering and research results of the space anti-sliding structure.
     2.Taking the loess landslide in ShanBei as a prototype, based on the basic requirement of the coordinate stress between pile and soil, the similarity relation of the model test is deduced whose geometric similar ratio is for1:20, and the reinforcement coefficient is defined, and the equivalent reinforcement problem between prototype structure and model structure is solved.
     3.The concrete and steel in the model are developed meeting similar relations. The performance of the model material is studied by the bending test of the model single pile. The experimental results show that model single pile and prototype pile have roughly the same bending deformation and destruction features. The strain of tensile steel in any section and its corresponding bending moment has certain mapping relation, which provides the basis for reversing section bending moment through the steel strain.
     4.The large physical model test is designed and implemented whose geometric similar ratio is for1:20and the soil pressure of pile body, the strain of tensile steel and the displacement of pile head are measured and analyzed. The results show obviously a spatial signature that the landslide thrust in the middle is much bigger than the both wings. Arch anti-slide pile-wall supporting structure system can transfer the central larger landslide thrust effectively to the two wings of the pile body with smaller thrust, and make them working together to reduce the possibility that the central piles destroy first then the adjacent piles damage gradually. But this kind of structure failed to change the traditional anti-sliding structural damage mode. The each pile is still bending failure when the limit load is acted on the arch anti-slide pile-wall structure system.
     5.The numerical experiments are implemented on the arch anti-slide pile-wall supporting structure system, the traditional anti-sliding structure, the arch anti-slide pile-wall supporting structure system with anchorage and the arch anti-slide pile wall supporting structure system with tensile bar. Compared with the traditional anti-sliding structure, the imbalanced force and deformation on each pile of the arch anti-sliding pile-wall supporting structure system are improved obviously. The displacements of pile head reduced about60%but the total control bending moment of the system did not change. When the piles Z1and Z11are expanded to anchorage, the bending moment of the piles Z2and Z10decreased obviously, the bending moment of the pile Z6with a little change. So the gap of bending moment and deformation between Z10, Z2and Z6are enlarged. After adding bars between Z1and Z11, the displacement of the top-beam is limited in x direction, the constraint ability to incongruous stress and deformation of each pile are enhanced, and more slide bed soil participate into the anti-sliding system. The controlling moment distribution of each pile in the system is more reasonable. Total controlling bending moment of anti-sliding system are reduced by about7%to8%compared to traditional sliding structure and the displacements of pile head are reduced by about70%.
     6.Defining the adaption to parameters randomness and the adjustment ability of the structure as the s robustness of tructure and use the structural robust degrees-Ds as its numerical measure. The arch anti-slide structure and the arch anti-slide structure with tensile bar can better adapt to and adjust the unbalanced thrust of the landslide between each pile. Thus it has higher structural robust degrees compared with the traditional anti-slide structure with lower structural robust degrees. When achieved the management target with a5%structure failure probability of the same landslide, the safety factors of the arch anti-slide structure, the arch anti-slide structure with tensile bar and the traditional anti-slide structure are respectively1.72,1.32and1.23.Due to the positive correlation between the project cost and the structural safety factor, the project cost of the arch anti-slide structure with tensile bar and the arch anti-slide structure are reduced by29%and24%respectively compared with the traditional anti-slide structure.
引文
[1]晏同珍,杨顺安,方云.滑坡学[M].武汉:中国地质大学出版社,2000
    [2]马骥,王恭先,徐邦栋.国外滑坡防治与研究现状述评[A].滑坡文集(第三集)[C].北京:中国铁道出版社,1982
    [3]罗丽娟,赵法锁.滑坡防治工程措施研究现状与应用综述[J].自然灾害学报,2009(04):0]58-0164
    [4]王恭先.滑坡防治方案的选择与优化[J].岩石力学与工程学报,2006(增2):3867-3873
    [5]王恭先.日本的滑坡防治技术[A].滑坡文集(第七集)[C].北京:中国铁道出版社,1990
    [6]王恭先.滑坡防治工程措施的国内外现状[J].中国地质灾害与防治学报,1998,9(1):1-9
    [7]张倬元.滑坡防治工程的现状与发展展望[J].地质灾害与环境保护,2000,11(2):89-98
    [8]王卓娟,李孝平.抗滑桩在滑坡治理中的研究现状与进展[J].灾害与防治工程,2007(01):45-50
    [9]Tschebotariof G P. Foundations, Retaining, and Earth Structures[M]. New York:McGraw-Hill,1973
    [10]Poulos H G. Analysis of piles in soil undergoing lateral movement[J]. JSMFD.ASCE,1973,99(SM5): 391-406
    [11]申永江.边坡工程中抗滑桩的效果评价与优化设计[D].杭州:浙江大学,2009
    [12]贺建清,张家生,梅松华.弹性抗滑桩设计中几个问题的探讨[J].岩石力学与工程学报,1999,18(5):497-502
    [13]佴磊,马丽英,冷曦晨,等.滑坡治理中的抗滑桩设计[J].吉林大学学报(地球科学版),2002,(02):0162-0165
    [14]张友良,冯夏庭,范建海,等.抗滑桩与滑坡体相互作用的研究[J].岩石力学与工程学报,2002,21(06):839-842
    [15]高永涛,张友葩,吴顺川.土质边坡抗滑桩机理分析[J].北京科技大学学报,2003,25(02):117-123
    [16]戴自航,沈蒲生.抗滑桩内力计算悬臂桩法的改进[J].湖南大学学报(自然科学版),2003,(03):0081-0085
    [17]陶波,佴磊,伍法权.抗滑桩与周围岩土体间相互作用力的分布规律[J].吉林大学学报(地球科学版),(2005)02:0201-0206
    [18]王旭,晏鄂川,吕美君.埋入式双排桩-土体系桩间内力分配的模拟[J].煤田地质与勘探,2006,34(4):57-60
    [19]卢继明.锚锭式双排桩治理滑坡的设计与应用[J].铁道建筑技术,2004,(3):42-44
    [20]孙勇.西部山区双排抗滑桩的机理及设计研究[J].工程地质学报,2008,16(3):383-387
    [21]励国良.多排抗滑桩与滑坡相互作用的计算[A].滑坡文集(第十三集)[C].北京:中国铁道出版社,1998
    [22]刘鸿.双排抗滑桩计算方法研究[D].成都:西南交通大学,2007
    [23]蒋楚生.椅式抗滑桩的内力计算[J].路基工程,2004,112(1):57-59
    [24]李凯玲,门玉明.锚索抗滑桩系统内力变形研究[J].地球科学与环境学报,2007,29(04):0400-0403
    [25]肖世国.边(滑)坡治理中h型组合抗滑桩的分析方法及工程应用[J]岩土力学,2010,31(07):2146-2152
    [26]周翠英,刘祚秋,尚伟.门架式双排桩设计计算新模式[J].岩土力学,2005,26(3):441-444
    [27]王凯,郑颖人.捆绑式抗滑桩优越性初步研究[J].地下空间与工程学报,2008,4(3):0533-0538
    [28]王凯,郑颖人.捆绑式抗滑桩钢筋混凝土模型实验研究[J].地下空间与工程学报,2008,4(6):1027-1032
    [29]汪益敏,苏卫国.士的抗剪强度指标对边坡稳定分析的影响[J].华南理工大学学报,2001,29(1):22-25
    [30]田斌,戴会超,王世梅.滑带土结构强度特征及其强度参数取值研究[J].岩石力学与工程学报,2004,23(7):2887-2892
    [31]郑明新.论滑带土强度特征及强度参数的反算法[J].岩士力学,2003,24(04):0528-0532
    [32]鄂北岗地膨胀士特性及渠道滑坡防护与整治的研究报告[R].武汉:湖北省水利学会膨胀土研究课题组,1991
    [33]王祥秋等.边坡滑移面软弱夹层时间效应与相关特性的试验研究[J].湘潭矿业学院学报,2002,17(1):65-68
    [34]Baix, SmartP. change in microstructure of kaolin in consolidation and undrained shear[J]. Geotechnique,1997,47(5):1009-1017
    [35]Shuzui-H. Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks[J]. Engineering Geology, Japan,2001,61(4):199-219
    [36]许传华,房定旺,朱绳武.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网络方法[J].岩石力学与工程学报,2002,21(6):858-862
    [37]罗冲,殷坤龙,陈丽霞.万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报,2005,24(9):1588-1593
    [38]赵法锁,王启耀,王勇智.平面旋转坡体稳定性的悬臂梁法[J].岩土工程学报,2000,(04): 0493-0495
    [39]赵法锁.坡体平面旋转机理及稳定性研究[M].西安:西安地图出版社,1999
    [40]沈健,王建华,高绍武.基于“m”法的深基坑支护结构三维分析方法[J].地下空间与工程学报,2005,1(4):531-533
    [41]高文华,杨林德.软土深基坑围护结构变形的三维有限元分析[J].工程力学,2000,17(2):134-141
    [42]陆培毅,李绍忠,顾晓鲁.基坑支护结构的空间分析[J].岩土力学,2004,25(1):121-124
    [43]俞建霖,龚晓南.深基坑工程的空间性状分析[J].岩土工程学报,1999,21(1):21-25
    [44]吴志敏,屠毓敏.土钉基坑支护的空间效应研究[J].岩土力学,2007,28(10):2178-2182
    [45]杨雪强,刘祖德,何世秀.论深基坑支护的空间效应[J].岩土工程学报,1998,20(2):74-78
    [46]雷明锋,彭立敏,施成华,安永林.长大深基坑施工空间效应研究[J].岩土力学,2010,31(5):1579-1585
    [47]赖冠宙,房营光,史宏彦.深基坑排桩支护结构空间共同变形分析[J].岩士力学,2007,28(8):1749-1752
    [48]张土乔,张仪萍,龚晓南.基坑单支撑拱形围护结构性状分析[J].岩土工程学报,200],23(1):99-103
    [49]张土乔,张仪萍,龚晓南.基于拱梁法原理分析深基坑拱形围护结构[J].土木工程学报,2002,35(5):0064-0069
    [50]蔡伟铭,李有成.拱形水泥土槽壁支护[J].岩土工程学报,1992,14(2):21-27
    [51]陈德文.南京新世纪广场深基坑连拱式组合拱结构支护设计[J].工业建筑,1995,25(9):20-24
    [52]俞洪良,张土乔,杜先.基于拱梁法的拱形水泥土支护结构的性状分析[J].工业建筑,1998,28(9): 7-11
    [53]潘泓,杨小珊,吴世明.拱形支护结构的内力、变形计算[J].建筑结构学报,2001,22(5):92-96
    [54]刘维威.悬臂式连拱组合支护结构的三维有限元分析[D].天津:天津大学,2003
    [55]胡长明,李迪,谢行皓.SPR排桩拱形支护结构的性状分析[J].西安建筑科技大学学报,1999,31(3): 280-283
    [56]徐晓洪,贾亦非.拱形搅拌桩与钻孔灌注桩相结合的基坑支护技术[J].岩土工程界,2006,10(3):73-75
    [57]钱丽华.拱形支护结构在基坑中的应用[J].四川建筑,2009,29(5):81-83
    [58]张仪萍,张土乔.基坑悬臂式拱形围护结构性状[J].岩土工程学报,2001,23(5):614-617
    [59]张仪萍.深基坑拱形围护结构拱梁法分析及优化设计[D].杭州:浙江大学,2000
    [60]罗丽娟,赵法锁,王爱忠.某变质岩滑坡及支护结构变形破坏特征[J].地球科学与环境学报,2008(02):0177-0182
    [61]余艳霞.拱形单元组合抗滑桩体系研究[D].武汉:武汉理工大学,2006
    [62]邱红胜,余艳霞,徐丽惠.拱形单元组合抗滑桩体型研究[J].交通科技,2006,(6):31-33
    [63]赵法锁,罗丽娟,王雷.基于性能的拱形抗滑桩墙支护结构体系优化设计的思考[J].工程地质学报,2007,15(04):0539-0544
    [64]李文哲.滑坡勘察报告[R].西安:陕西工程勘察研究院,2007
    [65]黄锋.郝家坪场平规划[R].西安:长安大学工程设计研究院,2007
    [66]王辉.郝家坪输油站黄土高边坡治理工程施工图设计[R].西安:长安大学工程设计研究院,2008
    [67]李明华.滑坡模型实验概况及其展望[J].地球科学进展,1986,12(4):28-33
    [68]雷文杰,郑颖人,王恭先.沉埋桩加固滑坡体模型试验的机制分析[J].岩石力学与工程学报,2007,26(7):1347-1355
    [69]宋克强,孙超图,袁继国.黄士滑坡的模型试验研究[J].水土保持学报,1991,5(2):14-21
    [70]曾云华,郑明新.预应力锚索抗滑桩的受力模型试验[J].华东交通大学学报,2003,20(2):15-18
    [71]李寻昌,门玉明,何光宇.锚杆抗滑桩桩侧地层抗力分布模式的试验研究[J].岩土力学,2009,30(9): 2655-2659
    [72]杨雪莲,周永江,何恩明.框架预应力锚索在滑坡加固中的现场试验研究[J].灾害学,2009,24(2):37-40
    [73]Deeken John. Large scale laboratory testing of model slopes with slender reinforcement[D]. Columbia:University of Missouri-Columbia,2005
    [74]闫金凯,殷跃平,门玉明.微型桩单桩加固滑坡体的模型试验研究[J].工程地质学报,2009(5):669-674
    [75]Andrew Z, Boeckm ann. Load transfer in micro-piles for slope stabilization from tests of large-scale physical models[D]. Columbia:University of Missouri-Columbia,2006
    [76]邱绪光.实用相似理论[M].北京:北京航空学院出版社,1987
    [77]BUTTERFIELD R. Dimensional analysis for geotechnical engineers[J]. Geotechnique,1999,49(3): 357-366
    [78]左东启.模型试验的理论和方法[M].北京:水利水电出版社,1984
    [79]杨宇友,张钦喜,张在明.量纲分析法在士工模型试验中的应用研究[J].北京工业大学学报, 2009,35(6):0785-0789
    [80]GBJ145-90土的分类标准[S].北京:中国标准出版社,1991
    [81]胡再强,沈珠江.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779
    [82]林斌.考虑损伤效应的黄土流变模型研究[D].西安:长安大学,2005
    [83]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1996
    [84]汪海鸥,洪明强,谢镭.夯实水泥土强度影响因素的试验研究[J].辽宁工程技术大学学报,2010,29(2): 0263-0266
    [85]郭培玺,阮怀宁.红粘土地区水泥土强度的试验研究[J].岩土工程技术,2006,(3):177-180
    [86]于英霞,钟国华,干文魁等.湿陷性黄土地区水泥土受力性能的试验研究[J].煤炭工程,2008,(01):0085-0087
    [87]刘洪佳,门玉明,李寻昌.采用不同滑面材料的滑坡模型试验研究[J].灾害学,2011,26(1):0010-0013
    [88]东南大学等.混凝土结构设计原理[M].北京:中国建筑工业出版社,2005
    [89]Satoh H, Ohbo N, Yoshizako K. Dynamic test on behavior of pile during lateral ground flow [C]//Balkema A A. Centrifuge 98. Rotterdam,1998:327-332
    [90]高长胜,魏汝龙,陈生水.抗滑桩加固边坡变形破坏特性离心模型试验研究[J].岩土工程学报,2009,31(1):145-148
    [91]魏作安,李世海,赵颖.底端嵌固桩与滑体相互作用的物理模型试验研究[J].岩土力学,2009,(8): 2259-2263
    [92]朱彤,林皋,马恒春.混凝土仿真材料特性及其应用的试验研究[J].水力发电学报,2004,23(4):31-37
    [93]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005
    [94]程文瀼.混凝土结构上册混凝土结构设计原理(第一版)[M].北京:中国建材工业出版社,2001
    [95]Lutz M P, Monteiro P J M, Zimmerman R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar[J]. Cement and Concrete Research,1997,27(6):1113-1122
    [96]闫金凯.滑坡微型桩防治技术大型物理模型试验研究[D].西安:长安大学,2010
    [97]李荣建.土坡中抗滑桩抗震加固机理研究[D].北京:清华大学,2008
    [98]BROCCA M, BAZANT Z P. Size Effect in Concrete Columns:Finite-element Analysis with Microplane Model[J]. Journal of Structural Engineering,2001,127(12):1382-1390
    [99]Sene S, Barr B I G, Abusia f H F. Size effect in axially loaded reinforced concrete coIumns[J]. Journal of Structural Engineering,2004,130(4):662-670
    [100]杨成球,吴政.全级配混凝土强度尺寸效应及变形特性研究[J].大连理工大学学报,1997(1):129-134
    [101]杨忠义.全级配混凝土强度的尺寸效应研究[J].水电站设计,2008(3):11-14
    [102]姜福田.混凝土力学性能与测定(第一版)[M].北京:中国铁道出版社,1989
    [103]曾宪梓.钢筋混凝土柱轴心受压性能尺寸效应的大比尺试验研究[J].土木工程学报,2010(增):0001-0008
    [104]M. Lessard, O.Chaallal, P. C. Aitein. Testing high strength concrete compressive strength[J]. ACI Materials Journal,1993 (4):303-308
    [105]Z. P. Bazant, P. A. pfeiffer. Determination of fracture energy from size effect and Brittleness number[J]. ACI Materials Journal,1987 (6):463-480
    [106]刘鸿文.材料力学(上)第三版[M].北京:高等教育出版社,2000
    [107]李广信.高等士力学[M].北京:清华大学出版社,2004
    [108]铁道部第二勘察设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983
    [109]胡晓军,王建国.弹性抗滑桩锚固段内力计算的反力荷载法[J].工程地质学报,2007,15(2):244-248
    [110]吴恒立.计算推力桩的综合刚度原理和双参数法(第二版)[M].北京:人民交通出版社,2000
    [111]龙驭球,包世华.结构力学[M].北京:高等教育出版社,2000
    [112]黄茂松,李波,程岳.长短桩组合路堤桩荷载分担规律离心模型试验与数值模拟[J].岩石力学与工程学报,2010,29(12):2543-2540
    [113]Hewlett W J, Randolph M F. Analysis of piled embankments[J]. Ground Engineering,1988,21(3): 12-18.
    [114]Chen Y M, Cao W P, Chen R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes,2008,26(2):164-174.
    [115]周健,张刚,曾庆有.主动侧向受荷桩模型试验与颗粒流数值模拟研究[J].岩土工程学报,2007,29(5):650-656.
    [116]Pan J L, Gohatc,Wong K S, et al. Model tests on single piles in soft clay[J]. Canadian Geotechnical Journal,2000,37:890-897.
    [117]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [118]李同录,李萍.岩土工程数值分析[M].西安:陕西人民教育出版社,2004
    [119]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1997
    [120]唐辉明,宴鄂川,胡新丽.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001
    [121]D.R.J.欧文,E.辛顿著;曾国平等译.塑性力学有限元-理论与应用[M].北京:兵器工业出版社,1989
    [122]Jankowiak T, Lodygowski T. dentification of parameters of concrete damage plasticity constitutive model[J]. Foundations of Civil and Environmental Engineering,2005, (6):53-69.
    [123]Hibbitt K, Sorenson I. ABAQUS Analysis User's Manual, V6-8 [M]. Providence Rbode Island, USA:Abaqus Inc,2005.
    [124]龚曙光,谢桂兰ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [125]博弈创作室APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004
    [126]张亚旭,王修信,庄海洋.土-桩-框架结构非线性相互作用的精细数值模型及其验证[J].防灾减灾工程学报.2007,5(30):0558-0566
    [127]卢华喜.成层地基-桩基-上部结构动力相互作用理论分析与试验研究[D].湖南大学,2006
    [128]梁旭.水泥搅拌桩复合地基动力特性及其与上部结构动力作用研究[D].浙江大学,2003
    [129]BASTIAN C E. The Effect of Vibrations on Freshly Poured Concrete[J].Foundation Facts,1970,6 (1):14-17.
    [130]陈萌.混凝士结构收缩裂缝的机理分析与控制[D].武汉理工大学,2006.
    [131]邓凡.地下室早期裂缝开展规律及机理研究[D].重庆大学,2006.
    [132]Li Gangling,Luo Zhenhua,Xue Rong. Biaxial Tensile WeakengingStudies on Inorganic Materials.6th Int Conf on Mechanical Behaviour ofMaterial. Kyoto.1991,12:53-56.
    [133]陈积光.普通混凝土抗拉强度试验[J].工业建筑,2008,38(1):83-87
    [134]张文居.边坡支挡结构可靠性设计探讨[D].成都理工大学,2004.
    [135]李强.抗滑桩可靠度研究[D].西南交通大学,2006
    [136]Tang Wilson H. Reliability of geotechnical systems considering geological anomaly[A]. Probab Methods Civ Eng Proc 5th ASCE Spec Conf[C].1988,136-139
    [137]Honghongh H P. Reliability evaluation of earth slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(12):1700-1705
    [138]Cheung Raymond W M, Tang Wilson H.Bayesian calibration of slope failure probability[A]. Proceedings of Sessions of Geo-Denver 2000-Slope Stability 2000[C]. GSP 101,2000 (289):72-85
    [139]钱学森等著.论系统工程(新世纪版)[M].上海:上海交通大学出版社,2007
    [140]唐芬.抗滑桩的可靠性分析[J].重庆交通学院学报,2005(6),108-111
    [141]Sang A H, Tang W H工程规划与设计中的概率概念(1I)[M].北京:冶金工业出版社,1991
    [142]赵文斌,罗文强,冯永.基于可靠性理论抗滑桩设计体系的研究[J].岩土力学,2006(S),952-957
    [143]Matteo J, Deodtis G. Safety Analysis of Suspension-bridge Cables:Williamsburg Bridge[J]. Journal of Structural Engineering,1994,120(11):3197-3211
    [144]Haight, Billington, Khazem. Cable Safety Factors for Four Suspension-Bridges[J]. Journal of Bridge Engineering,1997,2(4):157-167
    [145]Cremona C. Probabilistic Approach for Cable Residual Strength Assessment[J]. Engineering Structures,2003,25(3):377-384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700