用户名: 密码: 验证码:
基于分段导轨模式的电动车无线供电技术关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球化石燃料的日益紧缺和自然环境的不断恶化,被视为绿色交通工具的电动车再次登上了历史的舞台,正受到社会各界的广泛关注。然而,目前电动车普遍采用的传导充电方式存在诸多问题,如充电电流大(尤其是在快速充电模式下),使得接插件非常笨重而且严重影响环境的美观性;充电时需要先停车,再将充电机上的充电电缆连接至电动车的充电接口,使得操作繁琐且费时费力;由于插座和插头之间存在机械摩擦,长期使用后可能导致接触不良,影响充电效果且容易产生电火花;在电缆老化、雨雪等恶劣天气、充电结束后忘记拔除接插件以及不小心拉扯到充电电缆等情况下,容易引起漏电,进而引发安全事故。另外,受当前动力电池技术发展水平的制约,电动车本身还存在电池组所占空间大、续航里程短、一次充电时间长以及充电频繁等问题。这些都成为了制约电动车发展与推广的瓶颈问题。
     基于电磁感应耦合原理的电动车动态无线供电技术借助感应耦合电能传输技术,电能通过埋在路面下的能量导轨或线圈阵列以无线的方式实时传送给车载储能电池组或电机,实现从路面直接给电动车在线供电,从而使电动车少搭载甚至无需搭载储能电池组、延长续航里程、提高电能供给的便捷性和安全性。
     在动态无线供电系统中,为了给电动车提供足够的电能补给,通常需要铺设长达数公里甚至数十公里的能量发射导轨。如何通过对导轨模式的研究并引入相关的优化技术,从而提高系统的稳定性、高效性和经济性,是亟待解决的重要问题。另外,负载大小具有明显的动态性和随机性,拾取线圈与发射导轨相对位置的不确定性而引起的耦合参数变化也更加突出,如何提高系统对这些参数变化的适应能力,从而保证车载端输出功率的稳定性,也是亟待研究和解决的重要难题。
     本文重点从供电导轨模式与优化技术以及车载端输出功率控制两个方面展开研究,分析并研究了电动车动态无线供电技术的相关基础理论;研究了电动车动态无线供电系统的导轨模式,提出一种高频高压配电-低压恒流激励的新型分段供电导轨模式,并基于一种适用于该导轨模式的电能变换拓扑,研究了系统的能效特性和非线性行为;建立了分段供电导轨系统的非线性规划数学模型,并引入改进型粒子群优化算法进行分析;研究了基于神经网络的车载端输出功率控制策略,设计了BP神经网络控制器,并进行了仿真验证。
     本文主要有以下几点创新性贡献:
     1.针对集中供电导轨模式存在的传输效率低、系统对参数变化非常敏感等问题,提出一种高频高压配电-低压恒流激励的新型分段供电导轨模式,并研究一种适用于该导轨模式的电能变换拓扑,对其原级驱动系统所表现出来的非线性行为进行分析,为系统的参数设计提供了理论依据。
     2.针对分段供电导轨模式的连续切换供电和导轨规划问题,提出一种基于磁场近似原理的换流策略及实现方法,提高了相邻导轨段切换供电过程中拾取功率的稳恒性,降低了对功率调节环节的性能要求;并建立了分段供电导轨的非线性规划数学模型,引入改进型粒子群优化算法进行分析,得到了较优的规划结果。
     3.针对拾取线圈与发射导轨相对位置的随机性和不确定性引起系统耦合参数变化,从而导致车载端输出功率极不稳定的问题,提出一种基于神经网络的输出功率控制策略,实现了对输出功率的快速、精准调节。
The green electric vehicles have aroused public attentions because of fossil fuelshortage and environmental deterioration. However, problems exist in the conductioncharging mode, which is used intensively by current electric vehicles, such as, Highcharging current, especially in quick charge mode; Heavy connector, affectting thebeauty of environment; Complicated operation, parking, connectingelectric vehiclecable with charger cable are needed before charging; Poor contact, electric spark willappear when using for a long time because of mechanical friction between socket andplug; Leakage accident may be caused by wire aging, bad weather, forget to removeconnector or pull to cables carelessly. In addition, immature battery technology has alsohindered the develepment and promotion of electric vehicles. It makes the electricvehicles exist some drawbacks, such as, large battery space, short mileage, longcharging time, frequent charging.
     In the electromagnetic induction-based wireless dynamic power supply system forelectric vehicles, electrical energy can be transmited wirelessly from underground trackor coil array to the vehicle-mounted battery pack or electric motor, which is a real-timepower supply from road to electric vehicles. With the help of such system, storagebattery in electric vehicles can be cutted down even be canceled, and the mileage will beextended, and the power supply will be more convenient and security.
     The power track may be needed as long as several kilometers even dozens ofkilometers for the enough power supply to electric vehicles in dynamic wireless powersupply system. Research and optimization design of track can make this system morestabilized, efficient and economic. And this is an urgent issue to the development ofwireless power supply technology for electric vehicles. Moreover, the load is dynamicand random obviously, and relative position between pick-up winding and energy trackis uncertain, so coupling parameter is constantly changing, which will lead to unstableoutput power. This is another urgent issue to be investigated and solved.
     This paper studies on the energy track mode and its optimization design and theoutput power control. Several relevant supported technology and theory of dynamicwireless power supply system for electric vehicles have been analyzed and researched.Based on the research in energy track mode, a new sectional track mode named as highfrequency and high voltage distribution-low voltage and constant current exciting mode has been presented. The power-efficiency character and nonlinear behavior of systembased on a circuit topology, which is suitable for the proposed track mode have beenstudied. A nonlinear programming mathematical model of sectional energy track hasbeen built on and an improved particle swarm optimization algorithm was adoptted toanalyze the proposed mathematical model. Morever, a neural network-based outputpower control strategy has been presented and a BP neural network controller wasdesigned.
     This paper has the following main innovative contributions:
     1. As the problem of low transmission efficiency and parameter sensitivity ofcentralized power supply track, a novel sectional track mode named as high frequencyand high voltage distribution-low voltage and constant current exciting mode has beenproposed. Being suitable to the proposed track mode, an electricity-transformationtopology with its nonlineaer behavior was studied, which provides a theoreticalfoundation for the system paramter designing.
     2. As the problem of power switching and tracks planning in sectional track mode,a swtitching strategy and its realization based on magnetic field approximation has beenproposed. It improves the stationarity of output power when two contiguous tracksswitching for power supply, which can lower the requirement of power regulator.Moreover, a nonlinear programming mathematical model of sectional power supplytrack has been proposed. An improved particle swarm optimization algorithm wasadoptted to analyze the proposed mathematical model to minimize the operation cost ofsystem.
     3. As the relative position between pick-up winding and energy track is randomand uncertain, so the coupling parameter is constantly changing, whick leads to outputpower unstable. To this problem, an output power control strategy based on neuralnetwork is presented, which makes output power be regulated quickly and accurately.
引文
[1] Boys J T, Green A W. Inductively coupled power transmission concept-design andapplication[J]. IPENZ Trans.,1995,22(1):1-9.
    [2] Klontz K W, Divan D M, Novotny D W, et al. Contactless power delivery system for miningapplications[J]. IEEE Transactions on Industry Applications,1995,31(1):27-35.
    [3] Esser A, Skudelny H C. A new approach to power supplies for robots[J]. IEEE Transactionson Industry Applications,1991,27(5):872-875.
    [4] Hirai J, Tae-Woong K, Kawamura A. Wireless transmission of power and information andinformation for cableless linear motor drive[J]. IEEE Transactions on Power Electronics,2000,15(1):21-27.
    [5] Kurs A, Al E. Wireless Power Transfer via Strongly Coupled Magnetic Resonances[J].Science,2007,317(6):83-86.
    [6] Karalis A, Joannopoulos J D, Solja i M. Efficient wireless non-radiative mid-range energytransfer[J]. Annals of Physics,2008,323(1):34-48.
    [7] Aiguo P H. Selected Resonant Converters for IPT Power Supplies[D]. Auckland: TheUniversity of Auckland,2001.
    [8] Stielau O H, Covic G A. Design of loosely coupled inductive power transfer systems[C].International Conference on Power System Technology,2000:85-90.
    [9] Hanbiao N, Jianhui L. Design of loosely coupled inductive power transfer systems forinstrumented wheelset[C]. International Conference on Electronic Measurement&Instruments,2009:670-674.
    [10] Madawala U K, Thrimawithana D J. New technique for inductive power transfer using asingle controller[J]. IET Power Electronics,2012,5(2):248-256.
    [11] Kurschner D, Rathge C, Jumar U. Design Methodology for High Efficient Inductive PowerTransfer Systems With High Coil Positioning Flexibility[J]. IEEE Transactions on IndustrialElectronics,2013,60(1):372-381.
    [12] Boys J T, Chen C I, Covic G A. Controlling inrush currents in inductively coupled powersystems[C]. The7th International Power Engineering Conference,2005:1046-1051.
    [13] Jang Y, Jovanovic M M. A Contactless Electrical Energy Transmission System forPortable-telephone Battery Chargers[J]. IEEE Transactions On Industrial Electronics,2003,50(3):520-527.
    [14] Elliott G A J, Boys J T, Green A W. Magnetically coupled systems for power transfer toelectric vehicles[C]. Power Electronics and Drive Systems,1995:797-801.
    [15] Wang C, Stielau O H, Covic G A. Design Considerations for a Contactless Electric VehicleBattery Charger[J]. IEEE Transactions on Industrial Electronics,2005,52(5):1308-1314.
    [16] Budhia M, Covic G, Boys J. A New IPT Magnetic Coupler for Electric Vehicle ChargingSystem[C].36th Annual Conference of the IEEE Industrial Electronics Society,2010:2487-2492.
    [17] Elliott G A J, Covic G A, Kacprzak D, et al. A New Concept: Asymmetical Pick-Ups forInductively Coupled Power Transfer Monorail Systems[J]. IEEE Transactions on Magnetics,2006,42(10):3389-3391.
    [18] Raabe S, Elliottt G A J, Covic G A, et al. A Quadrature Pickup for Inductive Power TransferSystems[C]. IEEE Conference on Industrial Electronics and Applications,2007:68-73.
    [19] Raabe S, Boys J T, Covic G A. A high power coaxial inductive power transfer pickup[C].IEEE Power Electronics Specialists Conference,2008:4320-4325.
    [20] Kissin M L G, Covic G A, Boys J T. Steady-State Flat-Pickup Loading Effects in PolyphaseInductive Power Transfer Systems[J]. IEEE Transactions on Industrial Electronics,2011,58(6):2274-2282.
    [21] Budhia M, Boys J T, Covic G A, et al. Development of a Single-Sided Flux Magnetic Couplerfor Electric Vehicle IPT Charging Systems[J]. IEEE Transactions on Industrial Electronics,2013,60(1):318-328.
    [22] Covic G A, Boys J T, Kissin M L G, et al. A Three-Phase Inductive Power Transfer Systemfor Roadway-Powered Vehicles[J]. IEEE Transactions on Industrial Electronics,2007,54(6):3370-3378.
    [23] Madawala U K, Thrimawithana D J. A Ring Inductive Power Transfer System[C].2010IEEEInternational Conference on Industrial Technology,2010:667-672.
    [24] Kissin M L G, Hao H, Covic G A. A practical multiphase IPT system for AGV and roadwayapplications[C]. IEEE Energy Conversion Congress and Exposttion,2010:1844-1850.
    [25] Raabe S, Boys J T, Covic G A. A High Power Coaxial Inductive Power Transfer Pickup[C].IEEE Power Electronics Specialists Conference,2008:4320-4325.
    [26] Wu H H, Boys J T, Covic G A. An AC Processing Pickup for IPT Systems[J]. IEEETransactions on Power Electronics,2010,25(5):1275-1284.
    [27] Thrimawithana D J, Madawala U K, Shi Y. Design of a Bi-Directional Inverter for a WirelessV2G System[C]. IEEE International Conference on Sustainable Energy Technologies,2010:1-5.
    [28] Madawala U K, Thrimawithana D J. A Two-way Inductive Power Interface for SingleLoads[C].2010International Conference on Industrial Technology,2010:673-678.
    [29] Madawala U K, Thrimawithana D J. A Bi-directional Inductive Power Interface for ElectricVehicles in V2G Systems[J].2011:1-8.
    [30] Madawala U K, Neath M, Thrimawithana D J. A Power–Frequency Controller forBidirectional Inductive Power Transfer Systems[J]. IEEE Transactions on IndustrialElectronics,2013,60(1):310-317.
    [31] Thrimawithana D J. A Synchronization Technique for Bidirectional IPT Systems[J]. IEEETransactions on Industrial Electronics,2013,60(1):301-309.
    [32] Sato F, Matsuki H, Kikuchi S, et al. A new meander type contactless power transmissionsystem-active excitation with a characteristics of coil shape[J]. IEEE Transactions onMagnetics,1998,34(4):2069-2071.
    [33] Sato F, Murakami J, Suzuki T, et al. Contactless energy transmission to mobile loads byCLPS-test driving of an EV with starter batteries[J]. IEEE Transactions on Magnetics,1997,33(5):4203-4205.
    [34] Mufakami J, Sato F, Watanabe T, et al. Consideration on cordless power station-contactlesspower transmission system[J]. IEEE Transactions on Magnetics,1996,32(5):5037-5039.
    [35] Beh T C, Imura T, Kato M, et al. Basic study of improving efficiency of wireless powertransfer via magnetic resonance coupling based on impedance matching[C]. IEEEInternational Symposium on Industrial electronics,2010:2011-2016.
    [36] Imura T. Study on maximum air-gap and efficiency of magnetic resonant coupling forwireless power transfer using equivalent circuit[C]. IEEE International Symposium onIndustrial Electronics,2010:3664-3669.
    [37] Imura T, Okabe H, Hori Y. Basic Experimental Study on Helical Antennas of Wireless PowerTransfer for electric Vehicles by using Magnetic Resonant Couplings[C]. Vehicle Power andPropulsion Conference,2009:936-940.
    [38] Karalis A, Joannopoulos J D, Solja i M. Efficient wireless non-radiative mid-range energytransfer[J]. Annals of Physics,2008,3(23):34-48.
    [39] Wu H H, Gilchrist A, Sealy K D, et al. A High Efficiency5kW Inductive Charger for EVsUsing Dual Side Control[J]. IEEE Transactions on Industrial Informatics,2012,8(3):585-595.
    [40] Judek S, Karwowski K. Supply of electric vehicles via magnetically coupled air coils[C].Power Electronics and Motion Control Conference,2008:1497-1504.
    [41] Sallán J, Villa J L, Llombart A, et al. Optimal design of ICPT systems applied to electricvehicle battery charge[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2140-2149.
    [42] Khan I A. Battery Chargers for Electric and Hybrid Vehicles[C]. IEEE Power Electronics inTransportation,1994:103-112.
    [43] Esser A. Contactless charging and communication for electric vehicles[J]. IEEE IndustryApplications Magazine,1995,1(6):4-11.
    [44] Hayes J G. Battery charging systems for electric vehicles[C]. IEEE Colloquium on ElectricVehicles,1998:41-48.
    [45] Solares R, Argueta J.1999TOYOTA RAV4EV-INDUCTIVE Panasonic NiMH Battery[EB].Southern California Edison,1999.
    [46] NISSAN, www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/wcs.html.
    [47] HaloIPT, Wireless Charging for Electric Vehicles[EB/OL]. http://www.haloipt.com.
    [48] Witricity, WiT-3300Deployment Kit[EB/OL]. http://www.witricity.com.
    [49] Miller J M. Wireless Plug-in Electric Vehicle(PEV) Charging[R]. U.S. Oak Ridge NationalLaboratory,2011.
    [50] Covic G A, Kissin M L G, Kacprzak D, et al. A Bipolar Primary Pad Topology for EVStationary Charging and Highway Power by Inductive Coupling[C]. IEEE Energy ConversionCongress and Exposition,2011:1832-1838.
    [51] Budhia M, Covic G A, Boys J T, et al. Development and evaluation of single sided fluxcouplers for contactless electric vehicle charging[C]. IEEE Energy Conversion Congress andExposition,2011:614-621.
    [52] Han K, Lee B, Hyun-Jun P, et al. Dynamic Model of an FC-and UC-based IPT system forrailway vehicle[C]. International Conference on Electrical Machines and Systems,2008:2681-2685.
    [53] Park M, Shin E, Lee H, et al. Dynamic model and control algorithm of HVAC system forOLEV application[C]. International Conference on Control Automation and Systems,2010:1312-1317.
    [54] Ahn S, Pak J, Song T, et al. Low frequency electromagnetic field reduction techniques for theOn-Line Electric Vehicle (OLEV)[C]. IEEE International Symposium on ElectromagneticCompatibility,2010:625-630.
    [55] Lee S, Huh J, Park C, et al. On-Line Electric Vehicle using inductive power transfersystem[C]. IEEE Energy Conversion Congress and Exposition,2010:1598-1601.
    [56] Suh I, Shin E G. Control algorithm of HVAC system power management in OLEVapplication[J]. Journal of Integrated Design and Process Science,2011,15(3):29-42.
    [57] Suh I. On-road electrification for optimized power supply in OLEV application[J]. Journalof Integrated Design and Process Science,2011,3(15):13-27.
    [58] Young J J, Young D K, Seungmin J. Optimal design of the wireless charging electricvehicle[C]. IEEE International Electric Vehicle Conference,2012:1-5.
    [59] Huh J, Lee S W, Lee W Y, et al. Narrow-Width Inductive Power Transfer System for OnlineElectrical Vehicles[J]. IEEE Transactions on Power Electronics,2011,26(12):3666-3679.
    [60] Pantic Z, Bai S, Lukic S M. Inductively Coupled Power Transfer for Continuously PoweredElectric Vehicles[C]. IEEE Vehicle Power and Propulsion Conference,2009:1271-1278.
    [61] VAHLE, www.vahle.com.cn.
    [62] Liu X, Hui S Y R. Simulation study and experimental verification of a universal contactlessbattery charging platform with localized charging features[J]. IEEE Transactions on PowerElectronics,2007,22(6):2202-2210.
    [63] Liu X, Hui S Y R. Equivalent circuit modeling of a multilayer planar winding array structurefor use in a universal contactless battery charging platform[J]. IEEE Transactions on PowerElectronics,22(1):21-29.
    [64] Liu X, Chan P W, Hui S Y R. Finite element simulation of a universal contactless batterycharging platform[C].20th Annual IEEE Applied Power Electronics Conference andExposition,2005:1927-1932.
    [65] Liu X, Hui S Y R. An analysis of a double-layer electromagnetic shield for a universalcontactless battery charging platform[C].36th IEEE Power Electronics SpecialistsConference:2005:1767-1772.
    [66] Liu X, Hui S Y R. Optimal design of a hybrid winding structure for planar contactless batterycharging platform [J]. IEEE Transactions on Power Electronics,2008,23(1):455-463.
    [67] Hui S Y R, Ho W C. A new generation of universal contactless battery charging platform forportable consumer electronic equipment[J]. IEEE Transactions on Power Electronics,2005,20(3):620-627.
    [68] Tang S C, Hui S Y R, Chung H. A low-profile wide-band three-port isolation amplifier withcoreless printed-circuit-board (PCB) transformers[J]. IEEE Transactions on IndustrialElectronics,2001,48(6):1180-1187.
    [69] Tang S C, Hui S Y R, Chung H. A low-profile low-power converter using coreless PCBtransformer with ferrite polymer composite[J]. IEEE Transactions on Power Electronics,2001,16(4):493-498.
    [70] Zhu C, Liu K, Yu C, et al. Simulation and experimental analysis on wireless energy transferbased on magnetic resonances[C]. IEEE Vehicle Power and Propulusion Conference,2008:1-4.
    [71] Lu R, Wang T, Mao Y, et al. Analysis and design of a wireless closed-loop ICPT systemworking at ZVS mode[C]. IEEE Vehicle Power and Propulsion Conference,2010:1-5.
    [72]赵小坤.电动汽车感应充电技术的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [73] Zou Y, Huang X, Tan L, et al. Current Research Situation and Developing Tendency aboutWireless Power Transmission[C]. International Conference on Electrical and ControlEngineering,2010:3507-3511.
    [74] Tan L, Huang X, Li H, et al. Study of Wireless Power Transfer System Through StronglyCoupled Resonances[C].2010International Conference on Electrical and ControlEngineering,2010:4275-4278.
    [75]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56-59.
    [76]苏玉刚,王智慧,孙跃等.非接触供电移相控制系统建模研究[J].电工技术学报,2008,23(7):92-97.
    [77]戴欣,孙跃,苏玉刚等.非接触电能双向推送模式研究[J].中国电机工程学报,2010,30(18):55-61.
    [78]孙跃,王智慧,苏玉刚等.电流型CPT系统传输功率调节方法[J].重庆大学学报,2009,32(12):1386-1391.
    [79]孙跃,夏晨阳,戴欣等. CPT系统效率分析与参数优化[J].西南交通大学学报,2010,45(6):836-842.
    [80] Tang C S, Sun Y, Su Y G, et al. Determining multiple steady-state ZCS operating points of aswitch-mode contactless power transfer system[J]. IEEE Transactions on Power Electronics,2009,24(1-2):416-425.
    [81]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报(自然科学版),2003,26(1):50-53.
    [82]苏玉刚,戴欣,孙跃.软开关变换电路精细离散映射建模方法研究[J].系统仿真学报,2009,21(3):672-675+683.
    [83]唐春森,孙跃,戴欣等.感应电能传输系统多谐振点及其自治振荡稳定性分析[J].物理学报,2011,60(4):738-746.
    [84]戴欣,孙跃.感应电能传输系统能量注入控制方法研究[J].电子科技大学学报,2011,40(1):69-72+89.
    [85]戴欣,黄席樾,孙跃.自治分段线性振荡系统的离散映射数值建模与稳定性分析[J].自动化学报,2007,33(1):72-77.
    [86]赵志斌,孙跃,翟渊等.电压型CPT系统动态负载恒压输出研究[J].华中科技大学学报:自然科学版,2011,39(9):66-71.
    [87] Tian Y, Sue Y, Su Y G, et al. Study on the Electric Vehicle Wireless Power SupplyTechnology and System Based on ICPT[C]. EVS25World Battery, Hybrid and Fuel CellElectric Vehicle Symposium,2010:1-6.
    [88] Tian Y, Sun Y, Su Y G, et al. Neural Network-based Constant Current Control of DynamicWireless Power Supply System for Electric Vehicles-revised[J]. Information TechnologyJournal,2012,11(7):876-883.
    [89]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术,2005,24(3):5-8+80.
    [90]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [91]刘宇飞,于庆广,蒋愉宽.电动汽车的感应充电装置[P].201010129866.4,2010-08-04.
    [92]刘志宇.感应充电实验系统[D].北京:清华大学,2004.
    [93]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报,2009,24(1):133-139.
    [94]马皓,孙轩.原副边串联补偿的电压型耦合电能传输系统设计[J].中国电机工程学报,2010,30(5):48-52.
    [95]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报,2005,20(10):66-71.
    [96]张巍,陈乾宏, Wong S C等.新型非接触变压器的磁路模型及其优化[J].中国电机工程学报,2010,30(27):108-116.
    [97]毛赛君.非接触感应电能传输系统关键技术研究[D].南京:南京航空航天大学,2006.
    [98]张献,杨庆新,陈海燕等.电磁耦合谐振式传能系统的频率分裂特性研究[J].中国电机工程学报,2012,32(9):167-173+24.
    [99]张献,杨庆新,陈海燕等.电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J].中国电机工程学报,2012,32(21):153-158.
    [100]杨民生,王耀南,张细政等.电动汽车新型感应充电系统的设计[J].汽车工程,2009,31(8):719-724+740.
    [101]杨民生,王耀南,欧阳红林.新型无接触电能传输系统多负载解耦控制研究[J].湖南大学学报(自然科学版),2007,34(10):53-56.
    [102]杨民生,王耀南.感应耦合电能传输系统动态解谐传输功率控制[J].电机与控制学报,2012,16(1):72-78.
    [103]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆:重庆大学,2010.
    [104]李泽松.基于电磁感应原理的水下非接触式电能传输技术研究[D].浙江:浙江大学,2010.
    [105] Wang C, Covic G A, Stielau O H. Investigating an LCL Load Resonant Inverter for InductivePower Transfer Applications[J]. IEEE Transactions on Power Electronics,2004,19(4):995-1002.
    [106] Su Y G, Tang C S, Wu S, et al. Research of LCL Resonant Inverter in Wireless PowerTransfer System[C]. International Conference on Power System Technology,2006:1-6.
    [107] Kissin M L G, Huang C, Covic G A, et al. Detection of the Tuned Point of a Fixed-FrequencyLCL Resonant Power Supply[J]. IEEE Transactions on Power Electronics,2009,24(4):1140-1143.
    [108]戴欣,余奎,孙跃. CLC谐振型感应电能传输系统的H∞控制[J].中国电机工程学报,2010,30(30):47-54.
    [109] Villa J L, Sallán J, Osorio J F S, et al. High-Misalignment Tolerant Compensation TopologyFor ICPT Systems[J]. IEEE Transactions on Industrial Electronics,2012,59(2):945-951.
    [110] Rahimi-Kian A, Keyhani A, Powell J M. Minimum loss design of a100kHz inductor withlitz wire[C]. IEEE IAS Annual Meeting,1997:1414-1420.
    [111] Kendir G A, Wentai L, Bashirullah R, et al. An efficient inductive power link design forretinal prosthesis[C]. International Symposium on Circuits and Systems,2004:41-44.
    [112] Wire N E, www.litzwire.com/litz_design.htm.
    [113] Wikipedia, en.wikipedia.org/wiki/American_wire_gauge.
    [114]刘成君,杨仁刚.变压器谐波损耗的计算与分析[J].电力系统保护与控制,2008,36(13):33-36.
    [115]张安红.电力变压器的损耗研究与优化设计[D].长沙:湖南大学,2005.
    [116]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆:重庆大学,2009.
    [117]黄平,张尧,曾红.改进的粒子群优化算法求解电力经济调度[J].华中科技大学学报(自然科学版),2010,38(1):121-124.
    [118]杨芳勋,孙跃,赵志斌等.基于改进粒子群算法的ICPT配电系统规划[J].华中科技大学学报(自然科学版),2011,39(1):118-122.
    [119]刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用[J].电工技术学报,2008,23(2):103-108.
    [120] Dieu V N, Schegner P, Ongsakul W. A newly improved particle swarm optimization foreconomic dispatch with valve point loading effects[C].2011IEEE Power and Energy SocietyGeneral Meeting,2011:1-8.
    [121] Vu P, Le D, Vo N, et al. A novel weight-improved particle swarm optimization algorithm foroptimal power flow and economic load dispatch problems[C]. IEEE Transmission andDistribution Conference and Exposition,2010:1-7.
    [122]孙健.基于改进粒子群优化算法的巡航导弹航路规划[J].北京航空航天大学学报,2011,37(10):1228-1232.
    [123]黄艳,臧传治,于海斌.基于改进粒子群优化的无线传感器网络定位算法[J].控制与决策,2012,27(1):156-160.
    [124] Liu C, Wu H, Yang G, et al. Path Planning of Flying Robot for Powerline Inspection Basedon Improved Particle Swarm Optimization[C].2010International Conference on IntelligentSystem Design and Engineering Application,2010:48-52.
    [125]黄宇,韩璞,刘长良等.改进量子粒子群算法及其在系统辨识中的应用[J].中国电机工程学报,2011,21(20):114-120.
    [126]李鑫滨,朱庆军.一种改进粒子群优化算法在多目标无功优化中的应用[J].电工技术学报,2010,25(7):137-143.
    [127] Wu X H, Piao Z L, Liu Y L, et al. Reactive Power and Voltage Control Based on ImprovedParticle Swarm Optimization in Power System[C]. Proceedings of the8th World Congress onIntelligent Control and Automation,2010:5291-5295.
    [128]张琳.基于PSO的粒子群滤波在目标跟踪中的应用[D].兰州:兰州理工大学,2010.
    [129]刘希玉,刘弘.人工神经网络与微粒群优化[M].北京:北京邮电大学出版社,2008.
    [130]吴免利,李劼,肖昕等.用BP神经网络提高锂离子电池化成系统采样精度[J].中南大学学报(自然科学版),2010,41(1):55-59.
    [131]郭鹏程,罗兴锜,王勇劲等.基于粒子群算法与改进BP神经网络的水电机组轴心轨迹识别[J].中国电机工程学报,2011,31(8):93-97.
    [132] Abdalla S O, Deris S. Predicting Protein Secndary Structure Using Artificial Neural Networks:Current Status and Future Directions[J]. Information Technology Journal,2005,4(2):189-196.
    [133] Guo L, Wang B, Wang W, et al. Energy Function Analysis and Optimized ComputationBased on Hopfield Neural Network for Wireless Sensor Network[J]. Information TechnologyJournal,2011,10(6):1208-1214.
    [134]张德丰. MATLAB神经网络仿真与应用[M].北京:电子工业出版社,2009.
    [135]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [136]谢添卉.基于形态谱的电力线路故障选相研究[D].北京:北京交通大学,2009.
    [137]邬岚.神经网络在车牌识别及红外焦平面非均匀校正中的应用[D].武汉:华中科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700