用户名: 密码: 验证码:
单电机ISG型AMT重度混合动力汽车能量管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车HEV(Hybrid Electric Vehicle, HEV)能量管理策略是决定混合动力汽车性能的关键技术之一,合理有效的能量管理策略是混合动力汽车降低综合燃油消耗、排放和保持良好动力性的关键。因此开展对混合动力汽车能量管理策略的研究具有重要的理论意义和应用价值。
     本论文针对一款全新的单电机ISG(Integrated Starter Generator, ISG)型AMT(Automated Manual Transmission, AMT)重度混合动力系统,结合行星齿轮机构和AMT的工作特性,对该系统的能量管理策略进行研究,主要研究内容如下:
     ①根据单电机ISG型AMT重度混合动力汽车动力传动系统的结构特点,对行星齿轮机构的转速和转矩工作特性进行了深入研究,分析了该混合动力传动系统各工作模式下的工作原理,给出了系统输出转速、转矩以及各动力源功率分配关系式,在此基础上,确定了该混合动力系统各工作模式之间的状态切换关系。
     ②根据单电机ISG型AMT重度混合动力汽车的结构、功能特点和动力性指标,进行发动机、ISG电机、镍氢动力电池、AMT变速器、行星齿轮机构、湿式多片离合器及其液压控制系统参数的匹配研究。在关键零部件参数匹配的基础上,对发动机、ISG电机和镍氢动力电池进行台架性能实验,建立了表达发动机、ISG电机、镍氢动力电池性能特性的数值模型;通过对液压泵站的性能测试,获得了比例阀的占空比与湿式多片离合器接合压力的数值关系;在此基础上,对混合动力系统的动力性进行了分析,通过典型城市工况仿真分析结果,验证了该混合动力传动系统部件参数匹配的合理性。
     ③建立了单电机ISG型AMT重度混合动力汽车驱动工作模式下的动力学方程,综合考虑发动机效率、ISG电机电动和发电效率、镍氢动力电池充放电效率以及传动系效率,分析推导了该混合动力汽车各典型驱动工作模式下的系统效率计算模型;以动力部件(包括发动机、ISG电机和镍氢动力电池)的性能特性作为约束条件,建立起不同驱动工作模式下的系统效率优化模型,获得了在给定车速、加速度条件下的系统工作模式切换规律、AMT换挡规律以及ISG电机最佳电动转矩和发电转矩;在满足制动法规的前提条件下,建立起整车再生制动工况下的能量回收模型,以动力电池能量回收最大化为目标,综合考虑整车制动强度、ISG电机制动力、AMT挡位和动力电池SOC(State of Charge, SOC),制定了再生制动工况下的能量回收控制策略和AMT换挡控制策略
     ④针对固定循环工况下所制定的混合动力汽车能量管理策略存在的局限性,从ADVISOR软件中选取覆盖车辆实际行驶工况的20个典型循环工况,以整车综合燃油消耗和动力电池寿命为综合优化目标,利用粒子群算法对各工况下能量管理策略中所涉及的关键参数进行优化,并根据优化结果建立数据库,提出了基于行驶工况识别的混合动力汽车动态能量管理策略。最后,选择随机工况对所制定的能量管理策略进行仿真,结果表明:本文所制定的动态能量管理策略与未采用工况识别的能量管理策略相比,车辆综合燃油消耗下降10.70%,动力电池温升和平均有效工作电流分别下降2.46℃和1.63A。
     ⑤研制了单电机ISG型AMT重度混合动力传动系统硬件在环仿真试验台架。利用Matlab/Simulink仿真平台和dSPACE实时控制工具,开发了试验台架的实时监控系统,分别对纯电动行驶中启动发动机模式、行车充电驱动模式、ISG电机助力驱动模式以及再生制动模式进行了试验测试,结果表明本文所提出的整车能量管理策略具有良好的控制效果。
Energy management strategy of hybrid electric vehicle (HEV) is one of the keytechnologies to decide the performance of HEV, and a reasonable and effective energymanagement strategy plays an important role in reducing total fuel consumption andemissions, as well as maintaining good dynamic performance. Therefore, research onenergy management strategy of HEV has great theoretical significance and applicationvalue.
     In this dissertation, aiming at a novel AMT full hybrid electrical vehicle with singleIntegrated Starter Generator (ISG), the working characters of planetary gears andAutomated Manual Transmission (AMT) are investigated to study the energymanagement strategy of the hybrid system. These main researches and conclusions areas followed.
     ①According to the structural features of the HEV powertrain system, the workingfeatures of rotate speed and torque of the planetary gears are deeply researched, and theoperating principle of each mode of the HEV powertrain system is analyzed, theexpressions of rotate speed, torque and power supply power allocation for system outputare deduced. On this basis, the state switch relationship between different operationmodes is obtained.
     ②According to the structural and function features as well as the dynamicproperty index of the HEV, the matching research on relevant parameters of engine, ISG,Ni-MH power batteries, AMT, planetary gears, wet clutches and hydraulic controlsystem has been done. Based on parameters matching of key components, numericalmodels of performance characteristics of engine, ISG and Ni-MH power battery arebuilt by doing bench test. The numerical relationship between duty circle of theproportional valve and engaging pressure of the wet multi-plate clutch is obtained byperformance test of the hydraulic power unit. Based on the above, the dynamic propertyof the hybrid system is analyzed and then the rationality of parameters matching of thepowertrain is verified by analysis of simulation result under typical urban drivingconditions.
     ③Kinetic equations of the HEV under driving modes are established, and theefficiency calculation model of the HEV system under typical driving modes is deducedconsidering the efficiency of engine, ISG, Ni-MH batteries and powertrain system.Considering the performance characteristics of power components (including the engine, ISG motor and nickel-hydrogen batteries) as constraint, efficiency optimization modelsof the system under different driving modes are built to obtain switching law of systemworking modes, shift schedule of AMT and the optimized motoring and generatingtorque of the ISG motor under a given speed and acceleration condition. By meeting therequirement of brake regulations, energy recovering model of the HEV is built. Tomaintain the maximal energy recovering, the control strategies of energy recovering andshift schedule of AMT are proposed considering the vehicle braking strength, brakingforce of ISG, AMT gear and the State of Charge (SOC) of Ni-MH batteries.
     ④According to the limitations existed in the energy management strategy ofhybrid electric vehicle (HEV) under fixed driving cycle condition,20typical cycleconditions which stand for vehicle real driving conditions are chosen from ADVISORsoftware and the key control parameters involved in the energy management strategiesunder each driving cycle are optimized by using particle swarm algorithm aiming at thecomprehensive goal of vehicle total fuel consumption and power battery life, after that,relevant optimized results are saved in database, and then, the dynamic energymanagement strategy of HEV based on the recognition of driving conditions is proposed.Finally, the energy management strategy is simulated under a random driving condition,the simulation results show that the vehicle fuel consumption dropped by10.70%, thepower battery temperature rise and the average effective work current decreased by2.46℃and1.63Arespectively by using dynamic energy management strategycompared with energy management strategy without driving condition recognition.
     ⑤Hardware in the loop simulation test bench of the powertrain of the HEV andreal-time monitoring system of the test bench are developed. Different working modesof HEV such as starting engine in only electric driving condition, charging battery indriving condition, ISG assistance driving and regenerative braking are tested to verifygood control effect of the energy management control strategy in this dissertation.
引文
[1] Momoh OD, Omoigui MO. An overview of hybrid electric vehicle technology [C]//VehiclePower and Propulsion Conference, Dearborn, MI,2009:1286-1292.
    [2] Donateo T, Serrao L, Rizzoni G. A two-step optimization method for the preliminary designof a hybrid electric vehicle [J]. International Journal of Electric and Hybrid Vehicles,2008,1(2):142-165.
    [3]陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报,2005,23(4):24-28.
    [4] Antoni Szumanowski,陈清泉,孙逢春.混合电动车辆基础[M].北京:北京理工大学出版社,2011.11.
    [5]麻友良,陈全世.混合动力电动汽车的发展[J].公路交通科技,2001,18(1):77-80.
    [6]欧阳明高,田硕,徐梁飞等.汽车动力的混合化发展趋势与构型分析[J].汽车工程,2008,30(9):742-747.
    [7] Jefferson CM, Barnard RH. Hybrid vehicle propulsion [M]. Southampton UK: WIT Press,2002.
    [8] Okamoto K. Overview of current and future hybrid technology [J]. SAE2002-89-94.
    [9] Chan CC. The state of the art of electric and hybrid vehicles [J]. Proceedings of IEEE,90(2),2002:247-275.
    [10]周凤起,周大地.中国中长期能源策略[M].北京:中国计划出版社,1999.
    [11] Fuel Economy: Where the Energy Goes. http://www.fueleconomy.gov/feg/atv.shtml.2005-12-15.
    [12]岳东鹏,郝志勇,张俊智.混合动力电动汽车研究开发及前景展望[J].拖拉机与农用运输车.2004(2):1-4.
    [13]沈刚.当前世界新能源汽车发展现状、趋势及我国的路线选择[J].中国发展观察,2011,(1):55-59.
    [14]2009-2015年中国新能源汽车产业发展态势与投资前景分析报告[R].http://www.86mdo.com/ReportBusses/sub8935_2476.html.
    [15] Daxing Wang, Xin Zhang. The development of powertrain control unit (PCU) for parallelhybrid electric vehicle (PHEV)[J]. SAE paper,2004-01-0575.
    [16] Feng An, Danilo J, Santini. Mass impacts on fuel economies of conventional vs. hybridElectric vehicles [J]. SAE paper,2004-01-0572.
    [17]徐阳,吴森.发展混合动力技术推动电动汽车产业化进程[J].武汉理工大学学报·信息与管理工程版,2005,27(3):56-59.
    [18] Somayajula D, Meintz A, Ferdowsi M. Study on the effects of battery capacity on theperformance of hybrid electric vehicles [C]//Vehicle Power and Propulsion Conference,Harbin, china,2008:1-5.
    [19] Desai C, Williamson SS. Comparative study of hybrid electric vehicle control strategies forimproved drivetrain efficiency analysis [C]//IEEE, Electrical Power&Energy Conference(EPEC), Montreal, QC,2009:1-6.
    [20] Miyaki H, Mizutani Y. Trend of high voltage harness technology that supportsHybrid-Electric-Vehicles [C]//Power Conversion Conference, Nagoya,2007:1346-1351.
    [21] Koprubasi K, Westervelt ER, Rizzoni G. Toward the systematic design of controllers forsmooth hybrid electric vehicle mode changes [C]//American Control Conference, NewYork, NY,2007:2985-2990.
    [22] Kessels JTBA, Koot MWT, Van den Bosch PPJ, etc. Online energy management for hybridelectric vehicles [J]. IEEE Transactions on Vehicular Technology,2008,57(6):3428-3440.
    [23]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海:上海交通大学,2007.
    [24] Pisu P, Rizzoni G. A comparative study of supervisory control strategies for hybrid electricvehicles [J]. IEEE Transactions on Control Systems Technology,2007,15(3):506-518.
    [25] Delprat S, Lauber J, Cuerra TM, etc. Control of a parallel hybrid powertrain: optimal control[J]. IEEE Transactions on Vehicle Technology,2004,53(3):872-881.
    [26] Eghbali AH, Asaei B. Effects of using ultracapacitors on acceleration and regenerativebraking performances in hybrid electric vehicles [C]//IEEE,72ndVehicular TechnologyConference Fall, Brighton, UK,2010:1-6.
    [27] Suntharalingam P, Economou JT, Knowles K. Effect on regenerative braking efficiency withdeceleration demand and terrain condition [C]//5thIET International Conference on PowerElectronics, Machines and Drives,2010:1-6.
    [28] Kim Donghyun, Kim Chulsoo, Hwang Sung-Ho, etc. Hardware in the loop simulation ofvehicle stability control using regenerative braking and electro [C]//Proceedings of the17thWorld Congress, International Federation of Automatic Control, COEX, Korea2008,17(1):6-11.
    [29] Prokhorov D, Toyota Prius HEV neuro control [C]//International Joint Conference onNeural Networks, Orlando, FL,2007:2129-2134.
    [30] Miller JM. Hybrid electric vehicle propulsion system architectures of the e-CVT type [J].IEEE Transactions on Power Electronics,2006,21(3):756-767.
    [31] Cheng Y, TRIGUI R, ESPANET C, etc. Specifications and design of a PM electric variabletransmission for Toyota Prius II [J]. IEEE Transactions on Vehicular Technology,2011,99(19):1286-1292.
    [32] Michael Duoba, Henry Ng, Robert Larsen. Characterization and comparison of two hybridelectric vehicles (HEVs)-Honda Insight and Toyota Prius [J]. SAE paper,2001-01-1335.
    [33] Nasiri Hiva, Radan Ahmad, Parizadeh Maziar, etc. A MATLAB Simulink model for ToyotaPrius2004based on DOE reports [C]//Proceedings of the2011-14th European Conferenceon Power Electronics and Applications, Birmingham, UK,2011:1-9.
    [34] Honda Insight IMA modes of operation. http://www.insightcentral.net.2005.2.11.
    [35]邓亚东,高海鸥,王仲范等. Insight混合动力电动汽车驱动系统建模与仿真[J].武汉大学学报(工学版),2004,37(6):62-66.
    [36]杨妙梁.本田、三菱、日产、富士重工的混合动力车[J].汽车配件,2002(13):19-21.
    [37] Honda Insight/Toyota Prius comparison: Hybrid powertrain. http://www.insightcentral.net,2005.3.10.
    [38] Syed FU, Hao Ying, Ming Kuang, etc. Rule-based fuzzy gain-scheduling PI controller toimprove engine speed and power behavior in a power-split hybrid electric vehicle [C]//Annual Meeting of the North American on Fuzzy Information Processing Society, Montreal,Que,2006:284-289.
    [39] Syed FU, Kuang ML, Hao Ying. Active damping wheel-torque control system to reducedriveline oscillations in a power-split hybrid electric vehicle [J]. IEEE Transactions onVehicular Technology,2009,58(9):4769-4785.
    [40]2004福特Escape Hybrid. http://auto.sina.com.cn/news/2003-06-05/38403.shtml.
    [41] Miller JM, McCleer PJ, Everett M. Ultracapacitor plus battery energy storage system sizingmethodology for HEV power split electronic CVT’s [C]//Proceedings of the IEEEInternational Symposium on Industrial Electronics,2005:317-324.
    [42] Miller JM, Everett M. An assessment of ultra-capacitors as the power cache in ToyotaTHS-II, GM-Allision AHS-2and Ford FHS hybrid propulsion systems [C]//TwentiethAnnual IEEE Applied Power Electronics Conference and Exposition, Austin, TX,2005,(1):481-490.
    [43]法国标致雪铁龙发表了柴油混合动力系统. http://auto.sohu.com/20060203/n241661886.shtml.
    [44]雪铁龙C4-Hybrid:柴油电动混合动力车. http://www.iweihai.cn/car/news/focus/2007/04/31923.asp
    [45]斯巴鲁Hybrid Tourer:2012年正式投入量产. http://dealer.autohome.com.cn/66916/news_601516.html
    [46] Hybrid vehicles. http://www.hybrid-vehicles.net/nissan-altima-hybrid.htm.
    [47]采用全新技术的混合动力马自达5/RX-8将量产. http://auto.163.com/08/1113/08/4QK93HKU000827OP.html.
    [48]国内混合动力汽车技术发展现状. http://auto.163.com/10/0409/14/63R9MSGQ00084AIR.html.
    [49]朱元,田光宇,陈全世等.混合动力汽车能量管理的四步骤设计方法[J].机械工程学报,2004,40(8):127-137.
    [50] Beck R, Saenger S, Richert F, etc. Model predictive control of a parallel hybrid vehicledrivetrain [C]//Proceedings of the44th IEEE Conference on Decision and Control, and theEuropean Control Conference,2005:2670-2675.
    [51] Liang Chu, Qingnian Wang, Minghui Liu, etc.Control algorithm development for parallelhybrid transit bus [C]//Vehicle Power and Propulsion,2005IEEE Conference,2005:196-200.
    [52] Jong-Seob Won, Reza Langari, Mehrdad Ehsani. An energy management and chargesustaining strategy for a parallel hybrid vehicle with CVT [J]. IEEE Transactions on ControlSystems Technology,2005,13(2):313-320.
    [53] Pierluigi Pisu, Giorgio Rizzoni. A comparative study of supervisory control strategies forhybrid electric vehicles [J]. IEEE Transactions on control systems technology,2007,15(3):506-518.
    [54]朱庆林.基于瞬时优化的混合动力汽车控制策略研究[D].长春:吉林大学,2009.
    [55] Sciaretta A, Back M, Guzzella L. Optimal control of par llel hybrid electric vehicles [J].IEEE Transactions on Control System Technology,12(3),2004:352-363.
    [56]朱诗顺,任永乐,张月滨等.基于电量平衡的串联混合动力汽车瞬时优化控制[J].中国机械工程,2008,6(1):13-18.
    [57] Li Weimin, Xu Guoqing, Wang Zhancheng, etc. Dynamic energy management for hybridelectric vehicle based on adaptive dynamic programming [C]//IEEE InternationalConference on Industrial Technology, Chengdu, China,2008:1-6.
    [58] Li Weimin, Xu Guoqing, Wang Zhancheng, etc. Dynamic energy management for hybridelectric vehicle based on approximate dynamic programming [C]//7th World Congress onIntelligent Control and Automation, Chongqing, china,2008:7864-7869.
    [59] Romaus C, Gathmann K. Optimal energy management for a hybrid energy storage systemfor electric vehicles based on stochastic dynamic programming [C]//Vehicle Power andPropulsion Conference, Lille,2010:1-6.
    [60] Shen Caiying, Xia Chaoying. Optimal power split in a hybrid electric vehicle usingimproved dynamic programming [C]//Asia-Pacific Power and Energy EngineeringConference, Chengdu, China,2010:1-4.
    [61] Liu Xudong, Wu Yanping, Duan Jianmin. Optimal sizing of a series hybrid electric vehicleusing a hybrid genetic algorithm [C]//2007IEEE International Conference on Automationand Logistics, Jinan,2007:1125-1129.
    [62]李烔,张承宁.基于混合系统理论的电动汽车能量管理策略[J].系统仿真学报,2006,18(10):2932-2935.
    [63] Visakan K, Kirusnapillai S. Stability analysis of the particle dynamics in particle swarmoptimizer [J]. IEEE Transactions on Evolutionary Computation,2006,10(3):245-255.
    [64] Morteza MG, Amir P. Application of genetic algorithm for optimization of control strategyin parallel hybrid electric vehicles [J]. Journal of the Franklin Institute,2006,343(4-5):420-435.
    [65]钱立军,裘著永,赵韩.基于模糊神经网络的混合动力汽车控制策略仿真[J].系统仿真学报,2006,18(5):1384-1387.
    [66] Bulter KL, Stavens KM. A versatile computer simulation tool for design and analysis ofelectric and hybrid drive trains [J]. SAE paper,970199.
    [67] Jalil N, Kheir N A, Salman M. A rule-based energy management strategy for a series hybridvehicle [C]//Proceedings of the American Control Conference, Albuquerque, New Mexico,1997:689-693.
    [68] Ehsani M, Gao Yimin, Butler K L. Application of electrically peaking hybrid (ELPH)propulsion system to a full-size passenger car with simulated design verification [J]. IEEETransactions on Vehicular Technology,1999,48(6):1779-1787.
    [69]赵子亮,刘东秦,刘明辉等.并联混合动力汽车控制策略与仿真分析研究[J].机械工程学报,2005,41(12):13-18.
    [70] Won JS, Langari R, Ehsani M. An energy management and charge sustaining strategy for aparallel hybrid electric vehicle with CVT [J]. IEEE Transactions on Control SystemsTechnology,2005,3(2):313-319.
    [71] Paganelli G, Ercole G, Brahma A, etc. General supervisory control policy for the energyoptimization of charge-sustaining hybrid electric vehicles [J]. Special Issue of JSAE Review,2001,22(4):511-518.
    [72] Paganelli G, Tateno M, Brahma A, etc. Control development for a hybrid-electricsport-utility vehicle: strategy, implementation and field test results [C]//Proceedings ofAmerican Control Conference, Arlington, VA,2001:5064-5069.
    [73] Cristian Musardo, Giorgio Rizzoni, Benedetto Staccia. A-ECMS: An adaptive algorithm forhybrid electric vehicle energy management [C]//Proceedings of the44th IEEE Conferenceon Decision and Control, and the European Control Conference, Seville, Spain,2005:12-15.
    [74] Pierluigi Pisu, Giorgio Rizzoni. A comparative study of supervisory control strategies forhybrid electric vehicles [J]. IEEE Transactions on Control Systems Technology,2007,15(3):506-518.
    [75] Pisu P, Koprubasi K, Rizzoni G. Energy management and drivability control problems forhybrid electric vehicles [C]//Decision and Control, European Control Conference,2005:18-24.
    [76] Delprat S, Guerra TM, Rimaux J. Control strategies for hybrid vehicles: Synthesis&evaluation [C]//IEEE58th Vehicular Technology Conference,2003,5:3246-3250.
    [77] Vollmer T, Hohn BR. Operational strategy and control of the Autark hybrid of the THMünchen [C]//EVS15Electric Vehicle Symposium, Bruxelles, France,1998:1283-1290.
    [78] Kim C, Goong EN, Lee S. Fuel economy optimization for parallel hybrid vehicle with CVT[J]. SAE paper,1999-01-1148.
    [79]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海,上海交通大学:2004.
    [80]欧阳易时,金达锋,罗禹贡.并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究[J].汽车工程,2006,28(2):117-121.
    [81] Kheir NA, Salman MA, Schouten NJ. Emissions and fuel economy trade-off for hybridvehicles using fuzzy logic [J]. Mathematics and Computers in Simulation,2004,66:155-172.
    [82] Schouten NJ, Salman MA, Kheir NA. Fuzzy logic control for parallel hybrid vehicles [J].IEEE Transactions on Control Systems Technology,2002,10(3):460-468.
    [83] Salman MA, Schouten NJ, Kheir NA. Control strategies for parallel hybrid vehicles [C]//Proceedings of American Control Conference, Chicago, USA,2000:524-528.
    [84] Amir P, Morteza M. Design of genetic-fuzzy control strategy for parallel hybrid electricvehicles [J]. Control Engineering Practice,2008,16(7):861-873.
    [85] Baumann BM, Washington G, Glenn BC, etc. Mechatronic design and control of hybridelectric vehicles [J]. IEEE/ASME Transactions on Mechatronics,2000,5(1):58-72.
    [86]殷承良,浦金欢,张建武.并联混合动力汽车的模糊转矩控制策略[J].上海交通大学学报,2006,40(1):157-162.
    [87]吴光强,陈慧勇.基于遗传算法的混合动力汽车参数多目标优化[J].汽车工程,2009,31(1):60-64.
    [88]申永胜.机械原理教程[M].北京:清华大学出版社,1998.
    [89]王利花.并联混合动力汽车用行星齿轮机构的研究[D].西安:西安理工大学,2008.
    [90]余志生.汽车理论[M].北京:清华大学出版社,1989.4.
    [91]刘永刚,秦大同,叶明. ISG型中度混合动力汽车动力驱动系统设计及性能仿真[J].中国公路学报,2008,21(5):121-126.
    [92]秦大同,游国平,胡建军.新型功率分流式混合动力传动系统工作模式分析与参数设计[J].机械工程学报,2009,45(2):184-191.
    [93] Renhart W, Magele C, Schweighofer B. EM-Based Thermal Analysis of NiMH Batteries forHybrid Vehicles [J]. IEEE Transactions on Magnetics,2008,44(6):802-805.
    [94]龚君.混合动力汽车控制策略的研究[D].武汉:武汉理工大学,2007.
    [95]何存兴.液压传动与气压传动[M].武汉:华中科技大学出版社,2006.6.
    [96]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.6.
    [97]杨阳. CVT混合动力系统再生制动综合控制研究[D].重庆大学,2008.
    [98] Ge Anlin, Jin Hui, Lei Yulong, etc. A study on vehicle driving environment recognition [J].SAE.2000-01-1277.
    [99]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].长春:吉林大学:2005.
    [100]步曦,陈礼璠.以行驶循环为基础的混合动力分析研究[J].车辆与动力技术,2007(2):31-36.
    [101] Takano W, Matsushita A, Iwao K, etc. Recognition of human driving behaviors based onstochastic symbolization of time series signal [C]//IEEE/RSJ International Conference onIntelligent Robots and Systems, Nice,2008:167-172.
    [102] Guan Chaohua, Gong Jianwei, Chen Yongdan, etc. An application of data fusion combininglaser scanner and vision in real-time driving environment recognition system [C]//2009International Conference on Machine Learning and Cybernetics, Baoding,2009,6:3116-3121.
    [103] YOKOI Y, ICHIKAWA S, DOKI S, etc. Driving pattern prediction for an energymanagement system of hybrid electric vehicles in a specific driving course [C]//The30thAnnual Conference of the IEEE Industrial Electron Society, Busan, Korea,2004:1727-1732.
    [104] Soon-il Jeon, Sung-tae Jo, Yeong-il Park, etc. Multi-mode driving control of a parallelhybrid electric vehicle using driving pattern recognition [J]. Journal of Dynamic Systems,Measurement and Control,2002,124(1):141-149.
    [105]边肇祺.模式识别[M].北京:清华大学出版社,2000.
    [106]吴剑,张承慧,崔纳新.基于粒子群优化的并联式混合动力汽车模糊能量管理策略研究[J].控制与决策,2008,23(1):46-50.
    [107]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
    [108]张利彪,周春光,刘小华等.粒子群算法在求解优化问题中的应用[J].吉林大学学报(信息科学版),2005,23(4):385-389.
    [109] Visakan K, Kirusnapillai S. Stability analysis of the particle dynamics in particle swarmoptimizer [J]. IEEE Transactions on Evolutionary Computation,2006,10(3):245-255.
    [110]姚雷.混合动力汽车用Ni-MH电池的寿命预测[D].重大:重庆大学,2011.
    [111]张昕,宋建峰,田毅等.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].机械工程学报,2009,45(2):36-40.
    [112] dSPACE GmbH, Install and Configuration Documents for Release4.0. Germany: dSPACEGnbh.2003.
    [113] dSPACE GmbH, Implementation Guide Documents for Release4.0. Germany: dSPACEGnbh.2003.
    [114] dSPACE GmbH, Experiment Guide Documents for Release4.0. Germany: dSPACE Gnbh.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700