用户名: 密码: 验证码:
地铁邻近既有桥梁施工影响分析及主动防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,城市地下工程施工产生的地层变形及应力释放必然会对周边环境产生一定程度的扰动,特别是在北京这种以环路和立交为主要地面交通形式的城市中,地铁施工将会不可避免的穿越大量既有桥梁,并对其正常使用造成不利影响。随着北京地区地铁新线建设不断地推进,这种现象将会越来越多,所带来的矛盾和安全隐患也将更加突出,因此研究地铁施工对邻近既有桥梁的影响分析及主动防护技术对城市桥梁的安全运行具有重要的现实意义。
     本论文在对国内外相关文献资料进行广泛调研的基础上,以北京地铁4号线、5号线、10号线、6号线及7号线等项目的建设为工程背景,采用理论分析、数值模拟以及现场实测相结合的方法,对地铁施工穿越既有桥梁这类工程在安全防护方面所涉及的基础理论、核心技术以及防护体系等问题进行了深入、系统的研究,取得了以下成果:
     (1)基于能量守恒的理论分析可以看出,地层因开挖而释放的弹性能有一部分以变形能的形式存储于桩基中,即开挖释放的弹性能被桩基以变形的形式进行吸收,因而桩基的变形是地铁邻近既有桥梁施工的控制核心;
     (2)基于地层与桩基之间的相互作用关系,对单洞与双洞隧道施工影响下桩基承载力进行了定性分析,从而为后续桩基承载力评价提供了理论基础;
     (3)通过对实际桥梁上部结构状况进行力学简化,建立了八种桥梁上部结构与桩基协调变形的结构力学模型,以此分析了桩基沉降与上部结构内力和变形的作用关系;
     (4)采用数值计算方法对桩基与隧道不同空间位置关系进行了分析,以桩基沉降为主要评价指标并结合桩身倾斜,将桩基的受影响程度分为四个区(Ⅰ重要影响,Ⅱ主要影响,Ⅲ一般影响,Ⅳ轻微影响);
     (5)结构顶升是减小施工对既有桥梁上部结构影响的主要技术措施,因此,文章采用理论分析和数值模拟的方法,针对常见的三跨连续箱梁进行了分析,建立了既有桥梁变形与附加内力之间的关系,并在此基础上确定了结构顶升力的临界点以及合理的顶升位置;
     (6)提出了“以预防风险为核心,以保护桥梁运行绝对安全为目的”的地铁邻近既有桥梁施工主动防护技术体系,即在科学预测风险的基础上,对风险来源(地铁施工)、风险载体(地层变形)、风险对象(既有桥梁)等不同对象中的风险状态,以合理的技术手段早干预、早处置,从而实现风险的主动防护;
     (7)建立了地铁邻近既有桥梁施工主动防护控制体系,并形成了该体系实施的技术流程。该流程强调了工前主动防护措施的制定和实施,实现了风险前移处置,而后结合变形监控,实现了过程中的动态控制。这种两阶段的变形控制,可更加有效的应对工程风险,基本实现了此类穿越工程的精细化管控。
As is known, underground strata deformation and stress release induced by the construction of urban underground engineering are bound to disturb the surrounding environment to some extent. However, because of the complexity of the urban environment, especially in Beijing whose main transport forms are overpass and ring road, subway construction will inevitably pass through a large number of existing bridges and make adverse impact to their normal use. With the arrival of the new subway construction climax in Beijing, there are much more such phenomena than before,the corresponding contradictions and potential risks will become more prominent, so the research of influence analysis and proactive technology of existing bridges induced by adjacent subway construction has important practical significance to the safe operation of urban bridges.
     Based on extensive researches on related literatures at home and abroad, taking Beijing Subway Line4、Line5、Line10、Line6and Line7project construction as engineering background, the basic theory, core technology and protection system involved by such engineering as subway construction passing by existing bridges on safety aspects are studied deeply and widely by the method of combination of theoretical analysis, numerical simulation and field test in this paper. The research results are as follows:
     (1) It can be seen that part of the released elastic energy induced by strata excavation is stored in the pile foundation based on energy conservation theory. That is to say, released elastic energy induced by excavation is absorbed by the pile foundation, so the deformation of pile foundation is the control core during the subway construction close to the existing bridges.
     (2) Based on the interaction between the strata and the piles, the bearing capacity of pile foundation influenced by strata deformation is analyzed qualitatively under one tunnel and two tunnels conditions, which can provide a theoretical basis for the following pile foundation bearing capacity evaluation.
     (3) Based on the mechanical simplification of the actual bridge superstructure conditions and pile foundation, eight structural mechanics models of coordination deformation between bridge superstructure and pile foundation are established to analyze the action relationship of the internal force and deformation for superstructure influenced by pile foundation settlement.
     (4)The influence laws of pile foundations in different spatial position influenced by tunnel excavation are studied based on numerical method. Taking pile foundation settlement as evaluation index, the influence degree of pile foundation is divided into four zones combined with pile inclination.(I:important influence, II:main influence, III:common influence, IV:slight influence)
     (5) Structure jacking is the main technical measure to reduce the construction influence on the upper structure of the existing bridge.therefore, the theoretical analysis and numerical simulation method are used to analyze the common three-span continuous box girder in this paper. The relationship between deformations and additional internal forces of existing bridges is established to determine the critical point of the structure jacking force and the rational jacking position.
     (6) Active protection technology system of the subway construction close to the existing bridges, which idea is "taking prevention of risk as core and taking absolute safety operation of the bridge as purpose", is established in this paper. That is to say, risk conditions in different objects, such as the risk sources (subway construction), the risk carriers (stratum deformation), the risk objects (existing bridges) and so on, are prevented and disposed early to achieve active protection of the risk by reasonable technical measures.
     (7) The active protection control system of subway construction close to the existing bridges is established. The implementation technical process of the management system is also formed. This management process emphasizes the formulation and implementation of the active protection measures before construction. Forward risk disposal and dynamic risk control during construction are realized combined with risk monitoring. This two-stage deformation control can deal with engineering risks more effectively. Fine safety control of such passing engineering are realized on the whole.
引文
[1]熊刚,黄思勇,项敬辉,隧道近接施工对既有桩基础影响的研究进展[J].铁道建筑,2011,7:72-74
    [2]Peck R B. Deep excavations and tunneling in soft ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. State of the Art Volume, Mexico City. Mexico:Sociedad Maxicana de Mecanica de Suelos,1969:225-290.
    [3]Clough G W, Schmidt B. Design and performance of excavations and tunnels in soft clay. In Soft Clay Engineering, Elsevier,1981:569-634.
    [4]Attewell P B, Selby A R. Tunneling in compressible soils:large ground movements and structural implications. Tunneling and Underground Space Technology,1989,4(4):481-487.
    [5]Mair R J, Taylor R N, Burland J B. Prediction of ground movements and assessment of risk of building damage due to Bored tunneling. Proceedings of the International Symposium On Geotechnical Aspects of Underground Construction in Soft Ground. London:Balkema,1996:713-718.
    [6]Mair R J, Taylor R N, Bracegirdle A. Subsurface settlement profiles above tunnels in clays. Geotechnique, 1993,43(2):315-320.
    [7]Attewell P B, Woodman J P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering,1982,15(8):13-20.
    [8]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993(4):24-32.
    [9]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [10]Sagaseta C. Analysis of undrained soil deformation due to ground loss. Geotechnique,1987,37(3):301-320
    [11]Verruijt A, Booker J R. Surface Settlement due to Deformation of A Tunnel in An Elastic Half Plane. Geotechnique,1996,46(4):753-756.
    [12]Loganathan N, Poulos H G. Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and Geoenvironmental Engineering 1998,124(9):846-856.
    [13]Bobet,A. Analytical solutions for shallow tunnels in saturated ground. ASCE J. Eng. Mech. 2001,(12):1258-1266.
    [14]Wei-I. Chou, Antonio Bobet. Predictions of ground deformation in shallow tunnels in clay. Tunnelling and Underground Space Technology,2002,(17):3-19.
    [15]陶履彬、侯学渊.圆形隧道的应力场和位移场[J].隧道及地下工程.1986.7(1):9~19.
    [16]久武胜保.软岩隧道的非线性弹塑性状态[A].隧道译丛.1992.1:11-19.
    [17]Litwiniszyn J. Fundamental principle of the mechanics of stochastic medium[C].Proc.of 3thConf. Theo.Appl.Mech.Bongalore.India.1957.
    [18]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报.1995.14(4):289-296.
    [19]刘宝琛,林德璋.浅部隧道开挖引起的地表移动及变形[J].地下工程.1983.7:1-9.
    [20]Yang Junsheng, Liu Baochen.The prediction of ground surface settlements due to tunneling inurban areas[J].in;progress in safety science and technology. Vol.2.Beijing.Chemical Industry Press.2000.354-361.
    [21]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社.1965.
    [22]施成华,彭立敏等.浅埋隧道施工引起的纵向地层移动与变形[J].中国铁道科学,2003,24(4):87-91.
    [23]陶龙光,刘波等.盾构过地铁站施工对地表沉降影响的数值模拟[J].中国矿业大学学报,2003,32(3):236-241.
    [24]Wu B R, Chiou S Y, Lee C J, et al. Soil movement around parallel tunnels in soft ground. Centrifuge 98, Tokyo, 1988:739-744.
    [25]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学2002,(5):559-563.
    [26]马亮,高波.隧道施工地表沉降控制的离心模型试验[J].施工技术,2005,34(6):6-8.
    [27]Grant R J, Taylor R N. Centrifuge modeling of ground movements due to tunneling in layerdground. Proc. Int. Symposiun on Geotechnical Aspects of Underground Construction in Soft Ground. Mair R J, Taylor R N. London:Balkema.1996:507-512.
    [28]Chambo J F, Corte J F. Shallow tunnels in cohesionless soil:stability of tunnel face. Journal of Geotechnical engineering, ASCE,1994,120(7):1150-1163.
    [29]Nomoto T, Mito K, Imamura S, et al. Centrifuge modeling of construction processes of shield tunnel. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor R N. London:Balkema.1996:567-572.
    [30]Kim S.H, Burd H J, Milligan G W E, Interaction between closely spaced tunnels is clay. Proc. Int. Symposiun on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor RN. London: Balkema.1996:543-548.
    [31]O'Reilly M. P. New B. M. Settlements above tunnels in the UK-their magnitude and prediction[J], Tunneling'82(1982):173-181.
    [32]New B. M, O'Reilly M. P Tunneling induced ground movements:predicting the magnitude and effects in James D Geddes eds, Proceedings of the 4th International Conference On Ground Movements and Structures[C], Pentech Press, London(1992):671-697.
    [33]O'Reilly M.P.Long settlements over tunneling, an 11 year study at Grimsby[J], Tunneling'91,1991.
    [34]王暖堂.城市地铁复杂洞群浅埋暗挖法的有限元模拟[J].岩土力学,2001.12,22(4):504-508.
    [35]孙军振.“PBA”洞桩法施工技术一以北京地铁为例[J].科技情报开发与经济,2008,18(36):152-154.
    [36]徐治中,王恒,殷文华,等.邻近建筑物暗挖地铁车站采用洞桩法的技术探讨[J].铁道标准设计,2004(4):82-84.
    [37]高成雷,宋玉香,朱永全.浅埋大跨平拱隧道地表沉降原因分析[J].石家庄铁道学院学报,2003,16(2):50-53.
    [38]N.Loganathan.H.G.Poulos.and D.P.Stewart (2000).Centrifuge model testing of tunnelinginduced ground and pile deformation.Geotechnique 50[J].No.3:283-294.
    [39]Jacobsz,S.W.,Standing,J.R.,Mair,R.J.(2002).Centrifuge modeling of tunneling near driven piles [A]. Geotechnical aspects of underground construction in soft ground.3rd international symo siu-m IS-Toulouse France 2002.6 th session:89-94.
    [40]Bezuijen, A. and van der Schrier, J. (1994):The influence of a bored tunnel on pile foundations[J]. Proc. of CENTRIFUGE 94. pp.681-686.
    [41]Lee,G.T.K.,Ng,C.W.W.(2005). Effects of advancing open face tunneling on an exiting loaded pile [J]. J.Geotech. Geoenviron.Eng,131 (2):193-201.
    [42]Morton J D, King KH. Effects of tunnelling on the bearing capacity and settlement of piled foundations. Jones MJ. Tunnelling'79. England:Stephen Austin/Hertford,1979:57-68.
    [43]Yashima A, Shibata T, Sekiquchi H, et al. Soil movements associated with tunneling and their effects on an adjacent pile foundation. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 1985,35(4):115-135.
    [44]van der SchfierJ S, Bezuijen A, van den Bery P, et al. Tunnelling in urban areas, interaction with loaded foundation piles, Burger H. Options for Tunnelling 1993. Amsterdam:Netherlands,1993:761-770.
    [45]Bezuijen A, Van der Sehrier J. the influence of a bored tunnel on piled foundations. Leung, Lee, Tan. Proceedings 1994 international conference centrifuge. Rotterdam:Balkema,1994:681-686.
    [46]Grant R J, Taylor R N. Modelling of ground movements due to tunneling in layered ground. Ground Engineering,1996(1/2):29.
    [47]Hergarden H J A M, Van der Poel J T, van der Schner J S. Ground movements due to tunneling:Influence on pile foundations. Mair & Taylor. Geotechnical Aspects of Underground Construction in soft Ground. Rotterdam: Balkema,1996:519-524.
    [48]Loganathan N, Poulos H G, Stewart D P. Centrifuge model testing of tunneling-induced groundand pile deformations. Geotechnique,2000,50(3):283-294.
    [49]Leung C F, Chow Y K, Shen R F. Behavior of pile subject to excavation-induced soil movement. Journal of Geoteehnical and Geoenvironmental Engineering,2000,126(11):947-954.
    [50]Jacobsz S W, Standing J R, Mair R J, et al. the effects of tunnelling near driven piles in sand. Geotechnical Engineering in Soft Ground. Regional Conference on Geotechnical Aspects of Underground Construction in Soft Ground. Shanghai, China:2001.29-35.
    [51]Jacobsz S W. Tunnelling effects on piled foundations. Tunnels and Tunnelling International.2003,35(6):28-31.
    [52]Leung C F, Lira J K, Shen R F, et al. Behavior of pile groups subject to excavation induced soil-movement. Journal of Geotechnical and Geo-environmental Engineering,2003,129(1):58-65.
    [53]Lee C J, Kao C M, Chiang K H. Pile response due to nearby tunneling. BGA International Conference on Foundations, Innovations, Observations, Design and Practice, London:Thomas Telford.2003:483-492.
    [54]McNamara A M, Taylor R N, Stall ebrass S E, et al. Influence of tunnelling on the behaviour of existing piled foundations. BGA International Conference on Foundations, Innovations, Observations, Design and Practice, London:Thomas Telford,2003:635-644.
    [55]Morton,J.D.,and King,K.H.(1979).Effects of tunneling on the bearing capacity and settlement of piled foundations[J]. Proc,Tunneling'79, IMM, London:57-68.
    [56]H.J.A.M.Hergarden,J.T.van der Poel.And J.S.van der Schrier(1996).Ground movements due to tunneling: Influence on the pile foundations[J].Geotechnical Aspects of Underground Construction in soft Ground:519-524.
    [57]Lee,R.G,Turner,A.J, and Whitworth, L.J.(1994).Deformations caused by tunneling beneath piled structure[J]. Proc. ⅧInt Conf Soil Mech Found Engrg, University Press, London:873-878.
    [58]By L. T. Chen, Member, ASCE, H. G. Poulos, Fellow, ASCE, and N. Loganathan.pile responsecaused by tunneling[J]. Journal of geotechnical and geo-environmental engineering. MARCH 1999:207-205.
    [59]杜彬.北京浅埋暗挖法施工对桩基的影响.[D].北京交通大学.2007.
    [60]何海健.地铁洞桩法施工对邻近桥桩的影响及控制.[D].北京:北京交通大学.2007.
    [61]苏洁.浅埋暗挖法隧道施工对邻近既有桩基的影响及其控制.[D].北京:北京交通大学.2009.
    [62]曾巧玲.地铁隧道施工对邻近桥桩基础的影响及其可靠度研究.[D].北京:北京交通大学.2010.
    [63]侯玉伟.盾构隧道侧向穿越桩基时对桩体土体及地面变形的影响[J].施工技术,2010(5):71-74.
    [64]赵公明.盾构隧道施工对既有立交桥桩基的影响分析[J].城市建设理论研究(电子版),2011(27)
    [65]李际港.盾构隧道下穿桥桩有限元模拟计算分析[J].广东建材,2011,27(3):24-26.
    [66]李宁,王柱,韩煊,柳厚祥.地铁开挖对上部桩基的影响研究[J].土木工程学报,2006,39(10):107-111
    [67]胡欣,郑荣跃,闫成文.宁波轨道交通孔浦站隧道施工力学效应研究[J].宁波大学学报(理工版),2011,24(3):71-75.
    [68]Poulos,H.G.,Davis,E.H.(1980).Pile foundation analysis and design[M].Wiley,New York.
    [69]Loganathan, N, Poulos, H.G.Xu,K.J.(2001).Ground and pile-ground respond due to tunneling[J]. Soils and Foundations,41(1):57-67.
    [70]Gordon T. K. Leel and Charles W. W. Ng, Effects of Advancing Open Face Tunneling on anExiting loaded Pile[J].Journal of geotechnical and geo-environmental engineering.ASCE 2005.2.
    [71]Emilios M. Comodromos, Spyridoula V. Bareka. Evaluation of negative skin friction effects inpile foundations using 3D nonlinear analysis[J]. Computers and Geotechnics 32 (2005):210-221.
    [72]Cheng,C.Y,Dasari,G.R,Leung,C.F.,Chow,Y.K,Rosser,H.B.(2004).3D numerical study of tunnel soil pile interaction[J].Tunnel and Underground Space Technology 19(2004):381-382.
    [73]张志强,何川.深圳地铁隧道邻接桩基施工力学行为研究[J].岩土工程学报,2003,25(2):204-207.
    [74]Ong,C.W.,Leung,C.F.,Yong,K.Y,Chow,YK.(2005).Centrifuge modeling of pile responses dueto tunneling in clay[J].Underground Singapore:1-10.
    [75]马文天.暗挖洞桩法在北京地铁呼家楼车站的应用研究[J].山西建筑,2011,37(13):89-91.
    [76]吕波.北京地铁光华路车站过桥桩施工技术[J].施工技术,2007,36(1):24-26.
    [77]孟庆军.成都地铁河中桥梁桩基托换施工技术[J].隧道建设,2011,31(1):91-97.
    [78]王博,张保国.地铁施工中既有桥梁的桩基础托换技术[J].铁道建筑,2011(4):47-48.
    [79]杨陕南.复杂环境复合锚杆桩加固桥桩施工技术[J].市政技术,2011,29(2):78-81.
    [80]井景风,王综勇.砂卵石地层中某盾构区间过桥区段的方案优化[J].隧道建设,2011,31(2):213-315.
    [81]陈广亮.复合锚杆桩在隧道下穿桥桩加固土体中的应用[J].山西建筑,2011,37(7):139-140.
    [82]杨慧林,徐慧宇,马锴.复合锚杆桩保护桥梁基础技术综述[J].铁道标准设计,2008(2):67-69.
    [83]谭富圣.地铁隧道下穿扩大基础桥梁施工分析[J].铁道标准设计,2009(10):100-102.
    [84]占颂嵩,王俊峰.上海地铁10号线穿越桥梁桩基础托换施工方案[J].山西建筑,2009,35(18):320-322.
    [85]孙斌,陶连金,张印涛.岛式地铁车站施工对邻近桥梁桩基的影响分析[J].地下空间与工程学报,2009,5(1):163-168.
    [86]马天文.地铁区间隧道下穿既有桥梁桩基础加固措施[J].山西建筑,2011,37(5):154-156.
    [87]白伟,胡勇,张学民等.深圳地铁5号线下穿梅龙立交桥施工技术[J].2011,(4):246-249.
    [88]K.H.Park.Elastie Solution for Tunneling - hidueed Ground Movemenis in Clays[J].INTERNATIONAL JOURNAL OF GEOMECHANICS.2004,4(4):310-318
    [89]张晓丽.浅埋暗挖下穿既有地铁构筑物关键技术研究与实践.[D].北京:北京交通大学.2007:94-95.
    [90]杨晓杰,邓飞皇,聂雯等.地铁隧道近距穿越施工对桩基承载力的影响研究[J].岩石力学与工程学报,2006,25(6):1290-1295.
    [91]姚宣德.浅埋暗挖法地下工程施工对既有桥梁的影响分析[J].水利水电技术,2010,41(4):62-68.
    [92]杜彬,地铁车站浅埋暗挖法施工对邻近桩基的影响及控制措施[博士学位论文][D].北京:北京交通大学,2007.
    [93]仇文革,地下工程近接施工力学原理与对策的研究[博士学位论文][D].成都:西南交通大学,2003.
    [94]王明年,崔光耀,喻波.广州地铁西村站近接高架桥桩基影响分区及应用研究[J].岩石力学与工程学报,2009,28(7):1396-1404.
    [95]Yong-Joo Lee, Richard H. Bassett. Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis, Tunnelling and Underground Space Technology,2007,22:325-342.
    [96]李兵.钻爆法海底隧道建设期工程安全风险分析及控制[博士学位论文][D].北京:北京交通大学,2010.
    [97]洪选华.胶州湾海底隧道典型施工风险评估与研究[硕士学位论文][D].上海:北同济大学,2008.
    [98]李廉锟.《结构力学(第4版)》上册[M].北京:高等教育出版社,2004年7月.
    [99]《公路桥梁的地基与基础规范》JTG D63—2007.
    [100]朱维申,李术才,白世伟,刘泉声.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报.2003.10.22(10):1586~1591.
    [101]朱维申,何满朝.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社.1996.
    [102]丁锐,范鹏,焦苍,徐家成,张文强.不同开挖步骤引起浅埋隧道地表沉降的数值分析[J].铁道工程学报.2005.5:62~65.
    [103]吴波.高波.蒋正华.仝学让.周振强.地铁隧道施工对地表沉降影响的优化控制分析[J].现代隧道技术.2003.40(3):42-46.
    [104]王后裕,陈上明,言志信编著.地下工程动态设计原理[M].北京:化学工业出版社.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700