用户名: 密码: 验证码:
两自由度精密定位平台结构设计与运动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研制了一款以压电陶瓷驱动的两自由度精密定位平台,并通过静力学分析、有限元分析、动力学建模、系统辨识以及时变迟滞建模等方法,较全面地研究了两自由度精密定位平台在结构设计、建模以及控制等方面的若干关键技术问题,取得了如下创新性成果:
     建立了一类超静定对称柔性机构的线性柔度与转角柔度的解析模型,并根据有限元分析结果对该解析模型进行修正,极大地提高了建模精度。该类超静定对称机构理论上不存在交叉耦合,可作为移动副或转动副应用于精密定位系统。
     利用超静定对称柔性机构在不同轴向上刚度差异较大的特性,设计了一款压电陶瓷驱动的两自由度精密定位平台。该定位平台最大行程范围为8μm×8μm,一阶共振频率为692Hz,且在100Hz以下驱动时两轴间交叉耦合量小于2.7%,可精确跟踪各种二维平面轨迹。
     在有限元分析中利用“接触副”模拟接触表面,通过调整参数研究了接触刚度的变化对定位平台静/动力学特性的影响规律。把接触刚度作为未知参数引入系统动力学模型,并据此提出接触刚度的辨识方法,通过测量定位平台的一阶固有频率来计算接触刚度的实际值。
     提出了一种新的动力学建模思路:将压电陶瓷的驱动力定义为系统的“虚拟输入”,并将压电陶瓷简化为具有一定线性刚度的弹性体。该方法可以将压电陶瓷的非线性特性与系统的线性动力学模型彻底分开,降低建模与辨识难度。将所有弹性铰链机构简化为无质量弹簧,利用状态空间法得到平台的动力学模型。
     时变的Prandtl-Ishlinskii (PI)模型可精确地描述压电陶瓷驱动器的迟滞特性,但目前尚无可用于时变PI模型的通用求逆法则,而强行将现行的求逆法则应用于时变PI模型会带来较大的理论建模误差。鉴于此,提出了一种全新的直接逆模型建模法,该方法直接通过实验数据得到时变的逆PI模型,省去了不必要的求逆过程,大大提高了逆迟滞模型的建模速度与精度。
     针对前馈控制,在已有迟滞补偿与蠕变补偿的基础上,增加了解耦控制器,可进一步消除定位平台两轴向间的交叉耦合;前置滤波技术可消除参考轨迹上的高频分量,抑制了定位平台的模态振型;全通滤波器可保证定位平台在运动初始阶段的平稳性。如将反馈回路作为误差补偿,可进一步提高定位平台的轨迹跟踪精度。
The dissertation focuses on the development of a2-DOF piezo-driven precisionpositioning platform. The key technological issues arising during the structure design,modeling, and control of the platform have been fully investigated. Great efforts havebeen made in the static analysis, Finite Element Method (FEM) analysis, dynamicsmodeling, system identification, and rate-dependent hysteresis compensation. Thefollowing innovative work has been completed:
     The analytical linear and angular compliance models of a class of staticallyindeterminate symmetric (SIS) flexure structures have been established. Based on theFEM results, the modeling accuracy has been further improved. Theoretically, the SISflexure structures are free of parasitic motions. Thus, it can be utilized as the prismaticor revolute joint in precision positioning systems.
     A prototype of the2-DOF piezo-driven precision positioning platform has beenfabricated, where the difference of the SIS flexure structure’s linear stiffness betweenaxes is utilized to build the transmission mechanism. The platform has a maximumdisplacement range of8μm×8μm, and a first natural frequency of692Hz. For inputsignals below100Hz, the cross-axis coupling ratio is less than2.7%, indicating goodapplicability in fast planar positioning applications.
     The contact pair is utilized to build the Hertz contact of the platform. Therelation between the contact stiffness and the platform’s static and dynamicperformance has been investigated in FEM analyses. The contact stiffness is alsoincluded in the dynamics modeling process as an unknown parameter. Anidentification method for the contact stiffness has been proposed, which identifies thecontact stiffness through the measured first natural frequency of the platform.
     A novel dynamics modeling approach is proposed, where the piezoelectricactuator’s driving force is defined as the virtual input to the system. The actuator isfurther simplified as an elastic element with constant stiffness. By doing this, thepiezoelectric actuator’s nonlinearities have been totally separated out of the lineardynamics of the system. This helps to simplify the modeling and identificationprocesses. All the flexure hinges are simplified as massless springs and the dynamicsmodel of the platform is obtained in the state space formulation.
     Rate-dependent Prandtl-Ishlinskii (PI) model is powerful in describing thepiezoelectric actuator’s hysteresis. However, the valid inversion law for the rate-dependent PI model is not yet available. Simply extends the conventionalinversion law to the rate-dependent PI model will result in large theoretical modelingerror. A novel direct inverse hysteresis modeling approach is proposed herein, wherethe rate-dependent inverse PI model can be directly identified from the experimentaldata. As no inversion calculation is involved, this approach is time-efficient and themodeling accuracy can be greatly improved.
     On the basis of the hysteresis and creep compensations, a new decouplingcontroller is proposed to further eliminate the cross axis coupling of the platform infeedforward applications. Prefiltering can also be incorporated to filter out all the highfrequency components of the reference trajectory. The platform’s modal vibration canthen be suppressed. An all-pass filter can be employed to guarantee the platform’stransient performance in the very beginning of the movements. If feedback is alsointegrated as an error compensator, the platform’s tracking accuracy can be furtherimproved.
引文
[1] O. D. Payton, L. Picco, A. R. Champneys, et al., Experimental observation ofcontact mode cantilever dynamics with nanosecond resolution, Review ofScientific Instruments,2011,82(4):043704-043708
    [2] D. H. Wang, Q. Yang and H. M. Dong, A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing, IEEE/ASME Transactionson Mechatronics: DOI:10.1109/TMECH.2011.2163200
    [3] B. J. Choi, S. V. Sreenivasan, S. Johnson, et al., Design of orientation stagesfor step and flash imprint lithography, Precision Engineering,2001,25(3):192-199
    [4] M. N. M. Zubir, B. Shirinzadeh and Y. Tian, A new design of piezoelectricdriven compliant-based microgripper for micromanipulation, Mechanism andMachine Theory,2009,44(12):2248-2264
    [5] W. Yang, S.-Y. Lee and B.-J. You, A piezoelectric actuator with a motion-decoupling amplifier for optical disk drives, Smart Materials and Structures,2010,19(6):065027-1-065027-10
    [6] M. R. A. Raghavendra, A. S. Kumar and B. N. Jagdish, Design and analysis offlexure-hinge parameter in microgripper, International Journal of AdvancedManufacturing Technology,2010,49(9-12):1185-1193
    [7] J.-H. Moon, H. J. Pahk and B.-G. Lee, Design, modeling, and testing of anovel6-DOF micropositioning stage with low profile and low parasitic motion,International Journal of Advanced Manufacturing Technology,2011,55(1-4):163-176
    [8] T. Secord and H. H. Asada, A variable stiffness PZT actuator having tunableresonant frequencies, IEEE Transactions on Robotics,2010,26(6):993-1005
    [9] M. Zareinejad, S. M. Rezaei, A. Abdullah, et al., Development of a piezo-actuated micro-teleoperation system for cell manipulation, The internationalJournal of Medical Robotics and computer Assisted Surgery,2009,5(1):66-76
    [10] X. Tan and J. S. Baras, Modeling and control of hysteresis in magnetostrictiveactuators, Automatica,2004,40(9):1469-1480
    [11] K. K. Tan, T. H. Lee and H. X. Zhou, Micro-positioning of linear-piezoelectricmotors based on a learning nonlinear PID controller, IEEE/ASMETransactions on Mechatronics,2001,6(4):428-436
    [12] S. B. Choi, S. S. Han, Y. M. Han, et al., A magnification device for precisionmechanisms featuring piezoactuators and flexure hinges: Design andexperimental validation, Mechanism and Machine Theory,2007,42(9):1184-1198
    [13] N. Lobontiu and E. Garcia, Analytical model of displacement amplificationand stiffness optimization for a class of flexure-based compliant mechanisms,Computers and structures,2003,81(32):2797-2810
    [14] K. Hu, J. H. Kim, J. Schmiedeler, et al., Design, implementation, and controlof a six-axis compliant stage, Review of Scientific Instruments,2008,79(2):025105-1-025105-11
    [15] Q. Xu and Y. Li, Analytical modeling, optimization and testing of a compoundbridge-type compliance displacement amplifier, Mechanism and MachineTheory,2011,46(2):183-200
    [16] M. Jouaheh and R. Yang, Modeling of flexure-hinge type lever mechanisms,Precision Engineering,2003,27(4):407-418
    [17] K.-B. Choi, J. J. Lee and S. Hata, A piezo-driven compliant stage with doublemechanical amplification mechanisms arranged in parallel, Sensors andActuators A: Physical,2010,161(1-2):173-181
    [18] P. Mottard and Y. St-Amant, Analysis of flexural hinge orientation foramplified piezo-driven actuators, Smart Materials and Structures,2009,18(3):035005-1-025005-9
    [19] H.-W. Ma, S.-M. Yao, L.-Q. Wang, et al., Analysis of the displacementamplification ratio of bridge-type flexure hinge, Sensors and Actuators A:Physical,2006,132(2):730-736
    [20] C.-L. Chu and S.-H. Fan, A novel long-travel piezoelectric-driven linearnanopositioning stage, Precision Engineering,2006,30(1):85-95
    [21] M. Spiller and Z. Hurak, Hybrid charge control for stick-slip piezoelectricactuators, Mechatronics,2011,21(1):100-108
    [22] P. Gao, H. Tan and Z. Yuan, The design and characterization of a piezo-drivenultra-precision stepping positioner Measurement Science and Technology,2000,11(2): N15-N19
    [23] A. J. Fleming and S. O. R. Moheimani, Sensorless Vibration Suppression andScan Compensation for Piezoelectric Tube Nanopositioners, IEEETransactions on Control Systems Technology,2006,14(1):33-44
    [24] G. M. Clayton, S. Tien, A. J. Fleming, et al., Inverse-feedforward ofcharge-controller piezopositioners, Mechatronics,2008,18(5-6):273-281
    [25] Y. K. Yong, K. Liu and S. O. R. Moheimani, Reducing cross-coupling in acompliant XY nanopositioner for fast and accurate raster scanning, IEEETransactions on Control Systems Technology,2010,18(5):1172-1179
    [26] A. J. Fleming and S. O. R. Moheimani, A grounded-load charge amplifier forreducing hysteresis in piezoelectric tube scanners, Review of ScientificInstruments,2005,76(7):073707-1-073707-5
    [27] P. Ronkanen, P. Kallio, M. Vilkko, et al., Displacement control of piezoelectricactuators using current and voltage, IEEE/ASME Transactions onMechatronics,2011,16(1):160-166
    [28]王家力,电容位移传感器及其信号线性化处理的研究,[硕士学位论文],中国计量科学研究院,2010
    [29] Y. Tian, B. Shirinzadeh and D. Zhang, A flexure-based mechanism and controlmethodology for ultra-precision turning operation, Precision Engineering,2009,33(2):160-166
    [30] Y. Tian, B. Shirinzadeh, D. Zhang, et al., Design and forward kinematics ofthe compliant micro-manipulator with lever mechanisms, PrecisionEngineering,2009,33(4):466-475
    [31] Y. Gao, D. Zhang and C. W. Yu, Dynamic modeling of a novel workpiecetable for active surface grinding control, International Journal of MachineTools&Manufacture,2001,41(4):609-624
    [32]田延岭,纳米磨削微定位平台设计理论与应用研究,[博士学位论文],天津大学,2004
    [33]邵兵,激光间通信终端精瞄微定位系统关键技术的研究,[博士学位论文],哈尔滨工业大学,2006
    [34]张栋,压电工作台微定位系统建模与控制技术,[博士学位论文],山东大学,2009
    [35]纪华伟,压电陶瓷驱动的微位移工作台建模与控制技术,[博士学位论文],浙江大学,2006
    [36]林伟,压电陶瓷微定位系统的逻辑规则控制研究,[博士学位论文],华中科技大学,2007
    [37]王希花,基于压电陶瓷迟滞非线性建模及控制系统的研究,[博士学位论文],哈尔滨工程大学,2010
    [38] J. M. Paros and L. Weisbord, How to design flexure hinges, Machine Design,1965,37(27):151-156
    [39] Y. Ting, C. C. Li and C. M. Lin, Controller design for high-frequency cuttingusing a piezo-driven microstage, Precision Engineering,2011,35(3):455-463
    [40] W. Dong, J. Tang and Y. ELDeeb, Design of a linear-motion dual-stageactuation system for precision control, Smart Materials and Structures,2009,18(9):095035-1-095035-11
    [41] N. Lobontiu, J. S. N. Paine, E. Garcia, et al., Corner-filleted flexure hinges,Journal of Mechanical Design,2001,123(3):346-352
    [42] Y. Tian, B. Shirinzadeh and D. Zhang, Closed-form compliance equations offilleted V-shaped flexure hinges for compliant mechanism design, PrecisionEngineering,2010,34(3):408-418
    [43] R. R. Vallance, B. Haghighian and E. R. Marsh, A unified geometric modelfor designing elastic pivots, Precision Engineering,2008,32(4):278-288
    [44] G. Chen, X. Liu, H. Gao, et al., A generalized model for conic flexure hinges,Review of Scientific Instruments,2009,80(5):055106-1-055106-10
    [45] N. Lobontiu, J. S. N. Paine, E. Garcia, et al., Design of symmetric conic-section flexure hinges based on closed-form compliance equations,Mechanism and Machine Theory,2002,37(5):477-498
    [46] Y. Wu and Z. Zhou, Design calculations for flexure hinges, Review ofScientific Instruments,2002,73(8):3101-3106
    [47] S. T. Smith, V. G. Badami, J. S. Dale, et al., Elliptical flexure hinges, Reviewof Scientific Instruments,1997,68(3):1474-1483
    [48]张爱成,解旭辉and吴宇列,一种新型双轴半椭圆弹性铰链的设计,航空精密制造技术,2006,42(5):15-18
    [49] N. Lobontiu, J. S. N. Paine, E. O'Malley, et al., Parabolic and hyperbolicflexure hinges: flexibility, motion precision and stress characterization basedon compliance closed-form equations, Precision Engineering,2002,26(2):183-192
    [50] Z. J. Zhang and Y. B. Yuan, Research on a novel flexure hinge, Journal ofPhysics: Conference Series,2006,48(1):287-291
    [51] N. Lobontiu, M. Cullin, M. Ali, et al., A generalized analytical compliancemodel for transversely symmetric three-segment flexure hinges, Review ofScientific Instruments,2011,82(10):105116-1-105116-9
    [52] M. L. Culpepper and G. Anderson, Design of a low-cost nano-manipulatorwhich utilizes a monolithic spatial compliant mechanism, PrecisionEngineering,2004,28(4):469-482
    [53] W. O. Schotborgh, F. G. M. Kokkeler, H. Tragter, et al., Dimensionless designgraphs for flexure elements and a comparison between three flexure elementsPrecision Engineering,2005,29(1):41-47
    [54] N. Lobontiu and J. S. N. Paine, Design of circular cross-section corner-filletedflexure hinges for three-dimensional compliant mechanisms, Journal ofMechanical Design,2002,124(3):479-484
    [55] Y. Yun and Y. Li, Design and analysis of a novel6-DOF redundant actuatedparallel robot with compliant hinges for high precision positioning, NonlinearDynamics,2010,61(4):829-845
    [56] Y. M. Tseytlin, Notch flexure hinges: An effective theory, Review of ScientificInstruments,2002,73(9):3363-3368
    [57] S. T. Smith, D. G. Chetwynd and D. K. Bowen, Design and assessment ofmonolithic high precision translation mechanisms, journal of Physics E:Scientific Instruments,1987,20(8):977-983
    [58] N. Lobontiu and E. Garcia, Circular-hinge line element for finite elementanalysis of compliant mechanisms Journal of Mechanical Design,2005,127(4):766-773
    [59] B. Zettl, W. Szyszkowski and W. J. Zhang, On systematic errors of two-dimensional finite element modeling of right circular planar flexure hinges,Journal of Mechanical Design,2005,127(4):782-787
    [60] H. Cohen and R. G. Muncaster, The dynamics of pseudo-rigid bodies: generalstructure and exact solutions, Journal of Elasticity,1984,14(2):127-154
    [61] L. L. Howell, A. Midha and T. w. Norton, Evaluation of equivalent springstiffness for use in a pseudo-rigid-body model of large-deflection compliantmechanisms, Journal of Mechanical Design,1996,118(1):126-131
    [62] Y. K. Yong, T.-F. Lu and D. C. Handley, Review of circular flexure hingedesign equations and derivation of empirical formulations, PrecisionEngineering,2008,32(2):63-70
    [63] Y. K. Yong and T.-F. Lu, Kinetostatic modeling of3-RRR compliant micro-motion stages with flexure hinges, Mechanism and Machine Theory,2009,44(6):1156-1175
    [64] Q. Yao, J. Dong and P. M. Ferreira, Design, analysis, fabrication and testing ofa parallel-kinematic micropositioning XY stage, International Journal ofMachine Tools&Manufacture,2007,47(6):946-961
    [65] H.-H. Pham and I.-M. Chen, Stiffness modeling of flexure parallel mechanism,Precision Engineering,2005,29(4):467-478
    [66] J.-J. Kim, Y.-M. Choi, D. Ahn, et al., A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism,Mechanism and Machine Theory,2012,50(1):109-120
    [67] Y. Li and Q. Xu, Design and optimization of an XYZ parallel micromanipulatorwith flexure hinges, Journal of Intelligent&Robotic Systems2009,55(4-5):377-402
    [68] H. C. Liaw and B. Shirinzadeh, Neural network motion tracking control ofpiezo-actuated flexure-based mechanisms for micro-/nanomanipulation,IEEE/ASME Transactions on Mechatronics,2009,14(5):517-527
    [69] Q. Yao, J. Dong and P. M. Ferreira, A novel parallel-kinematics mechanismsfor integrated, multi-axis nanopositioning: Part1. Kinematics and design forfabrication, Precision Engineering,2008,32(1):7-19
    [70] Y. Li and Q. Xu, Development and assessment of a novel decoupled XYparallel micropositioning platform, IEEE/ASME Transactions onMechatronics,2010,15(1):125-135
    [71] S. Awtar and A. H. Slocum, Constraint-based design of parallel kinematic XYflexure mechanisms, Journal of Mechanical Design,2007,129(8):816-830
    [72] X. Tang, I.-M. Chen and Q. Li, Design and nonlinear modeling of alarge-displacement XYZ flexure parallel mechanism with decoupled kinematicstructure, Review of Scientific Instruments,2006,77(11):115101-1-115101-11
    [73] J. Hesselbach and A. Raatz, Compliant parallel robot with6DOF, Proceedingsof Microrobotics and microassembly III conference,2001.143-150
    [74] T.-L. Wu, J.-H. Chen and S.-H. Chang, A six-DOF Prismatic-Spherical-Spherical-Spherical Parallel Compliant Nanopositioner, IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2008,55(12):2544-2551
    [75] Y. Tian, B. Shirinzadeh and D. Zhang, A flexure-based five-bar mechanismfor micro/nano manipulation, Sensors and Actuators A: Physical,2009,153(1):96-104
    [76] J.-L. Ha, Y.-S. Kung, S.-C. Hu, et al., Optimal design of a micro-positioningScott-Russell mechanism by Taguchi method, Sensors and Actuators A:Physical,2006,125(2):565-572
    [77] Y. Tian, B. Shirinzadeh, D. Zhang, et al., Development and dynamicmodelling of a flexure-based Scott-Russell mechanism for nano-manipulation,Mechanical Systems and Signal Processing,2009,23(3):957-978
    [78] W. Hua and Z. Xianmin, Input coupling analysis and optimal design of a3-DOF compliant micro-positioning stage, Mechanism and Machine Theory,2008,43(4):400-410
    [79] W. Dong, L. N. Sun and Z. J. Du, Design of a precision compliant parallelpositioner driven by dual piezoelectric actuators, Sensors and Actuators A:Physical,2007,135(1):250-256
    [80] Y. Tian, B. Shirinzadeh and D. Zhang, Design and dynamics of a3-DOFflexure-based parallel mechanism for micro/nano manipulation,Microelectronic engineering,2010,87(2):230-241
    [81] P. Gao and S.-M. Swei, A six-degree-of-freedom micro-manipulator based onpiezoelectric translators, Nanotechnology,1999,10(4):447-452
    [82] J. Dong, Q. Yao and P. M. Ferreira, A novel parallel-kinematics mechanismfor integrated, multi-axis nanopositioning-Part2: Dynamics, control andperformance analysis, Precision Engineering,2008,32(1):20-33
    [83] D. Zhang, Y. Tian and Y. Gao, Development of a3-DOF micro-positioningworkpiece table, Chinese journal of mechanical engineering,2004,17(1):46-50
    [84] Y. K. Yong and T.-F. Lu, The effect of the accuracies of flexure hingeequations on the ouput compliances of planar micro-motion stages,Mechanism and Machine Theory,2008,43(3):347-363
    [85]张建军,高峰,基于压电陶瓷驱动的并联微动机器人静力学及其微动平台的静刚度分析,机械工程学报,2004,40(11):82-87
    [86] J. W. Ryu, S.-Q. Lee and D.-G. Gweon, Inverse kinematic modeling of acoupled flexure hinge mechanism, Mechatronics,1999,9(6):657-674
    [87] W. Dong, L. Sun and Z. Du, Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints, Precision Engineering,2008,32(3):222-231
    [88] H. S. Kim and Y. M. Cho, Design and modeling of a novel3-DOF precisionmicro-stage, Mechatronics,2009,19(5):598-608
    [89] D. Zhang, D. G. Chetwynd, X. Liu, et al., Investigation of a3-DOF micro-positioning table for surface grinding, International Journal of MechanicalSciences,2006,48(12):1401-1408
    [90] Y. Yue, F. Gao, X. Zhao, et al., Relationship among input-force, payload,stiffness and displacement of a3-DOF perpendicular parallelmicro-manipulator, Mechanism and Machine Theory,2010,45(5):756-771
    [91] Y. Li and Q. Xu, Modeling and performance evaluation of a flexure-based XYparallel micromanipulator, Mechanism and Machine Theory,2009,44(12):2127-2152
    [92] Y. Li and Q. Xu, Design and robust repetitive control of a new parallel-kinematic XY piezostage for micro/nanomanipulation, IEEE/ASMETransactions on Mechatronics,2011: DOI:10.1109/TMECH.2011.2160074
    [93] S. Polit and J. Dong, Development of a high-bandwidth XY nanopositioningstage for high-rate micro-/nanomanufacturing, IEEE/ASME Transactions onMechatronics,2011,16(4):724-733
    [94] Y. Wang, Z. Liu and F. Bo, Design and control of an ultraprecision stage usedin granting tiling, Chinese Journal of Mechanical Engineering,2007,20(1):1-4
    [95] Y. Tian, D. Zhang and B. Yan, Development of a2-DOF micropositioningtable, Optics and precision engineering,2006,14(1):94-99
    [96]田延岭,张大卫,闫兵,二自由度微定位平台的研制,光学精密工程,2006,14(1):94-99
    [97] H. Liu, B. Lu, Y. Ding, et al., A motor-piezo actuator for nano-scalepositioning based on dual servo loop and nonlinearity compensation, Journalof Micromechanics and Microengineering,2003,13(2):295-299
    [98] H. C. Liaw, B. Shirinzadeh and J. Smith, Robust motion tracking control ofpiezo-driven flexure-based four-bar mechanism for micro/nano manipulation,Mechatronics,2008,18(2):111-120
    [99] J. Zhong and B. Yao, Adaptive robust precision motion control of apiezoelectric positioning stage, IEEE Transactions on Control SystemsTechnology,2008,16(5):1039-1046
    [100] J. Zhou, C. Wen and Y. Zhang, Adaptive backstepping control of a class ofuncertain nonlinear systems with unknown backlash-like hysteresis, IEEETransactions on Automatic Control,2004,49(10):1751-1757
    [101] H. C. Liaw, B. Shirinzadeh and J. Smith, Enhanced sliding mode motiontracking control of piezoelectric actuators, Sensors and Actuators A: Physical,2007,138(1):194-202
    [102] A. J. Fleming and K. K. Leang, Integrated strain and force feedback forhigh-performance control of piezoelectric actuators, Sensors and Actuators A:Physical,2010,161(1-2):256-265
    [103] J. Dong, S. M. Salapaka and P. M. Ferreira, Robust control of a parallel-kinematic nanopositioner, Journal of Dynamic Systems, Measurement, andControl,2008,130(4):041007-1-041007-1-15
    [104] H. C. Liaw and B. Shirinzadeh, Robust adaptive constrained motion trackingcontrol of piezo-actuated flexure-based mechanisms for micro/nanomanipulation, IEEE Transactions on Industrial Electronics,2011,58(4):1406-1415
    [105] H. C. Liaw, B. Shirinzadeh and J. Smith, Robust neural network motiontracking control of piezoelectric actuation systems for micro/nanomanipulation,IEEE Transactions on Neural Networks,2009,20(2):356-367
    [106] X. Chen and T. Hisayama, Adaptive sliding-mode position control for piezo-actuated stage, IEEE Transactions on Industrial Electronics,2008,55(11):3927-3934
    [107] H. C. Liaw and B. Shirinzadeh, Enhanced adaptive motion tracking control ofpiezo-actuated flexure-based four-bar mechanisms for micro/nanomanipulation, Sensors and Actuators A: Physical,2008,147(1):254-262
    [108] W. T. Ang, P. K. Khosla and C. N. Riviere, Feedforward controller withInverse rate-dependent model for piezoelectric actuators in trajectory-trackingapplications, IEEE/ASME Transactions on Mechatronics,2007,12(2):134-142
    [109] Y. Qin, Y. Tian, D. Zhang, et al., A novel direct inverse modeling approach forhysteresis compensation of piezoelectric actuator in feedforward applications,IEEE/ASME Transactions on Mechatronics,2011: DOI:10.1109/TMECH.2012.2194301
    [110] P. Ge and M. Jouaneh, Tracking control of a piezoceramic actuator, IEEETransactions on Control Systems Technology,1996,4(3):209-216
    [111] Y. Ting, H.-C. Jar and C.-C. Li, Measurement and calibration for Stewartmicromanipulation system, Precision Engineering,2007,31(3):226-233
    [112] K. K. Leang and S. Devasia, Design of hysteresis-compensating iterativelearning control for piezo-positioners: application to atomic force microscopes,Mechatronics,2006,16(3-4):141-158
    [113] P. Ge and M. Jouaneh, Generalized preisach model for hysteresis nonlinearityof piezoceramic actuators, Precision Engineering,1997,20(2):99-111
    [114] K. K. Leang and S. Devasia, Iterative feedforward compensation of hysteresisin piezo positioners, Proceedings of the42nd IEEE conference on Decisionand Control,2003.2626-2631
    [115] I. D. Mayergoyz, Mathematical Models of Hysteresis, IEEE Transactions onMagnetics,1986,22(5):603-608
    [116] P. Ge and M. Jouaneh, Modeling hysteresis in piezoceramic actuators,Precision Engineering,1995,17(3):211-221
    [117] G. Song, J. Zhao, X. Zhou, et al., Tracking Control of a Piezoceramic ActuatorWith Hysteresis Compensation Using Inverse Preisach Model, IEEE/ASMETransactions on Mechatronics,2005,10(2):198-209
    [118] S. B. Choi, S. S. Han and Y. S. Lee, Fine motion control of a moving stageusing a piezoactuator associated with a displacement amplifier, SmartMaterials and Structures,2005,14(1):222-230
    [119] H. Hu, H. M. S. Georgiou and R. Ben-Mrad, Enhancement of tracking abilityin piezoceramic actuators subject to dynamic excitation conditions,IEEE/ASME Transactions on Mechatronics,2005,10(2):230-239
    [120] G. S. Choi, Y. A. Lim and G. H. Choi, Tracking position control ofpiezoelectric actuators for periodic reference inputs, Mechatronics,2002,12(5):669-684
    [121] C. Ru, L. Chen, B. Shao, et al., A hysteresis compensation method ofpiezoelectric actoator: Model, identification and control, Control EngineeringPractice,2009,17(9):1107-1114
    [122] C. Ru and L. Sun, Hysteresis and creep compensation for piezoelectricactuator in open-loop operation, Sensors and Actuators A: Physical,2005,122(1):124-130
    [123] W.-Y. Jywe, Y.-R. Jeng, C.-H. Liu, et al., A novel5DOF thin coplanarnanometer-scale stage, Precision Engineering,2008,32(4):239-250
    [124] M. Rakotondrabe, Bouc-Wen modeling and inverse multiplicative structure tocompensate hysteresis nonlinearity in piezoelectric actuators, IEEETransactions on Automation and Engineering,2011,8(2):428-431
    [125] Y.-T. Liu, K.-M. Chang and W.-Z. Li, Model reference adaptive control for apiezo-positioning system, Precision Engineering,2010,34(1):62-69
    [126] J. Park and W. Moon, Hysteresis compensation of piezoelectric actuators: themodified Rayleigh model, Ultrasonics,2010,50(3):335-339
    [127] J.-J. Tzen, S.-L. Jeng and W.-H. Chieng, Modeling of piezoelectric actuatorfor compensation and controller design, Precision Engineering,2003,27(1):70-86
    [128] J. M. Cruz-Hernandez and V. Hayward, Phase control approach to hysteresisreduction, IEEE Transactions on Control Systems Technology,2001,9(1):17-26
    [129] Y. Cao and X. B. Chen, A novel discrete ARMA-based model for piezoelectricactuator hysteresis, IEEE/ASME Transactions on Mechatronics,2011: DOI:10.1109/TMECH.2011.2128339
    [130] J. H. Oh and D. S. Bernstem, Semilinear Duhem model for rate-independentand rate-dependent hysteresis, IEEE Transactions on Automatic Control,2005,50(5):631-645
    [131] H. Janocha, D. Pesotski and K. Kuhnen, FPGA-based compensator ofhysteretic actuator nonlinearities for highly dynamic applications,IEEE/ASME Transactions on Mechatronics,2008,13(1):112-116
    [132] K. Kuhnen and H. Janocha, Inverse feedforward controller for complexhysteretic nonlinearities in smart-material systems, Control Intell. Syst.,2001,29(3):74-83
    [133] M. A. Janaideh, S. Rakheja and C.-Y. Su, A generalized Prandtl-Ishlinskiimodel for characterizing the hysteresis and saturation nonlinearities of smartactuators, Smart Materials and Structures,2009,18(4):1-9
    [134] B. Mokaberi and A. A. G. Requicha, Compensation of scanner creep andhysteresis for AFM nanomanipulation, IEEE Transactions on AutomationScience and Engineering,2008,5(2):197-206
    [135] Q. Wang and C.-Y. Su, Robust adaptive control of a class of nonlinear systemsincluding actuator hysteresis with Prandtl-Ishlinskii presentations, Automatica,2006,42(5):859-867
    [136] M. Rakotondrabe, C. d. Clévy and P. Lutz, Complete open loop control ofhysteretic, creeped and oscillating piezoelectric cantilevers, IEEE Transactionson Automation Science and Engineering,2010,7(3):440-450
    [137] K. Kuhnen, Modeling, identification and compensation of complex hystereticand log(t)-type creep nonlinearities, Control and Intelligent Systems,2005,33(2):134-147
    [138] X. Y. Zhang and Y. Lin, Adaptive tracking control for a class of pure-feedbacknon-linear systems including actuator hysteresis and dynamic uncertainties,IET Control Theory and Applications,2011,5(16):1868-1880
    [139] Y. L. Zhang, M. L. Han, M. Y. Yu, et al., Automatic hysteresis modeling ofpiezoelectric micromanipulator in vision-guided micromanipulation systems,IEEE/ASME Transactions on Mechatronics,2011: DOI:10.1109/TMECH.2011.2106136
    [140] K. Kuhnen, Modelling, identification and compensation of complex hystereticnonlinearities-A modified Prandtl-Ishlinskii approach, Eur. J. Control,2003,9(4):407-418
    [141] S. Bashash and N. Jalili, Robust multiple frequency trajectory tracking controlof piezoelectrically driven micro/nanopositioning systems, IEEE Transactionson Control Systems Technology,2007,15(5):867-878
    [142] M. A. Janaideh, S. Rakheja and C.-Y. Su, An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioningcontrol, IEEE/ASME Transactions on Mechatronics,2011,16(4):734-744
    [143] J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, et al., Precision tracking control of apiezoelectric-actuated system, Precision Engineering,2008,32(2):71-78
    [144] U.-X. Tan, W. T. Latt, F. Widjaja, et al., Tracking control of hystereticpiezoelectric actuator using adaptive rate-dependent controller, Sensors andActuators A: Physical,2009,150(1):116-123
    [145] M. A. Janaideh, C.-Y. Su and S. Rakheja, Development of the rate-dependentPrandtl-Ishlinskii model for smart actuators, Smart Materials and Structures,2008,17(3):1-11
    [146] D. Croft, G. Shed and S. Devasia, Creep, hysteresis, and vibration compensationfor piezoactuators: atomic force microscopy application, Journal of DynamicSystems, Measurement, and Control,2001,123(1):35-43
    [147] M. Rakotondrabe, C. Clévy and P. Lutz, Hysteresis and vibration compensationin a nonlinear unimorph piezocantilever, Proceedings of IEEE/RSJinternational conference on intelligent robots and systems,2008.558-563
    [148] M. A. Janaideh and P. Krej í, An inversion formula for a Prandtl-Ishlinskiioperator with time dependent thresholds, Physica B,2011,406(8):1528-1532
    [149] B. J. Kenton and K. K. Leang, Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner, IEEE/ASME Transactions onMechatronics,2012,17(2):356-369
    [150] Z. Zhu, X. Zhou, Q. Liu, et al., Multi-objective optimum design of fast toolservo based on improved differential evolution algorithm, Journal ofMechanical Science and Technology,2011,25(12):3141-3149
    [151] Y. Qin, Y. Tian and D. Zhang, Design and dynamic modeling of a2-DOFdecoupled flexure-based mechanism, Chinese Journal of MechanicalEngineering,2011,25(4):688-694
    [152] Y. Qin, Y. Tian and D. Zhang, Decoupling control of a planar piezo-drivencompliant mechanism, Proceedings of15th International Conference onMechatronics Technology,2011.
    [153] Y. Gao, D. Zhang, C. W. Yu, et al., Detachment modeling of a novelworkpiece micro-positioning table under preloaded hertz contact, PrecisionEngineering,2002,26(1):83-92
    [154] J. N. Teoh, C. Du, G. Guo, et al., Rejecting high frequency disturbances withdisturbance observer and phase stabilized control, Mechatronics,2008,18(1):53-60
    [155] W.-J. Cao and X. Gao, Repetitive variable structure control of micro-actuatorswith periodic disturbance and parametric uncertainties, IEEE Transactions onMagnetics,2001,37(4):1902-1905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700