用户名: 密码: 验证码:
2D伺服阀数字控制的关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服系统具有功率重量大、动态响应速度快、抗负载刚度大等优点,广泛应用于航空航天、船舶、装备制造等领域。在电液伺服系统中,电液伺服阀起着机电信号转换以及功率放大作用,在很大程度上对整个系统的性能起到决定性作用。电液伺服阀的发展始终贯穿着电液控制技术整个发展历程,高性能电液伺服阀始终是流体控制领域发展的一大课题。随着信息技术、计算技术以及微电子技术的发展,电液伺服阀数字控制成为必然的发展趋势。电液伺服阀的数字控制一方面提高了整个系统的控制品质和管理水平,另一方面为本身的性能的提高带来了机遇——通过数字控制全面提高本身的动静态性能。
     由于2D伺服阀是利用单个阀芯的旋转和滑动的双运动自由度而设计的伺服螺旋机构实现功率放大功能,相对其他伺服阀具有结构简单、抗污染能力强、构成导控阀导控级的零位泄漏小、固有频率高、动态性能好等优点,因此,本论文就对2D伺服阀的数字控制关键技术进行研究,论文的主要研究内容和成果如下:
     1.对2D伺服阀的电—机械换转器的——感应子式同步电机(步进电动机)的数字控制进行了研究。建立了感应子式同步电机的静、动态数学模型;研究了感应子式同步电机输入输出特性以及电压控制和电流控制下的频率特性。由于电流控制下频宽主要受限于相位滞后,采用线性化方法和相平面方法分析了相位滞后,提出了相位补偿的方法;根据研究结果,提出了同步跟踪控制算法以保证感应子式同步电机转子无失步连续跟踪输入信号的变化,并具有良好的动静态特性。
     2.对2D伺服阀非线性数字颤振补偿技术进行了研究。为消除或抑制解决2D伺服阀因传动机构间隙所引起的滞环非线性,建立了2D伺服阀滞环颤振补偿数学模型,仿真分析了滞环颤振补偿技术;为消除因正重叠开口所引起的流量特性的死区,提出了死区的颤振补偿原理,仿真分析了2D伺服阀流量特性死区的颤振补偿。实验验证了2D伺服阀数字颤振补偿技术是有效性和理论分析的正确性。
     3.根据同步跟踪控制算法和2D伺服阀非线性数字颤振补偿技术,研制了以DSP芯片为核心的嵌入式控制器,并对电—机械转换器进行了动静态实验,实验表明该电—机械转换器具有良好的动静态性能,其重复精度小于1%,线性度小于0.5%,对应-3dB、-90。的频宽约为245Hz,阶跃响应的上升时间约为5.5ms。
     4.以2D伺服阀为对象对阀体进行了动静态特性研究。理论分析2D伺服阀伺服螺旋机构导控级零位泄漏和静态输入输出特性;建立了2D伺服阀伺服螺旋机构的动态模型,研究了其主要结构参数,如初始弓高、高低孔半径、敏感腔长度和系统压力等,对其频率特性和阶跃响应的影响。
     5.搭建了2D伺服阀性能测试平台,测试了2D伺服阀导控级零位泄漏、流量特性和重复特性以及的动态特性,实验表明,2D伺服阀具有较高的响应速度和控制精度以及良好的动态性能,对应-3dB、-90。的频宽约为140Hz,阶跃响应的上升时间约为8ms,最大百分比超调量为5.3%。
Since the electro-hydraulic servo system has the advantages of high power to weight ratio, fast dynamic response, large load stiffness and so on, it is widely being used in the application of aeronautics&astronautics, marine and equipment manufacturing area. In the electro-hydraulic servo system, the electro-hydraulic servo valve has the functions of both electro-mechanical signal transformation and power amplification, and therefore has a crucial influence on the performance of whole system. The development of electro-hydraulic servo valve is always associated with the development course of electric-hydraulic control technology. With the development of information technology, computational technology and microelectronics, digital control of electro-hydraulic servo valve is being an inevitable trend as digital control not only improves the control quality and management level of whole system but also bring an overall opportunity to entirely enhance static and dynamic characteristics of servo valve itself.
     The2D servo valve achieves power amplification through servo screw mechanism, whose working principle is based on the usage of dual DOFs of spool radial rotation and axial movement. Compared to other types of servo valve,2D servo valve possesses benefits of simple structure, high anti-pollution capability, neglectable null position leakage of pilot stage, high natural frequencies and fast dynamic response. In this thesis the key technologies of digital control for2D servo valve are researched and the main contents are as follows:
     1. The digital control technology for inductor-type synchronous motor (also called as hybrid stepping motor), which is used as electro-mechanical converter of2D digital servo valve, is researched. The static and dynamic mathematical model of inductor-type synchronous motor is established. The frequency response of input-output characteristics under voltage control and current control are studied. Since the frequency width under current control is mainly limited by phase lag, the linearization method and phase plane method are used to analyze phase lag problem and a phase compensation method is proposed. Finally a novel continuous synchronous tracking control algorithm is put forward to ensure rotor of electro-mechanical converter to continuously track input signal without step loss and therefore possesses excellent static and dynamic characteristics.
     2. The digital dither compensation for nonlinearities of2D digital servo valve is studied. To suppress and even eliminate hysteresis caused by backlash of valve transmission mechanism, the mathematical model of hysteresis compensation is established and simulation is performed. To eliminate dead zone of flow characteristic caused by positive overlap, the principle of dead zone compensation is proposed and the simulation of dither compensation for dead zone of flow characteristics of2D servo valve is performed. Finally the effectiveness of dither compensation technology and theoretical analysis are validated by experimental study.
     3. According to synchronous tracking control algorithm and dither compensation for nonlinearities of2D digital servo valve, an embedded controller based on high speed DSP chip is developed and experiment of static and dynamic characteristics of electro-mechanical converter is performed. The experimental results illustrate that the electro-mechanical converter has excellent static and dynamic characteristics whose repeatability is less than1%, linearity is less than0.5%, frequency width is approximately245Hz at-3dB and-90°,and rising time of step response is about5.5ms.
     4. The static and dynamic characteristics of2D digital servo valve are researched. The theoretical analysis of null position leakage of pilot stage, static and dynamic characteristics of servo screw mechanism are performed and the influence of main structure parameters to valve frequency characteristics and step response such as initial chord height, radius of high&low pressure hole, length of sensitive chamber and system pressure, are all studied.
     5. The test rig for performance of2D servo valve is built. The experiments of null position leakage of pilot stage, flow characteristics, repeatability and dynamic characteristics of2D servo valve are performed. The experimental results reveal that the2D digital servo valve has excellent response speed, repeatability and dynamic performance. Its frequency width is about140Hz approximately at-3dB and-90°, rising time of step response is only about8ms, the overshoot of maximum percentage is about5.3%.
引文
[1]Maskrey R H, Thayer W J. A brief history of electrohydraulic servomechanism [J]. ASME Journal of Dynamic Systems Measurement and Control, June,1978(6):1-7.
    [2]Blackburn J F, Reethof G and Shearer J L. Fluid Power Control [M]. New York:Technology Press of MIT and Wiley,1960.
    [3]Moog W C. Electrohydraulic servo valve [P]. US Patent:US2767689,1956-10-23.
    [4]苏东海,任大林,杨京兰.电液比例阀与伺服阀性能比较及前景展望[J].液压气动与密封,2008(4):1-4.
    [5]张弓,于兰英,吴文海等.电液比例阀的研究综述及发展趋势[J].流体机械,2008(8):32-37,19.
    [6]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007(11):162-164.
    [7]黄人豪,濮凤根.液压控制技术回顾与展望[J].液压气动与密封,2002(6):1-9.
    [8]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003(20):95-99.
    [9]J.C. Jones. Developments in Design of Electrohydraulic Control Valves from Their Initial Design Concept to Present Day Design and Applications[D], Monash University, Australia, November 1997.
    [10]Tinsley, Two Stage Valve[P]. English Patent:620688, May 1946.
    [11]Boyar R E, Johnson B A and Schmid L, Hydraulic Servo Control Valves, WADC Technical Report 55-29, Wright-Patterson Air Force Base, Ohio,1955:23-25.
    [12]Moog Jr. [P]. US Patent:US2625136, April 1950.
    [13]Carton H, [P]. US Patent:US2934765, April 1953
    [14]Atchley R D, Valve[P]. US Patent:US2884907, Aug.1957.
    [15]路甬祥等.电液比例控制技术[M].北京:机械工业出版社,1988.
    [16]REXROTH. Proportional and Servo Valve Technology[M]. The Hydraulic Trainer Volume2, REXROTH,2003
    [17]Murtaugh J. On-off Characteristics of an Electro-servo Control System[J]. Trans. ASME, J. Basic Eng.:254-270.
    [18]Hesse and Moller. Pulsemodulierte Steuerung von Magnetventilen [J]. Olhydraulik und Pneumatik, 1972(16):231-237.
    [19]Robert B V, Gary M B. Accurate position control of a pneumatic actuator using on/off solenoid valves [J]. IEEE/ASME Transactions on Mechatronics.1997,2(3):195-204.
    [20]Ahn K, Yokota S. Intelligent switching control of pneumatic actuator using on/off solenoid valves [J]. Mechatronics,2005,15(6):683-702.
    [21]Ramechandran, S, Ukrainetz, P R, Nikiforuk P N, Digital flow control valve-an evaluation[J],1985, Proceeding of international conference on fluid power, Hangzhou, China:508-512.
    [22]王春行,液压控制系统[M],北京:机械工业出版社,2011
    [23]moog公司样本:www.moog.com
    [24]Young-Bong Bang. Choon-Shik Joo, Kyo-11 Lee, etal. Development of a Two-Stage High Speed Electrohudraulic Servovalve Systems Using Stack-Type Piezoelectric Elements[J]. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003: 131-136.
    [25]鄂世举,曲兴田,杨志刚等.电液伺服阀新型驱动器设计[J].压电与声光,2003(2):152-154
    [26]周淼磊,杨志刚,田彦涛等.压电型喷嘴挡板阀及其控制方法研究[J].光学精密工程,2007(3):372-377.
    [27]王传礼,丁凡,崔剑等.基于GMA喷嘴挡板伺服阀的动态特性[J].机械工程学报,2006(10):23-26,36.
    [28]朱玉川,鲍和云,王传礼.超磁致伸缩伺服阀的参数设计与优化研究[J].中国机械工程,2008(20):2403-2406.
    [29]于宗保.超磁致伸缩材料转换器喷嘴挡板伺服阀的热变形补偿研究[J].煤炭学报,2006(3):396-400.
    [30]上海七0四研究所衡拓实业发展有限公司伺服阀部.射流管电液伺服阀专题讲座[J].液压与气动,2009(10):91-92.
    [31]黄增,候保国,方群等.射流管式与喷嘴挡板式电液伺服阀之比较[J].流体传动与控制,2007(7):43-45
    [32]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [33]Nascutiu L. Voice coil actuator for hydraulic servo valves with high transient performances [A]. Proceedings of IEEE international conference on automation, quality and testing, robotics [C]. Cluj-Napoca, Romania:IEEE,2006.185-190.
    [34]Wu Genmao, Research on static and dynamic performance of 2 way proportional throttle valve with displacement force feedback [C], ICFP'1985, Hangzhou, pp273-290
    [35]Wu P. Proposition of new type logic valve [J]. JSME 1988,154(498):404-410.
    [36]Wu P. The mathematical analysis and experiments of dynamic characteristics a poppet valve with series restriction chockes [J]. JSME,1987,153(493):2824-2810.
    [37]黄增,金瑶兰,李博.伺服比例阀的发展[J].液压与气动,2009(1):76-79
    [38]Marco D A. Linear-force motors enhance proportional valves [J]. Hydraulic and Pneumatics, 1998(6):14-15.
    [39]朱盘生MOOG(穆格)DDV伺服阀[J].液压与气动,1996(5):20-21.
    [40]姚建庚.直动式电液伺服阀的开发和应用[J].液压气动与密封,2004(2):6-10.
    [41]www.emg-automation.com
    [42]卢菊仙,李树立,焦宗夏.一种有限角度旋转式电液伺服阀[J].液压气动与密封,2005(4):40-42.
    [43]阮健,李胜,杨继隆.液压及气动阀直接数字控制的新途径[J].中国机械工程,2000(3):317-320.
    [44]方平,丁凡,李其朋等.高频动铁式电—机械转换器的研究[J].中国机械工程,2005(23):2090-2092,2097.
    [45]张弓,于英兰,柯坚.高频动圈式电—机械转换器[J].电机与控制学报,2007(3):298-302,305.
    [46]丁凡.无激磁线圈带放大器的双向比例电磁铁[P].中国专利:88101723.X,1992-07-01.
    [47]丁凡,崔剑,翁振涛.耐高压永磁双向旋转比例电磁铁[P].中国专利:200610049209.2,2008-04-23.
    [48]Li Qipeng, Ding Fan and Wang Chuanli. Novel Bidirectional Linear Actuator for Electrohydraulic Valves[J]. IEEE Transactions on Magnetics, Vol.41, NO.6, June 2005:2199-2201.
    [49]Cui Jian, Ding Fan and Li Qipeng. Novel Bidirectional Rotary Proportional Actuator for Electrohydraulic Rotary Valves[J]. IEEE Transactions on Magnetics, Vol.43, NO.7, July 2007: 254-3258.
    [50]崔剑,丁凡,李其朋.耐高压双向比例电磁铁的静态力矩特性[J].浙江大学学报(工学版),2007(9):1579-1581.
    [51]Shinichi YOKOTA, Kenichirou HIRAMOTO. An ultra high-speed electro-hydraulic servo valve by making use of a multilayered piezoelectric device (PZT). J. of JHPS,1989,20(7):604-610.
    [52]Murrenhoff H. Develop Trends in Fluid Power[J]. Konstruklion,1997(3):20-29.
    [53]Lindler Jason E and Anderson Eric H. Piezoelectric Direct Drive Servovalve[C], Industrial and Commercial Applications of Smart Structures Technologies, SPIE Paoer 4698-53, San Diego,2002
    [54]曲兴田,鄂世举,吴博达等.双压电晶片驱动喷嘴挡板式伺服阀[J].吉林工业大学(工学版),2005(2):152-156.
    [55]高春甫,鄂世举,杨志刚.伺服阀用压电型驱动器研究[J].中国机械工程,2005(16):1431-1434.
    [56]周淼磊,杨志刚,高巍等.高速精密压电型电液伺服阀及其控制方法[J].哈尔滨工业大学学报,2009(9):160-163.
    [57]Yun S, Lee K, Kim H et al. Development of the pneumatic valve with bimorph type PZT actuator [J]. Materials Chemistry and Physics,2006(97):1-4.
    [58]Sobocinski M, Juuti J, Jantunen H et al. Piezoelectric unimorph valve assembled on an LTCC substrate [J]. Sensors and Actuators A:physical,2009(149):315-319.
    [60]王传礼,丁凡.基于新型功能材料的高频响电液伺服阀[J].矿冶工程,2002(4):79-81.
    [61]王传礼,丁凡,方平.基于超磁致伸缩转换器喷嘴挡板阀的控制压力特性[J].机械工程学报,2005(5):127-131.
    [62]Goodfriend M, Sewell J, Jones C. Application of a magnetostrictive alloy, terfenol-D to direct control of hydraulic valves. SAE Paper 901581,1990.
    [63]Claeyssen F, Lhermet N, Leety R L et al. Actuators, transducers and motors based on giant magnetostrictive materials [J]. Journal of Alloys and Components.1997(258):61-73.
    [64]Takahiro Urai. Development of a direct drive servo valve using a giant magnetostrictive actuator [A]. Proceeding of the Second JHPS International Symposium on Fluid Power[C]. Tokyo,1993:131-135.
    [65]Shinichi Y, Kazuhiro Y, Kenichi B, et al. A small-size proportional valve using a shape-memory-alloy array actuator [A]日本机械学会论文集(B编)[C],2000:224-229.
    [66]米智楠,钱晋武.形状记忆合金微型阀的研制[J].机床与液压,2001(1):20-21.
    [67]Li Sheng, Ruan Jian and Pei Xiang. Analysis of Dynamic Response of Direct Actuated Digital Valve [A]. Proceedings of ISFP'20075th International Symposium on Fluid Power Transmission and Control[C],,Deidaihe, June,2007:269-272
    [68]阮健,李胜,杨继隆.电液(气)直接数字控制的新方法[J].浙江工业大学学报,1999,27(3):207-213.
    [69]王宣银,陶国良.广义脉码调制液压伺服控制的研究[J].机械工程学报,2000(12):14-20.
    [70]刘少军.高速开关电磁阀的现状及应用[J].液压与气动,1995(6):12-13.
    [71]Seilly A H. Colnoid Actuators——Further Developments in Extremely Fast Acting Solenoids[J]. SAE 810462:1770-1781
    [72]Seilly A H. HELENOID Actuators——A New Concept in Extremely Fast Acting Solenoids[J]. SAE 790119:426-435
    [73]Michael M. Schechter. Fast Response Multipole Solenoids[J]. SAE 820203:846-857.
    [76]赵晓燕HGDV脉冲调制开关数字阀的理论及应用研究[D].兰州:兰州理工大学,2004.
    [77]王尚勇,蔡社民,程昌圻.柴油机电控燃油系中的高速电磁阀设计[J].兵工学报,坦克装甲车与发动机分册,1996(2):37-41.
    [78]肖俊东,王占林.新型超磁致伸缩电液高速开关阀及其驱动控制技术研究[J].机床与液压 ,2006(1):80-83.
    [79]索海滔,张宗杰,王雪怀.柴油机电控喷油系统高速电磁阀的动态特性[J].华中理工大学学报,1998(5):66-68.
    [80]朱春雨,卢启龙,欧阳明高.电控柴油喷射用高速强力电磁阀的数字仿真与试验验证[J].车用发动机,1997(5):36-39.
    [81]Ramechandran, S, Ukrainetz, P R, Nikiforuk P N. Digital flow control valve-an evaluation,1985, Proceeding of international conference on fluid power, Hangzhou, China:508-512.
    [82]王东,周棣,首天成.数字液压阀的发展与研究[J].流体传动与控制,2008(2):18-21.
    [83]Li Sheng, Ruan Jian, Burton R, etal.2D Simplified Servo Valve[J]. Chinese Journal of Mechanical Engeering,2003(2):132-135.
    [84]Ruan J,Ukrainetz P, Burton R. Hydraulic bridge for pressure control in a P-Q multiple line segment control valve [J]. International Journal of Fluid Power,2003 (4):1-7.
    [85]Ruan J, Burton R, Ukrainetz P et al. Two-dimensional pressure control valve [J]. Proceedings of the Institution of Mechanical Engineers-Part C-Journal of Mechanical Engineering Science; 2001,215 (9):1031-1039.
    [86]Ruan J, Li S, Pei X.2D digital simplified servo valve[J]. Chinese Journal of Mechenical Engineering.2004,17(2):311-314.
    [87]阮健,裴翔,李胜.2D电液数字换向阀[J].机械工程学报,2000(3):86-89.
    [88]Ruan J, Burton R, Ukrainetz P. Direct actuated digital servo valve, The Ninth Scandinavian International Conference on Fluid Power, SICF'05, June 1-3,2005, Linkoping:450-461.
    [89]Ruan J, Ukrainetz P, Burton R. Frequency domain modelling and identification of 2D digital servo valve [J]. International Journal of Fluid Power,2000,1(2):76-85.
    [90]Ruan J, Burton R, Ukrainetz P. Some experimental considerations of stage control in digital valves. ASME, The Fluid Power and Systems Technology Division (Publication),2002, FPST, Vol 9:55-62.
    [91]阮健李胜裴翔俞浙青朱发明,2D阀控电液激振器,机械工程学报,2009(11):125-132
    [92]阮健,李胜,裴翔等.数字阀的分级控制及非线性[J].机械工程学报,2005,41(11):91-97.
    [93]杨尔庄,李晓亚,邓凌生等.比例/伺服阀使机器更聪明[J].现代驱动,2006(2):26-30
    [94]路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001(10):1-9
    [95]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J],液压与气动,2005(6):5-8
    [96]王宗培,孔昌平,李楚武等译.步进电动机及其控制系统[M].哈尔滨:哈尔滨工业大学出版社,1984.
    [97]阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版设,2000.
    [98]L. Sheng, R. Jian, P. Xiang, etal.2D Servo Valve with a Zero-overlap of Pilot Stage[A]. PROCEEDINGS of the 7th JFPS International Symposium on Fluid Power[C]. TOYAMA,2008: 261-266.
    [99]J. Ruan, R. Burton, P. Ukrainetz. An Investigation into the Characteristics of a Two Dimensional "2D" Flow Control Vavle[J]. Transactions of the ASME,2003(3):214-220.
    [100]Merritt H E. Hydraulic Control Systems. New York:John Wiley & Sons,1967.
    [101]Hori N, Pannala A, Ukrainetz P R, et al. Design of an electrohydraulic positioning system using a novel model reference control scheme[J]. ASME, Journal of Dynamic System, Measure and Control, 1989,111:284-392.
    [102]Ziaei K, Sepehri. Design of a Nonlinear Adaptive Controller for an Electrohydraulic Actuator[J]. ASME, Journal of Dynamic System, Measure and Control,2001,123:299-307
    [103]Sohl G A, Bobrow J E. Experiments and simulations on the nonlinear control of a hydraulic servosystem[J]. IEEE Trans. Control Syst. Technol.,1999,7:238-247.
    [104]Armstrong-Helouvrt B, Dupont P, Canudas de Wit C. Friction in servo machines:analysis and control methods[J]. Appl. Mech. Rev.,1994,47:356-36
    [105]Arafa H A, Rizk M. Identification and modeling of some electrohydraulic servo valve non-linearities[J]. J. of Mechanical Science,1987,201(C2):137-145
    [106]Kim Dean H, Tsao T C. A linearized electrohydraulic servovalve model for valve dynamics sensitivity analysis and control system design[J]. ASME, Journal of Dynamic System, Measure and Control,2000,122:179-187
    [107]圣国梁.基于MATLAB对齿轮间隙非线性动力学仿真研究[J].电子机械工程,2008,24(5):57-60
    [108]潘旭东,王广林,韩俊伟等.伺服阀新型叠合量液动测量系统的研制[J].液压与气动,2009(11):2-5.
    [109]陈鹏.智能化全自动电液伺服阀配磨系统[J].仪表技术传感器,1996(2):45-47.
    [110]Leandro dos Santos Coelho, Mauro Andre Barbosa Cunha. Adaptive cascade control of a hydraulic actuator with an adaptive dead-zone compensation and optimization based on evolutionary algorithms[J]. Expert System with Applications,38(2011):12262-12269
    [111]Liu Song and Yao Bin. Programmable Valves:a Solution to Bypass Deadband Problem of Electro-Hydrau;ic System[J]. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June 2004:4438-4443.
    [112]王庆丰,顾临怡,袁犹坤等.电液比例高精度定位的变死区自学习补偿技术[J].机床与液压,1994(5):249-251.
    [113]刘白雁.电液比例方向阀死区的智能补偿[J].机床与液压,2002(2):89-90.
    [114]苏奎峰,吕强,常天庆等TMS320X2812x DSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008.
    [115]谢宝昌,任永德.电机的DSP控制技术及其应用[M].北京:北京航空航天大学出版社,2005.
    [116]史敬灼.步进电动机伺服控制技术[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700