用户名: 密码: 验证码:
基于壳聚糖与海藻酸钠的改性聚合物的制备结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业带来的环境污染的加剧,水污染已成为全球化问题,水处理成为世界各国环境保护工作的重点。壳聚糖具有环境相容性好、可再生、资源丰富以及高度可降解性等优点,在水处理领域已引起越来越多的关注。海藻酸钠具有低毒性,良好的生物相容性、增稠性、成膜性、凝胶性能以及高度可降解性,并且价廉易得,这些独特性能使其在众多领域中获得了广泛应用,而其内部的多孔结构使其成为良好的吸附材料。
     壳聚糖分子链上含有大量的伯氨基,海藻酸钠分子链上含有大量的羧基,若将这两种天然高分子材料经过共混、交联等改性后制备出壳聚糖/海藻酸钠改性聚合物,作为高分子絮凝剂,有可能发挥二者各自的优点,产生性能上的协同作用,具有分子量分布广,活性基团点多,结构多样化、絮凝吸附性能好、安全无毒、可完全生物降解、原料来源丰富,价格低廉等特点,将是一种有发展前景的“绿色絮凝剂”。但迄今尚未见利用壳聚糖/海藻酸钠改性聚合物作絮凝剂的报道。
     本文首先以壳聚糖、海藻酸钠作为主要原料,利用壳聚糖和海藻酸钠分子间的静电作用,采用直接法制备了壳聚糖/海藻酸钠改性聚合物(M-CS/SA),用FTIR、SEM、X-RD及TGA等手段表征了其结构和性能。结果表明:SA的引入破坏了CS分子链间的有序排列,M-CS/SA表现为非晶态,具有多孔结构,其热稳定性比CS增加。对M-CS/SA用于印染废水处理及Cu~(2+)和Cr)2O_72-的吸附进行了研究。分别考察了M-CS/SA用量、吸附时间和pH值等因素对吸附Cu~(2+)、Cr2O72-的影响。吸附动力学研究表明,M-CS/SA对Cu~(2+)的吸附过程较为符合拟一级动力学方程,对Cr2O72--的吸附过程较为符合拟二级动力学方程。M-CS/SA对浊度去除率好,而对COD去除率不够理想,对Cu~(2+)和Cr2O72-的吸附效果比壳聚糖好。
     为了优化壳聚糖/海藻酸钠聚合物的絮凝性能,采用醚化方法合成了壳聚糖/海藻酸钠交联聚合物(E-CS/SA)。FTIR、SEM、X-RD、TGA等分析测试结果表明:壳聚糖与海藻酸钠之间产生了明显的化学反应,M-CS/SA为非晶态物质,呈多孔结构,且比M-CS/SA更细密。以脱色率、COD去除率、除浊度等作为评价指标,确定了反应的最佳条件,同时也考察了各反应条件对产率的影响,以及脱乙酰度、溶液的pH值、聚合物的投加量、沉降时间、不同的水溶性染料等对E-CS/SA絮凝性能的影响。对E-CS/SA用于印染废水的处理进行了研究,发现其对印染废水有很好的吸附效果,在最佳反应条件下,E-CS/SA产率可达到80%以上,对实际染料废水的脱色率达到86%,COD去除率达92%,除浊率达97%。
     考察了E-CS/SA对重金属离子Cr2O72-、Pb~(2+)、Cd~(2+)、Cu~(2+)、Zn~(2+)的吸附率和吸附容量,并对其吸附动力学进行了探讨,发现E-CS/SA对重金属离子吸附具有较快的动力学速度,在最佳条件下,E-CS/SA对Cr2O72-、Pb~(2+)、Cd~(2+)、Cu~(2+)、Zn~(2+)的吸附率分别达到88%、94%、95%、80.43%和58.33%,对Pb~(2+)、Cd~(2+)吸附容量分别为56.6mg/g、47.0mg/g。动力学研究表明:E-CS/SA对Zn~(2+)、Cu~(2+)吸附机理为化学吸附为主的单分子层吸附机制,且吸附速度明显比CS更快,说明了E-CS/SA的活性基团增多,对金属离子的螯合能力增强。扫描电镜照片显示,E-CS/SA改性聚合物吸附Cu~(2+)以后表面不再光滑。
     为了改善醚化法所得聚合物的稳定性及进一步提高絮凝性能,以环氧氯丙烷作交联剂,制备了环氧氯丙烷交联壳聚糖/海藻酸钠(C-CS/SA)。以交联度作为评价指标,利用正交试验设计对交联过程的各个影响因素(CS:SA质量比、环氧氯丙烷用量、反应温度、反应时间)进行了分析,得出了交联过程的最佳制备条件。通过FTIR、SEM、X-RD和TGA等手段对C-CS/SA的结构形态进行了表征,结果表明:反应是按照设定的路径进行;SA的引入破坏了CS的晶体结构;C-CS/SA形成更好的空间结构,表面具有大量空穴结构,有利于吸附性能的提高。
     利用C-CS/SA对Cu~(2+)的吸附,讨论了吸附时间、溶液pH值、絮凝剂投加量、交联度对吸附性能的影响,同时探讨了吸附动力学和吸附等温线,并将其应用于实际印染废水处理。结果表明:在实际印染废水处理中,C-CS/SA比M-CS/SA和E-CS/SA效果好。同时,探讨了C-CS/SA的溶胀度与溶胀时间、溶液pH、温度等条件的关系,得出了最佳的溶胀条件;探讨了C-CS/SA的吸附性能(脱色率、除浊率、COD去除率)与交联度的关系。在最佳条件下,C-CS/SA对印染废水的脱色率可达96.5%,COD去除率为95.2%,浊度去除率为99.5%。
     最后,对三种制备CS/SA改性聚合物的方法和所得产物的吸附性能进行了比较。三种制备方法各有优缺点,并且所得产物性能不尽相同,可根据具体情况选择。在对印染废水处理的实际应用中,以C-CS/SA为优选。
With the pollution caused by industrialization, water pollution has become a globalproblem. Therefore, water treatment has become an important facet of protecting environmentfor every country. Chitosan has good environmental compatibility, reproducibility, richresources and high biodegradation. It has aroused more and more attention in water treatmentfield. Sodium alginate has low toxicity, good biocompatibility, thickening property, the filmforming ability, gel performance, high biodegradation and cheap. These unique propertiesmake sodium alginate have wide applications in many fields, and its internal porous structuremakes it a good adsorption material.
     There are a large number of amino group on chitosan molecular chains, and there areplenty of carboxyl group on sodium alginate molecular chains. After blending andcrosslinking modification of the two natural polymers, the obtaining modified polymer basedchitosan and sodium alginate as a flocculant will have broad molecular weight distribution,many of active group points and structural diversity. It can be completely biodegradable andhas good "environmental acceptability". It will be a kind of "green flocculant ". Howeverthere is no report of chitosan/sodium alginate modified polymer as flocculant till now.
     Using chitosan and sodium alginate as main raw materials, chitosan/sodium alginatepolymer (M-CS/SA) was prepared via electrostatic interaction between chitosan and sodiumalginate. The product was characterized with FTIR, SEM, X-RD and TGA. It was showed thatthe introduction of SA destroyed the regularity of CS molecular chains; M-CS/SA became apolymer with amorphous porous structure. Its thermal stability is better than CS. TheM-CS/SA was used for dyeing wastewater treatment and Cu~(2+)and Cr2O72-adsorption. Theeffects of adsorption time, pH value and M-CS/SA dosage on the adsorption Cu~(2+)and Cr2O72-were investigated. The adsorption of Cu~(2+)on M-CS/SA was followed the pseudo-first-orderdynamics, And the adsorption of Cr2O72-on M-CS/SA was followed the pseudo-second-orderdynamics. M-CS/SA is good for turbidity removal rate, but it is not ideal on the COD removalrate. M-CS/SA is better than CS to Cu~(2+)and Cr2O72-adsorption.
     In order to optimize the performance of chitosan/sodium alginate polymer flocculant,chitosan/sodium alginate polymer (E-CS/SA) was synthesized using the etherification method.Its structure and properties were investigated by using FTIR, SEM, X-RD, TGA, The resultsshow that: chitosan has obvious chemical reaction with sodium alginate. The structure ofM-CS/SA is amorphous and porous, and is more fine than CS. Taking decoloring rate, CODremoval rate and turbidity as evaluation indexes, the optimal conditions were found. At thesame time, the effects of the reaction conditions on the yield were investigated. The effects of deacetylation degree, solution pH value, polymer dosage, sedimentation time, different watersoluble dyes on the flocculation performance were also investigated. The product wasexplored to use for printing and dyeing wastewater treatment. It was found that the producthas a good adsorption effect on printing and dyeing wastewater. Under the optimum reactionconditions, E-CS/SA yield can reach more than80%. To the actual dye wastewater,decolorizing rate of E-CS/SA reached86%, COD removal rate reached92%, and turbidityremoval rate reached97%.
     The effect of E-CS/SA on Cr_2O_7~(2-),Pb~(2+),Cd~(2+),Cu~(2+),Zn~(2+)adsorption rate and the adsorptioncapacity was investigated. The adsorption dynamics was studied. The adsorption of E-CS/SAto heavy metal ions has quicker dynamic speed. In the best conditions, the adsorption rate ofE-CS/SA to Cr2O7~(2-),Pb~(2+),Cd~(2+),Cu~(2+),Zn~(2+)were88%,94%,95%,80.43%and58.33%respectively. The adsorption capacity to Pb~(2+),Cd~(2+)were56.6mg/g and47.0mg/g. Dynamicsresearch showed that: the adsorption mechanism of E-CS/SA to Cu~(2+)and Zn~(2+)ismonomolecular layer adsorption mechanism in which chemical adsorption is primarily. Andadsorption speed is obviously faster than CS, which proved once again that E-CS/SA withmore active groups can increased chelating ability to metal ion. Scanning electron microscopyimages showed that the surface of E-CS/SA after adsorption Cu~(2+)was no longer smooth.
     In order to improve the polymer stability and flocculation performance, a new kind ofcrosslinked chitosan/sodium alginate flocculant(C-CS/SA) was prepared usingepichlorohydrin as the crosslinking agent. With degree of crosslinking as evaluation index,using the orthogonal experimental design to analyze the influence factors of crosslinkingprocess (CS: SA ratio, epichlorohydrin dosage, reaction temperature, reaction time), the bestpreparation conditions of the crosslinking process were obtained.
     The structure of the product was characterized by means of FTIR, SEM, X-RD and TGA.The results showed that the reaction was according to the path of the set, the introduction ofSA destroyed CS crystal structure, C-CS/SA formed better spatial structure, the surface has alarge number of holes, which is beneficial to the improvement of the performance of theadsorption.
     Using the polymer (C-CS/SA) to adsorption Cu2+, influence of adsorption time, thesolution pH value, flocculant dosage and degree of cross-linking on the adsorptionperformance were discussed. At the same time adsorption dynamics and adsorption isothermwere discussed, and the polymer was applied to the actual printing and dyeing wastewatertreatment. The results showed that C-CS/SA was the best in C-CS/SA, M-CS/SA andE-CS/SA on the actual printing and dyeing wastewater treatment.To obtain the best swelling conditions, the relationships of the polymer swelling degree with swelling time, solution pHand temperature were investigated, and the relationships of adsorption performance of thepolymer with degree of cross-linking were discussed. In the best conditions of crosslinkingand swelling, the decolorizing rate of C-CS/SA to printing and dyeing wastewater can reach96.5%, COD removal rate was95.2%, the turbidity removal rate is99.5%.
     Finally, three methods of the preparation of CS/SA polymer and the adsorptionperformance of the products were compared. Three preparation methods have theiradvantages and disadvantages, and the products performance is not the same, which can bechosen in practical applications. In the printing and dyeing wastewater treatment, C-CS/SAwas the best.
引文
[1]秦益民.利用甲壳胺和海藻酸钠处理染整废水[J].纺织学报,2005,26(5):137-139
    [2] Susumu K. Effectiveness of natural polyelectrolytes in water treatment[J]. JournalAWWA,1991,10:88-91
    [3] Majeti N, Kumar V.R. A review of chitin and chitosan applications[J]. Reactive andFunctional Polymers,2000,46:1-27
    [4] Fereidoon S, Janak K, You-Jin J.Food applications of chitin and chitosans[J]. Trends inFood science&Technology,1999,10:37-51
    [5] Knorr D.Use of chitinous polymers in food-A challenge for food research anddevelopment[J]. Food Tech.,1984,38:85-97
    [6] Selmer-Olsen E, Ratnaweera H.C, Pehrson R. A novel treatment process for dairywastewater with chitosan produced from shrimp-shell[J]. Wat.Sci.Tech.,1996,34(11):33-40
    [7] Ana G, Dietrich K. Effects of chitosan on yield and compositional data of carrot andapple juice [J]. Food.Sci.,1988, l53(6):1707
    [8] Hye K. J, Sook J, Kyoon N, et al. Chitosan as a coagulant for recovery of proteinaceoussolids from tofu waste water [J]. J Agric Food Chem.,1994,42:1834-1838
    [9]张彤,徐莲英,蔡贞贞.壳聚糖澄清剂精制中药水提液的应用前景[J].中国中药杂志,2001,26(8):516-519
    [10]张彤,徐莲英,陶建生,等.壳聚糖用于部分单味中药浸提液澄清效果的研究[J].中草药,1999,30(10):744-747
    [11]谢昕.天然高分子的改性及其在水处理中的应用[D].兰州:西北师范大学高分子化学与物理系,2003
    [12]迟赫,杨维,赵海东,等.壳聚糖改性及其衍生物在水处理中的应用[J].辽宁化工,2009,38(10):723-725
    [13]张光华,谢曙辉,郭炎,等.一类新型壳聚糖改性聚合物絮凝剂的制备与性能[J].西安交通大学学报,2002,36(5):541-544
    [14]Yang Ding, Yi Zhao, Xia Tao, et al. Assembled alginate/chitosan micro-shells forremoval of organic pollutants [J]. Polymer,2009,50(23):2841-2846
    [15]司晶星,赵文甲,丁莉,等.絮凝剂的应用现状和研究发展趋势[J].科技天地,2009,(20):171-172
    [16]王艳,苗康康等,胡登卫,等.絮凝剂的研究进展[J].化工时刊,2010,24(08):53-58
    [17]张育新,康勇絮.絮凝剂的研究现状及发展趋势[J].化工进展,2002,21(11):799-804
    [18]陈金媛,陈梅兰,孙国良.高分子絮凝剂用于造纸黑液处理的研究[J].工业水处理,2002,22(5):42-44
    [19]马德强.无机絮凝剂的工业应用[J].炼油与化工,2011,(01):53-54
    [20]郑影奇,舒生辉.絮凝剂在水处理中的应用现状和发展前景[J].广西轻工业,2011,(02):87-88
    [21]Morgan J.W, Forster C.F, Evison L. A comparative study of the nature of biopolymersextracted from anaerobic and activated sludges[J]. Water Research,1990,24(6):743-750
    [22]杨延梅,周富春.微生物絮凝剂-絮凝剂发展的新方向[J].重庆交通学院学报,2002,21(1):129-132
    [23]熊焕嘉,刘峙嵘.絮凝剂的开发及其应用进展[J].油气田环境保护,2011,(02):31-33
    [24]倪岩,李玉文.水处理有机絮凝剂中合成有机高分子絮凝剂的研究与发展[J].内蒙古科技与经济,2011,(13):95-96
    [25]张永超,冯喆.有机絮凝剂的机理及进展[J].加工应用,2010,(09):79-85
    [26]张世军,李思健.芋艿淀粉/丙烯酰胺接枝共聚物的合成及其对酒糟废水的处理[J].环境保护,2000(5):45-46
    [27]具本植,张淑芬,杨锦宗.交联阳离子淀粉的制备及其脱色性能[J].应用化学,2001,18(6):477-480
    [28]周国平,罗士平,孙英.接枝羧基淀粉的制备与应用[J].江苏石油化工学院学报,2002,14(1):13-15
    [29]王欣.聚丙烯酰胺/淀粉接枝共聚物的合成与应用[J].辽宁化工,2001,30(4):164-165
    [30]尹华.淀粉改性阳离子絮凝剂的制备及其絮凝性能研究.环境科学与技术[J].2000,8:13-15
    [31]王杰,肖锦,詹怀宇.两性高分子絮凝剂的制备及其应用研究环境化学[J].2000,20(3):185-190
    [32]Ndabigengesere A, Narasiah K.S, Talbot B.G. Active agents and mechanism ofcoagulation of turbid waters using Moringa oleifera[J]. Wat.Res.,2000,29(2):703-710
    [33]吴冰艳,余刚.新型脱色絮凝剂木素季胺盐的研制及其絮凝性能与机理的研究[J].化工环保,1997,17:268-272
    [34]吴根,罗人明.改性壳聚糖絮凝剂VCG的制备[J].水处理技术,2001,27(1):39-41
    [35]唐琼,张新申,李正山.有机絮凝剂的研究现状及其应用前景[J].中国皮革,2001,31(21):29-32
    [36]崔慧贞,钟慧妙,翁方芳.有机/无机复合絮凝剂的研究与应用[J].广西轻工业,2010,(06):88-92
    [37]汤心虎,尹华,谭淑英等.无机/有机复合絮凝剂对碱性玫瑰精B的脱色研究[J].环境科学与技术,2003,26(03):41-43
    [38]张凯松,周启星,魏树和,等.新合成复合絮凝剂HECES絮凝性能研究[J].应用生态学报,2003,14(5):789-793
    [39]Xiao-Jun Yang, Kai Yang,Mo Yang. Enhanced primary treatment of low-concentrationmunicipal wastewater by means of bio-flocculant Pullulan[J]. Journal of ZhejiangUniversity-Science A,2007,8(5):719-723
    [40]高孟臣,张馨予,曲东旭.浅谈微生物絮凝剂(MBF)物质组成和应用[J].山西建筑,2010,36(16):147-148
    [41]冯艳丽,王玉娥.微生物絮凝剂的研究及其应用[J].科技信息,2010,15:779
    [42]李慧颖.微生物絮凝剂及其水处理应用和发展[J].北华航天工业学院学报,2010,20(02):30-31
    [43]李达,单爱琴.浅谈微生物絮凝剂[J].环境科学,2011,(S1):134-136
    [44]要玲.微生物絮凝剂的研究及其应用[J].河北化工,2010,33(10):11-13
    [45]刘程飞.用生物絮凝剂(普鲁兰)处理原水浊度[D].武汉:华中科技大学,2006
    [46]赵艳,李风亭.天然淀粉致性絮凝剂研究与应用概况[J].水处理技术,2005,31(12):1-4
    [47]任昭,李瑞利,郝磊磊.有机高分子絮凝剂的研究进展[J].科学前沿,2011,(25):445-461
    [48]姜红波.有机高分子絮凝剂的作用机理研究进展[J].贵州化工,2011,36(01):23-25
    [49]Mohamed I.Khalil, A. Preparation and evaluation of some cationic starch derivatives asflocculants[J]. Starch,2001,53:84-89
    [50]佟瑞利,赵娜娜,刘成蹊,等.无机、有机高分子絮凝剂絮凝机理及进展[J].河北化工,2007,30(03):3-6
    [51]郭玲香.基于数学形态学的高聚物絮凝作用机理的定量化研究[J].环境科学报,2002,22(06):716-720
    [52]郭玲香,胡明星.高聚物絮凝作用机理的定量化研究[J].煤炭学院,2002,27(05):539-543
    [53]欧阳钺,卢灵发,牛指成.甲壳素、壳聚糖的化学修饰及其功能[J].海南师范学院学报(自然科学版),2000,(01):48-54
    [54]俞继华,冯才旺,唐有根.甲壳素和壳聚糖的化学改性及其应用[J].中南工业大学化学系,1979,(03):30-34
    [55]冯永巍.壳聚糖的化学改性及其衍生物的抑菌活性研究[D].无锡:江南大学,2011
    [56]Kotze A F, Luessen H I, de Leeuw B J, et al. N-trimeth chitosan chloride as apotential absorptio nenhancer across mucosal surface[J]. Pharm Res,1997,24(9):197
    [57]杨俊玲.甲壳素和壳聚糖的化学改性研究[J].天津工业大学学报,2001,20(5):79-82
    [58]Jacek D. Some aspects of the reaction between chitosan and formaldehyde[J].Maccromol Sci. Chem.,1983,20(8):87
    [59]唐振兴,钱俊青,葛立军,等.甲壳素/壳聚糖的化学改性及其研究进展[J].杭州化工,2003,33(4):16-19
    [60]陈煜,陆铭,罗运军.甲壳素和壳聚糖的接枝共聚改性[J].高分子通报,2004,4(2):54-61
    [61]鲁从华,罗传秋,曹维孝.壳聚糖的改性及其应用[J].高分子通报,2001,6:46-51
    [62]Wei Deqing, Luo Xiaojun, Deng Ping, et al. Study on the emulsion graftcopolymerization of butyl acrylated onto chitosan[J]. Acta Polym Sinica,1995,(4):427-428
    [63]Ramesh A, Hasegawa H, Sugimoto W, et al. Adsorption of gold(Ⅲ), platinum(IV) andpalladium(II) onto glycine modified crosslinked chitosan resin[J]. BioresourceTechnology,2008,99(9):3801-3809
    [64]Jeon C, H ll W H. Chemical modification of chitosan and equilibrium study for mercuryion removal[J]. Water Research,2003,37(19):4770-4780
    [65]唐星华,童永芬,金仲文,等.杯芳烃衍生物改性壳聚糖的合成及吸附性能研究[J].高分子材料科学与工程,2007,23(03):243-246
    [66]Justi K.C, Fávere V.T, Laranjeira M.C.M, et al. Kinetics and equilibrium adsorption ofCu(II), Cd(II), and Ni(II) ions by chitosan functionalized with2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol[J]. Journal of Colloid and Interface Science,2005,291(2):369-374
    [67]杨庆,梁伯润,窦丰栋,等.以乙二醛为交联剂的壳聚糖纤维交联机理探索[J].纤维素科学与技术,2005,13(4):13-18
    [68]谢英,李明春,辛梅华,等.交联壳聚糖微球的制备及吸附性能研究[J].环境科学与技术,2007,30(11):25-26
    [69]谢燕华,李适宇,王飞,等.质子化交联壳聚糖对水中高氯酸根的吸附特性研究[J].环境科学,2009,30(9):2580-2585
    [70]朱华跃,蒋茹.交联壳聚糖膜制备及对酸性大红染料吸附作用[J].河北科技大学学报,2009,30(1):54-57
    [71]Kamari A, Wan Ngah S.W, Chong M.Y, et al. Sorption of acid dyes onto GLA andH2SO4cross-linked chitosan beads[J]. Desalination,2009,249(3):1180-1189
    [72]杨玉静,夏金虹,郑全英.交联壳聚糖多孔微球吸附亮绿的研究[J].化工技术与开发,2009,38(1):45-48
    [73]王学刚,王光辉,谢志英.交联壳聚糖吸附处理低浓度含铀废水[J].金属矿山,2010(9):133-136
    [74]Chen A.H, Liu S.C, Chen Y.C, et al. Comparative adsorption of Cu(II), Zn(II), andPb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin[J].Journal of Hazardous Materials,2008,154(1-3):184-191
    [75]葛亚芳,李明春,辛梅华,等.壳聚糖固载环糊精微球的制备及吸附硝基酚[J].化工进展,2010,29(2):233-237
    [76]张兴松.酮戊二酸壳聚糖微球的制备及其在水处理中的应用研究[D].福建:华侨大学,2007
    [77]夏文水,陈洁.甲壳素和壳聚糖的化学改性及其应用[J],无锡轻工业学院学报,1994,13(2):162-170
    [78]Cao Z, Lai S. Studies on synthesis and adsorption proper ties of chitosan cross-linked byg lutaraldehyde and Cu (II) as template under microwave irradiat ion [J]. EuropeanPolymer Journal,2001,37(10):2141-2143
    [79]曲荣君,刘庆俭.镍(II)模板一缩二乙二醇双缩水甘油醚交联壳聚糖的合成及其吸附特性[J].环境化学,1996,15(3):214-219
    [80]曲荣君,刘庆俭. PEG双缩水甘油醚交联壳聚糖的制备及其对金属离子的吸附性能[J].环境化学,1996,15(1):41-46
    [81]Oshita K, Oshima M, Gao Y, et al. Adsorption Behavior of Mercury and Precious Metalson Cross-Linked Chitosan and the Removal of Ultratrace Amounts of Mercury inConcentrated Hydrochloric Acid by a Column Treatment with Cross-Linked Chitosan[J].Analytical Sciences,2002,18(10):1121-1125
    [82]Wan Ngah S.W, Ghani S, Kamari A. Adsorption behaviour of Fe(II) and Fe(III) ions inaqueous solution on chitosan and cross-linked chitosan beads[J]. Bioresource Technology,2005,96(4):443-450
    [83]Azlan K, Wan W.N, Lai L. Chitosan and chemically modified chitosan beads for aciddyes sorption[J]. Journal of Environmental Sciences,2009,21(3):296-302
    [84]徐慧,仵彦卿,刘预.新型壳聚糖用于地下水中Pb2+的吸附性能研究[J].装备环境工程,2010,7(5):42-45
    [85]Boddu V.M, Abburi K, Talbott J.L, et al. Removal of arsenic (III) and arsenic (V) fromaqueous medium using chitosan-coated biosorbent[J]. Water Research,2008,42(3):633-642
    [86]蒋明,娄金生,谢水波,等.壳聚糖絮凝剂处理水源水中有机物的试验研究[J].水处理技术,2005,31(5):15-18
    [87]Do an M, Alkan M. Removal of methyl violet from aqueous solution by perlite[J].Journal of Colloid and Interface Science,2003,267(1):32-41
    [88]Koumanova B, Peeva-Antova P. Adsorption of p-chlorophenol from aqueous solutionson bentonite and perlite[J]. Journal of Hazardous Materials,2002,90(3):229-234
    [89]Talip Z, Eral M, Hi s nmez ü. Adsorption of thorium from aqueous solutions byperlite[J]. Journal of Environmental Radioactivity,2009,100(2):139-143
    [90]Swayampakula K, Boddu V. M, Nadavala S. K, et al. Competitive adsorption of Cu (II),Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coatedperlite beads as biosorbent[J]. Journal of Hazardous Materials,2009,170(2-3):680-689
    [91]Hasan S, Krishnaiah A, Ghosh T. K, et al. Adsorption of Divalent Cadmium (Cd(II))from Aqueous Solutions onto Chitosan-Coated Perlite Beads[J]. Industrial&EngineeringChemistry Research,2006,45(14):5066-5077
    [92]Hasan S, Ghosh T.K, Viswanath D.S, et al. Dispersion of chitosan on perlite forenhancement of copper(II) adsorption capacity[J]. Journal of Hazardous Materials,2008,152(2):826-837
    [93]张爱丽,刘玥,周集体,等.壳聚糖复合树脂对亚硝酸盐氮的吸附性能[J].环境科学,2009,30(2):463-468
    [94]孔爱平,王九思,武鹏华,等.无机与有机复合絮凝剂PAFC—CTS的制备及其在废水处理中的应用[J].水处理技术,2009,35(4):86-88
    [95]曾德芳,余刚,张彭义,等.絮凝剂用壳聚糖的中试生产研究[J].环境科学,2002,23(1):62-65
    [96]周亚平,刘护群,杜首成,等.甲壳素-壳聚糖对皂土悬浮液的絮凝[J].物理化学学报,1993,9(1):77-83
    [97]Chihpin Huang, Yin Chen. Coagulation of colloidal particles in water by chitosan[J].Chem.Tech.Biotechnol,1999,66:227-232
    [98]Matthew A, Hearn J. Flocculation of model latex particles by chitosans of varyingdegrees of acetylation[J]. Langmuir,2000,16(11):4906-4911
    [99]Domard A., Rinaudo M. et al. Adsorption of chitosan and a quarternized derivative onkaolin[J]. Appl. Polym.Sci.,1989,38:1799-1806
    [100]蒋挺大.甲壳素[M].北京:化学工业出版社,2003:33-39
    [101]陈夕.壳聚糖在水处理中的应用研究进展[J].贵州化工,2010,35(4):33-36
    [102]施国键,乔俊莲,王国强,等.活化粉煤灰改性壳聚糖絮凝除藻的研究[J].环境污染与防治,2009,31(9):45-48
    [103]宋力.水溶性壳聚糖对水源处理研究[J].水处理技术,2009,35(1):54-56
    [104]程国君,沈琦,于秀华等.不同分子量壳聚糖配合PAC絮凝性能研究[J].安徽理工大学学报,2009,29(4):36-38
    [105]袁毅桦,赖兴华,陈纯馨,等.壳聚糖对印染废水的絮凝作用和脱色效果[J].应用化学,2000,17(2):217-218
    [106]丁仕强.壳聚糖复合絮凝剂处理印染废水[N].科技创新导报,20101:24-25
    [107]李志洲. N, O-羧甲基壳聚糖的制备及其在印染废水处理中的应用研究[J].印染助剂,2010,27(11):43--44
    [108]郁平,仇旭,张曼,等.壳聚糖对活性染料的脱色效果[J].南通大学学报,2011,10(1):65-66
    [109] Wang J.P, Chen Y.Z, Yuan S.J, et al. Synthesis and characterization of a novel cationicchitosan-based occulant with a high water-solu-bility for pulp mill wastewatertreatment[J]. Water Research,2009,(43):5267-5275
    [110]王雪源,严长浩,王国忠.改性壳聚糖生物质吸附剂对Pb(Ⅱ)的吸附研究[J].精细石油化工,2011,28(1):64-69
    [111]李春光,郑宾国,孔殿超.壳聚糖吸附废水中的Cr(VI)工艺研究[J].工业安全与环保,2011,37(5):1-2
    [112]王磊,林俊雄,汪澜,等.改性壳聚糖絮凝丝胶蛋白质废水的动力学研究[J].丝绸,2011,48(12):1-3
    [113]于晓彩,于洋,周亚婷.壳聚糖处理味精废水的研究[J].沈阳化工学院学报,2009,23(1)13-16
    [114]樊丽华,程俊,秦巳麒.羧甲基壳聚糖絮凝剂的研制及其应用研究[J].环境科学与技术,2009,32(11):84-87
    [115]陈津端,罗道成,刘能铸,等.用改性壳聚糖对城市未达标排放污水进行再处理[J].湖南工程学院学报,2002,12(2):61-64
    [116]冯玉杰,金永新,孙晓君,等.壳聚糖季铵盐处理玉米酒精清糟液的研究[J].环境污染与防治,2002,24(3):129-131
    [117] Hagen A, Skjak-Braek G, Dornish M. Pharmacokinetics of sodium alginate in mice [J].European Journal of Pharmaceutical Sciences,1996,4:100
    [118] Gombotz W.R, Wee S. Protein release from alginate matrices[J]. Advanced DrugDelivery Reviews,1998,31(3):267-285
    [119] Banerjee A, Nayak D, Lahiri S. A new method of synthesis of iron doped calciumalginate beads and determination of iron content by radiometric method[J]. BiochemicalEngineering Journal,2007,33(3):260-262
    [120] Jeon C, Park J.Y, Yoo Y.J. Novel immobilization of alginic acid for heavy metalremoval[J]. Biochemical Engineering Journal,2002,11(2):159-166
    [121] Lamelas C, Avaltroni F, Benedetti M, et al. Quantifying Pb and Cd Complexation byAlginates and the Role of Metal Binding on Macromolecular Aggregation[J].Biomacromolecules,2005,6(5):2756-2764
    [122] Ar ca M.Y, Ka ar Y, Gen. Entrapment of white-rot fungus Trametes versicolor inCa-alginate beads: preparation and biosorption kinetic analysis for cadmium removalfrom an aqueous solution[J]. Bioresource Technology,2001,80(2):121-129
    [123] Park H.G, Kim T.W, Chae M.Y, et al. Activated carbon-containing alginate adsorbentfor the simultaneous removal of heavy metals and toxic organics[J]. ProcessBiochemistry,2007,42(10):1371-1377
    [124] Lai Y, Annadurai G, Huang F, et al. Biosorption of Zn(II) on the different Ca-alginatebeads from aqueous solution[J]. Bioresource Technology,2008,99(14):6480-6487
    [125] Chen J.P, Hong L, Wu S, et al. Elucidation of Interactions between Metal Ions and CaAlginate-Based Ion-Exchange Resin by Spectroscopic Analysis and ModelingSimulation[J]. Langmuir,2002,18(24):9413-9421
    [126] Lagoa R, Rodrigues J.R. Kinetic analysis of metal uptake by dry and gel alginateparticles[J]. Biochemical Engineering Journal,2009,46(3):320-326
    [127] Hagen A, Skjak B.G, Dornish M. Pharmaco kinetics of sodium alginate in mice[J].European Journal of Pharmaceutical Sciences,1996,4(1):100
    [128] Nagasawa N, Mitomo H, Yoshii F, et al. Radiation-induced degradation of sodiumalginate[J]. Polymer Degradetion and Stability,2000,69(3):279-285
    [129]陈玺,唐在明.海藻酸钠在医学上的应用[J].中西医讯,1998,(26):95-98
    [130]袁毅桦,贾德民,陈忻,等.壳聚糖/海藻酸共聚物絮凝剂的制备方法[P].中国: ZL200610036879.0,2008年5月28日
    [131]林海琳,宋光泉.醚化海藻酸钠改性吸水树脂的制备和性能研究[J].仲恺农业技术学院学报.2006,19(3):1-4
    [132] Hamman J.H, Kotze A.F. Effect of the type of base and number of reaction step on thedegree of quaternization and molecular weight of N-trimethyl chitosan chloride[J].DrugDev.Ind.Pharm.,2001,27:373-380
    [133] Cai Zhaosheng, Song Zhanqian, Shang Shibin, et al. Study on the flocculatingproperties of quaternized carboxymethyl chitosan[J]. Polym.Bull.,2007,59(5):1436-2449
    [134] Coelho T.C, Laus R, Mangrich A.S, et al. Effect of heparin coating on epichlorohydrincross-linked chitosan microspheres on the adsorption of copper (II) ions[J]. Reactiveand Functional Polymers,2007,67(5):468-475
    [135] Chen A, Liu S, Chen C, et al. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ionsin aqueous solution on the crosslinked chitosan with epichlorohydrin[J]. Journal ofHazardous Materials,2008,154(1-3):184-191
    [136]石光,袁彦超,陈炳稔,等.交联壳聚糖的结构及其对不同金属离子的吸附性能[J].应用化学,2005,22(2):195-199
    [137] Jeon C, Park J.Y, Yoo Y.J. Novel immobilization of alginic acid for heavy metalremoval[J]. Biochemical Engineering Journal,2002,11(2):159-166
    [138] Wan Ngah S.W, Fatinathan S. Adsorption of Cu(II) ions in aqueous solution usingchitosan beads, chitosan-GLA beads and chitosan-alginate beads[J]. ChemicalEngineering Journal,2008,143(1-3):62-72
    [139] Nadavala S.K, Swayampakula K, Boddu V.M, et al. Biosorption of phenol ando-chlorophenol from aqueous solutions on to chitosan-calcium alginate blendedbeads[J]. Journal of Hazardous Materials,2009,162(1):482-489
    [140] Yang D, Yi Z, Xia T, et al. Assembled alginate/chitosan micro-shells for removal oforganic pollutants[J]. Polymer,2009,50(13):2841-2846
    [141]王萍.印染废水处理方法的研究进展[J].化工环保,1997,5:273-277
    [142]杨雄麟.印染废水的脱色处理[J].工业水处理,1985,1:12-15
    [143]吴萨日娜,武志云.印染废水的常用脱色方法的探讨[J].河北纺织,2007,(03):86-89
    [144]彭立凤.壳聚糖的制备及其在废水处理中的应用[J].化学世界,1999,4:176-179
    [145]宫克.复合型絮凝剂在印染废水处理中的研究[J].沈阳大学学报,2001,13,4:32-34
    [146] Bai Y, Li Y. Preparation and characterization of crosslinked porous cellulose beads[J].Carbohydrate Polymers,2006,64(3):402-407
    [147]曾凡亮,罗先桃.分光光度法测定水样的色度[J].工业水处理,2006,26(9):70-77
    [148]吴星五,唐秀华,朱爱莲.散射式浊度仪的改进和应用[J].工业用水与废水,2001,32(4):8-10
    [149]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1989
    [150]张显策,张顺花,李慧艳.壳聚糖/纳米TiO2复合膜的制备及其性能分析[J].浙江理工大学学报,24(6):621-624.
    [151]张传杰,朱平,王怀芳.高强度海藻酸盐纤维的制备及其结构与性能研究[J].天津工业大学学报,2008,27(5):23-27.
    [152]席国喜,田圣军,成庆堂,等.海藻酸钠的热分解研究[J].化学世界,2000,(5):254-258.
    [153] Wu F.C, Tseng R.L, Juang R.S. Kinetic modeling of liquid-phase adsorption of reactivedyes and metal ions on chitosan[J]. Water Research,2001,35(3):613-618
    [154] Ho Y.S, McKay G. Pseudo-second order model for sorption processes[J]. ProcessBiochemistry,1999,34(5):451-465
    [155] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J].Journal of the American Chemical Society,1918,40(9):1361-1403
    [156] Freundlich H. Over the adsorption in solution[J]. Physik Chem,1906,57:385-471
    [157] Singgih W, Gonzalo V, Vivek S, et al. Surimi wash water treatment for protein recovery:effect of chitosan–alginate complex concentration and treatment time on proteinadsorption[J]. Bioresource Technology,2005,96(2):665-671
    [158] Takeshi G, KeieiM, Ken-Ichi K. Preparation of alginate-chitosan hybrid gel beads andadsorption of divalent metal ions[J]. Chemosphere,2004,55:135-140
    [159] Ravi D, Sivasankara V.N. Mechanism of kaolinite and titanium dioxide flocculationusing chitosan-assistance by fulvic acids [J]. Water Research.2004,38:2135-2143
    [160]张胜义.恒pH值法测定壳聚糖胺基含量[J].安徽大学学报,1992,31(1):84-86
    [161]谢华林,杨华林.二苯碳酰二肼分光光度法测水中Cr6+[J].常德师范学院学报(自然科学版),2001,13(2):65-66
    [162]水质分析大全编写组.水质分析大全[M].重庆:科学技术文献出版社重庆分社,1989
    [163] Ys H, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum mosspeat[J]. Water Research,2000,34:735-742
    [164]侯明.接枝壳聚糖对铅、镉吸附行为研究及应用[J].分析试验室,2006,25(1):1-5
    [165]龙家杰,陆同庆.甲壳素/壳聚糖及衍生物在印染废水处理中的应用[J].东华大学学报(自然科学版),2003,29(2):117-121
    [166] Sreenivasan K. Thermal stability studies of some chitosan-metal ion complexes usingdifferential scanning calorimetry[J]. Polymer Degradation and Stability,1996,52(23):85-87
    [167] Qian S.H., Huang G.Q., Jiang J.S. Studies of adsorptions behavior of crosslinkedchitosan for Cr(VI), Se(VI)[J]. Appl. Polym. Sci.,2002,77(26):3216-3219
    [168]黄海清,熊国宣,徐琼.磁性交联壳聚糖对(VI)吸附性能的研究[J].环境污染与防治,2004,25(1):78-81
    [169]杨志宽,单崇新,苏帕拉.羧甲基壳聚糖对水中六价离子的絮凝处理的研究[J].环境科学与技术,2007,88(1):10-12
    [170] Kaifu K,Nishi N., Komai T., et al. Studies on chitin formylation propionylation andsutyrylation of chitin[J]. Polymer J,1981,13(3):241-245
    [171]刘金华.壳聚糖的制备及其对Pb2+离子吸附作用的探讨[J].杭州师范学院学报,2000,20(6):74-77
    [172]召健,杨宇民.香兰醛改性壳聚糖处理含铅、镉工业废水[J].化工时刊,2000,20(2):37-39
    [173]相波,刘亚菲.壳聚糖及其衍生物对重金属吸附性能的研究[J].工业水处理,2004,24(5):156-161
    [174]丁德润,梁爱斌,薄兰君.壳聚糖及其衍生物吸附Cu2+、Zn2+动力学研究[J].水处理技术,2007,33(4):39-41
    [175]林友文,陈伟,罗红斌,等.羧甲基壳聚糖对锌离子的吸附作用研究[J].海峡药学,2000,12(3):69-72
    [176]陈津津,陈炳稔.电导法研究可再生甲壳素吸附低浓度游离酸的行为[J].科技进展.2003,17(11):31-33
    [177] Barbara Krajewska. Membrane-based processes performed with use of chitin/chitosanmaterials[J]. Separation purification technology,2005,31:305-312
    [178]唐星华,陈孝娥,万诗贵.壳聚糖及其衍生物在水处理中的研究和应用进展[J].水处理技术,2005,31(11):12-15
    [179] Muzzarelli R.A. Natural Chelating Polymers[M]. Oxford: Perga-moll Press,1973:182
    [180]王娉,党明岩,张廷安.交联壳聚糖的合成反应特征[J].沈阳理工大学学报,2008,27(6):1-2
    [181]王衍彬,钱华等.天然高分子亲水性凝胶材料在竹醋液中溶胀度的初步研究[J].生物质化学工程,2007,41(6):22-24
    [182] Baskar,T.S., Sampath K. Effect of deacetylation time on the preparation, properties andswelling behavior of chitosan films [J]. Carbohydrate Polymers.2009,78:767-772
    [183] Flávia M., Abreu S., Carla B.et al. Influence of the composition and preparation methodon the morphology and swelling behavior of alginate–chitosan hydrogels[J].Carbohydrate Polymers.2008,74:283-289
    [184]张秀荷,张振方等.壳聚糖/聚乙烯醇复合水凝胶的溶胀与力学性能[N].沈阳理工大学学报,2007,26(3):77-83
    [185]冯庆梅,张玉军.醚化交联淀粉的制备及性能测定[J].粮油食品,2006,14(1):40-41
    [186]孔令晓,崔波,赵京敏.高交联改性淀粉的制备及性质研究[J].食品与发酵科技,2009,45(5):45-46
    [187]张青松,张龙柏等.物理/化学共交联水凝胶的溶胀性能[N].天津工业大学学报,2008,27(6):38-40
    [188]林志艳,陈亮,陈东辉.壳聚糖絮凝动力学研究[J].化学世界,2002,(3):45-46
    [189]武道吉,马军,谭凤训.水动力学条件对絮体形成的影响[J].工业用水与废水,2007,38(1):4-8
    [190]花蓉蓉,周恭明,曹大伟.壳聚糖的絮凝性能研究进展[J].化工进展,2008,27(3):335-339
    [191] Pathavuth M., Punnama S. Chitosan intercalated montmorillonite: Preparationcharacterization and cationic dye adsorption [J]. Applied Clay Science,2009,42:427-431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700