用户名: 密码: 验证码:
类Fenton降解阿莫西林及固定化微生物降解甲基橙废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着抗生素和染料工业的发展,抗生素废水与染料废水成为了目前水体环境中备受关注的两类污染物,其共同特点是成分复杂、处理难度大,因此,开发新型有效的处理技术尤为重要。为了减少对机理研究的干扰,分别选取两类废水中的典型代表阿莫西林和甲基橙作为本文的目标降解物。旨在寻求高效的降解工艺,探讨两类废水的降解机理,以期为两类实际废水的有效治理提供基础数据、理论指导和应用参考。本研究主要包括以下几个方面的内容:
     (1)电-Fe3+(EDTA)/H2O2处理阿莫西林废水的研究。试验结果表明,在初始中性条件下pH7.0(±0.1), EDTA和电流的引入使阿莫西林降解率和CODcr去除率分别得到提高。在电-Fe3+(EDTA)/H2O2体系中,阿莫西林降解率为86.0%, CODcr去除率为78.0%;在Fe3+(EDTA)/H2O2体系中,阿莫西林降解率为70.0%, CODcr去除率为64.0%;而在电-Fe3+/H2O2体系中,阿莫西林降解率仅为47.0%, CODcr去除率仅为33.0%。三个体系中生物可降解性(BOD5/CODcr)分别为0.12(电-Fe3+/H2O2),0.40(Fe3+(EDTA)/H2O2和0.48(电-Fe3+(EDTA)/H2O2)。结果表明,由于EDTA和电流的协同催化效应,提高了Fe3+的溶解性和循环利用的反应活性,从而提高了阿莫西林降解效率和生化性能,有效拓展了Fenton试剂的pH范围。此外,还探讨了H2O2和EDTA的作用机理,并利用红外光谱(Infrared spectra, IR)分析了阿莫西林可能的降解途径。
     (2) UV-Fe3+(EDTA)/H2O2处理阿莫西林废水的研究。在初始中性条件下,相对于UV-Fe3+/H2O2体系,阿莫西林去除率从59.0%提高到100%,生物可降解性从0.25提高到0.45,CODcr去除率从43.0%提高到81.9%,而在Fe3+/H2O2体系中,阿莫西林和CODcr去除率仅为39.6%和31.3%。此外,针对UV-Fe3+(EDTA)/H2O2体系,探讨了H2O2和EDTA的作用机理以及阿莫西林的降解特性,并利用高效液相色谱-质谱联用技术(HPLC-MS)对其降解产物进行了分析,提出了阿莫西林降解途径。结果表明,在该体系中,EDTA既是催化剂也是反应物,避免了EDTA带来二次环境污染的可能性,有助于Fenton试剂在中性条件下去除废水中的阿莫西林。
     (3)采用夹层培养法(菌株在固体培养基夹层中生长),从活性污泥中成功地分离了一株甲基橙降解菌株,经过菌落形态特征、细胞形态特征、生理生化特性实验、特征吸收光谱和分子生物学分析,初步鉴定为一株具有菌绿素a(bacteriochlorophylla)和类胡萝卜素(carotenoid)的新型戴尔福特菌属(Delfiiasp.),其基因库Genebank登录号为HQ659695。结果表明,菌株生长和降解试验的优化条件均为:pH7.0,光照强度3000lx,反应温度30℃,溶解氧浓度0—0.5mg/L在此条件下,通过96h的降解反应,甲基橙脱色率可以达到100%(甲基橙初始浓度≤500mg/L)。然而,随着甲基橙初始浓度的增加,对菌株的抑制作用增强,降解效率下降。
     (4)为了提高菌株对高浓度甲基橙的降解性能,分别采用海藻酸钠,二氧化钛/海藻酸钠(TiO2/SA)以及硅藻土/海藻酸钠(Si/SA)三个固定化包埋体系对菌株进行固定,甲基橙初始浓度选为1000mg/L。试验结果表明,TiO2和硅藻土可以有效地提高固定化小球的机械强度和稳定性,从而有利于细菌的生长和保持稳定的连续降解性能,因此提高了脱色率和CODcr去除率。在海藻酸钠固定化体系中,脱色率和CODcr去除率分别为76.5%和35.6%,而在TiO2/SA和Si/SA固定化体系中脱色率和CODcr去除率分别达到100%和52.7%,100%和56.7%。此外,对Ti02/海藻酸钠(TiO2/SA)和硅藻土/海藻酸钠(Si/SA)固定化体系的降解机理进行了研究,分别提出了降解途径。在TiO2/SA固定化体系中,发现光化学催化和微生物降解作用协同于甲基橙的降解;在硅藻土/海藻酸钠(Si/SA)体系中,生物降解和化学吸附机理同时存在于降解过程中。由此可知,两个改进后的固定化体系均有效地提高了海藻酸钠固定化体系的性能。此外,试验结果还表明,降解过程中细菌本身固有的明亮颜色和固定化小球颜色变化可以定性地判断甲基橙的降解效率,为甲基橙提供了新的可视化降解途径。
     本课题的研究分别为阿莫西林和甲基橙废水提出了新型有效的处理方法,同时为抗生素废水及偶氮型染料废水的研究提供了新的探索方向。研究结果丰富了现有的类Fenton和微生物固定化技术,并可能开发出简单的生化协同降解工艺,为难降解废水的处理提供了新的思路与方法。因此,具有重要的理论意义和应用前景。
With the development of antibiotics and dyes industries, antibiotics and dye wastewater have constructed two major pollution resources in the current water environment, which are difficult to handle due to the complicated ingredients and the toxic/refractory properties. Therefore, it is crucial to investigate novel and effective treatment technologies for the degradation of antibiotics and dyes wastewater. To reduce the interference in the study of the mechanisms, amoxicillin and methyl orange are selected as the model contaminations of antibiotics and dyes wastewater, respectively. It is expect to provide available references to theorey and application for the treatment of the real wastewater of antibiotics and dyes. The investigations are mainly involved in the following respects:
     (1) Three oxidation processes for amoxicillin wastewater pretreatment such as Electro-Fe3+(EDTA)/H2O2(EDTA:ethylenediaminetetraacetic acid), Fe3+(EDTA)/H2O2and Electro-Fe3+/H2O2were simultaneously discussed at initial pH of7.0(±0.1). It was found that the above processes could achieve78.0%,64.0%,33.0%chemical oxygen demand (CODcr) removal, and86.0%,70.0%,47.0%amoxicillin degradation respectively. Moreover, the results of biodegradability (biological oxygen demand (BOD5)/CODcr ratio) showed that the Electro-Fe3+(EDTA)/H2O2process was a promising way to pretreat antibiotic wastewater due to the biodegradability of the effluent improved to0.48compared with the cases of Fe3+(EDTA)/H2O2(0.40) and Electro-Fe3+/H2O2process (0.12). Therefore, it was reasonable to note that EDTA and electricity showed synergetic effect on the oxidation process. Additionally, Infrared Spectra (IR) was applied to concisely propose a potential degradation way of amoxicillin. The characteristic changes of H2O2and EDTA in the oxidation process were also investigated in detail.
     (2) Three oxidation processes of UV-Fe3+(EDTA)/H2O2(UV:ultraviolet light), UV-Fe3+/H2O2and Fe3+/H2O2were simultaneously investigated for the degradation of amoxicillin at initial pH of7.0(±0.1). The results indicated that,100%amoxicillin degradation and81.9%chemical oxygen demand (CODcr) removal could be achieved in the UV-Fe3+(EDTA)/H2O2process. The treatment efficiency of amoxicillin and CODcr removal were found to decrease to59.0%and43.0%in the UV-Fe3+/H2O2process;39.6%and31.3%in the Fe3+/H2O2process, respectively. Moreover, the results of biodegradability (biological oxygen demand (BOD5)/CODcr ratio) revealed that the UV-Fe3+(EDTA)/H2O2process was a promising strategy to degrade amoxicillin as the biodegradability of the effluent was improved to0.45, compared with the cases of UV-Fe3+/H2O2(0.25) and Fe3+/H2O2process (0.10). Therefore, it could be deduced that EDTA and UV light performed synergetic catalytic effect on the Fe3+/H2O2process, enhancing the treatment efficiency. Finally, the degradation mechanisms were investigated via UV-vis spectra, and High Performance Liquid Chromatography-Mass Spectra (HPLC-MS), and the degradation pathway of amoxicillin was further proposed.
     (3) A novel species of methyl orange-biodegrading strain was successfully isolated by means of layer plating method. The identification and degradation characteristics of the strain were investigated as well. The strain showed biodegradability of methyl orange, which contains photosynthetic pigments bacteriochlorophyll a and carotenoid. Based on morphological and phylogenetic analysis, it could be deduced that strain might be a new genus of Delftia sp. The complete sequence of the strain had been deposited in the Gene Bank database under accession number HQ659695. The results showed that the conditions of both the growth of Delftia sp. and the biodegradation of methyl orange were optimized as pH of7.0, illumination intensity of3000lx, temperature of30℃, and dissovled oxygen (DO) of0-0.5mg/L. Under the optimal conditions,100%decolorization efficiency of methyl orange could be achieved when the initial concentration of methyl orange was lower than500mg/L. The results further revealed that the decolorization efficiency decreased when the concentration of methyl orange kept on increasing.
     (4) To enhance the biodegradability of Delftia sp. STT01HQ659695for methyl orange of higher concentration, three immobilized systems were carried out namely sodium alginate immobilized system (SA), TiO2modified sodium alginate immobilized system (TiO2/SA) and diatomite modified sodium alginate immobilized system (Si/SA). In the SA system,76.5%decolorization and35.6%CODcr removal efficiencies were achieved when the initial concentration of methyl orange was1000mg/L. And the treatment efficiencies were improved to100%and52.7%in the TiO2/SA immobilized system, and100%and56.7%in the Si/SA immobilized system, respectively. The results revealed that TiO2and diatomite could markedly enhance the performances of the sodium alginate (SA) immobilized system, which were responsible for modifying mass transfer, mechanical strength and better stability of the immobilized pellets due to the more active biomass, enhancing the treatment efficiencies. It was found that TiO2photo-catalytic process involving hydroxyl radical or other activated media, together with the microbial process might simultaneously lead to the degradation of methyl orange; whereas both biodegradation and chemiadsorption were responsible for the removal of methyl orange simultaneously in the Si/SA immobilized system. The results further revealed that the intrinsic bright color of the immobilized pellets could also be ingeniously employed as an indicator for the degradation efficiency. This work not only affords a direct and visualization treatment effect for methyl orange but also opens a promising entry for developing novel immobilized techniques for the treatment of azo dye wastewater.
     Moreover, the work provides novel treatment methods for the degradation of amoxicillin and methyl orange, which also offer a promising abiotic-biotic process for wastewater treatment. The results of this work enrich the current Fenton like process and microorganisms immobilization technology as well. Therefore, this study has both theoretical significance and wide foreground of application.
引文
[1]Fenton H. Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society,1894,65:899-910
    [2]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials,2003,98:33-50
    [3]Lunar L, Sicilia D, Rubio S, et al. Identification of metal degradation products under Fenton reagent treatment using liquid chromatographymass spectrometer. Water Research,2000,34(13):3400-3412
    [4]Lin S H, Lin C M. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Research,1999,33(7): 1735-1741
    [5]孙德智.环境工程中的高级氧化技术.北京:化学工业出版社,2002,330-372
    [6]Buxton G V, Greenstock C L, Phillips Helman W, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO·/O·-) in aqucous solution. Journal of Physical and Chemical Reference Data,1988,17:513-886
    [7]Lofrano G, Meric S, Belgiorno V, et al. Fenton's oxidation of various-based tanning materials. Desalination,2007,211:10-21
    [8]Tang W Z, Huang C P. Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton's reagent. Chemosphere,1996,33(8):1621-1635
    [9]Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment:electrochemical characteristics and degradation mechanism. Environmental Science and Technology,2005,39:363
    [10]Brillas E, Casado J. Aniline degradation by Electro-Fenton and peroxicoagulation processes using a flow reactor for wastewater treatment. Chemosphere,2002,47: 241-248
    [11]Belgin Gozmen, Mehmet A. Oturan, Nihal Oturan, Oktay Erbatur. Indirect Electrochemical Treatment of bisphenol A in water via electrochemically generated Fenton's reagent. Environmental Science and Technology,2003,37: 3716-3723
    [12]Zhou M, Yu Q, Lei L, et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology, 2007,57:380-387
    [13]Kusvuran E, Irmak S, Yavuz H I, et al. Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye. Journal of Hazardous Materials,2005,119(1-3):109-116
    [14]Ventura A, Jacquet G, Bermond A, et al. Electrochemical generation of the Fenton's reagent:application to atrazine degradation. Water Research,2002,36: 3517-3522
    [15]尹玉玲,肖羽堂,朱莹佳.电Fenton法处理难降解废水的研究进展.水处理技术,2009,35(5):5-9
    [16]Diagne M, Otoran N, Otoran M A. Removal of methyl parathion from water by electrochemically generated Fenton's reagent. Chemosphere,2007, (66):841-848
    [17]唐玉芳,申婷婷,李小明,杨麒,刘金精,王娟.电-Fenton氧化降解阿莫西林废水的特性.中国给水排水,2011,27(5):1-5
    [18]班福忱,刘炯天,程琳,等.电-Fenton法在水处理中的研究现状及发展趋势.工业水处理,2009,29(10):1-5
    [19]黄昱,李小明,杨麒,等.电-Fenton法降解青霉素的动力学研究.环境化学,2007,26(5):618-621
    [20]Kurt U, Apaydin O, Talha Gonullu M. Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. Journal ofHazardous Materials,2007,143:33-40
    [21]谢清杰,卢娜,王琳玲,等.EF-Feox方法处理六氯苯废水.水处理技术,2005,31(11):58-60
    [22]Brillas E, Banos M A, Skoumal M, et al. Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoeleetro-Fanton using platinum and boron-doped diamond anodes. Chemosphere,2007,68(2):199-209
    [23]胡志军,李友明,陈远彩,等.电-Fenton法预处理CTMP废水.造纸科学与技术,2006,25(6):120-123
    [24]Guivarch E, Oturan N. Removal of organophosphorus pesticides from water by electrogonerated Fenton's reagent. Environmental Chemistry Letters,2003, (1): 165-168
    [25]Sires I, Oturan N. Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electroehimica Acta,2007,52:5493-5503
    [26]Chou S, Huang Y H, Lee S N. Treatment of high strength hexumine-containing wastewater by electro-Fonton method. Water Research,1999,33(3):751-759
    [27]陈武,杨昌柱,梅平,等.三维电极-Fenton试剂耦合法去除废水COD试验研 究.环境污染控制技术与设备,2006,7(3):83-87
    [28]何春,安太成,熊亚,等.三维电极电化学反应器对有机废水的降解研究.电化学,2002,8(3):327—333
    [29]Kremer M L. Complex virsus free radical mechanism for the catalytic decomposition of H2O2 by Fe3+. International Journal of Chemical Kinetics,1985, 17:1299-1314
    [30]Evans, M G, George P, Uri N. The Fe(OH)2+ and Fe(O2H)2+ complexes. Transactionso of the Faraday Society,1949,45:230-239
    [31]Charles M, Flynn Jr. Hydrolysis of Inorganic iron (Ⅲ) Salts. Chemical Reviews, 1984,84(1):31-41
    [32]Bertelli M, Selli E. Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol. Journal of Hazardous Materials,2006,138:46-52
    [33]Carey J H, Lawwrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701
    [34]Bauer R, Waldner G, Fallmann H, et al. The photo-fenton reaction and the TiO2/UV process for wastewater treatment-novel developments. Catalysis Today, 1999,53(1):131-144
    [35]Li Y J, Li X D, Li JW, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research,2006,40(6): 1119-1126
    [36]De Laat J, Gallard H, Ancelin S, et al. Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(Ⅲ)/UV, Fe(Ⅲ)/H2O2/UV and Fe(Ⅱ) or Fe(Ⅲ)/H2O2. Chemosphere,1999,39(15):2693-2706
    [37]Tokumura M, Ohta A, Znad H T, et al. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Research,2006, 40:3775-3784
    [38]Rafagopalan V, Robert W P. Ultraviolet light/hydrogen peroxide, Fenton reagent, and titanium dioxide assisted photocatalysis. Hazardous Waste and Hazardous Materials,1993,10(2):653-671
    [39]Chacon J M, Leal M T, Sanchez M, et al. Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes Pigments,2006,69:144-150
    [40]Kim S M, Vogelpohl A. Degradation of organic pollutants by the photo-Fenton-process. Chemical Engineering and Technology,1998,21(2):187-191
    [41]Nadtochenko V, Kiwi J. Dyanmics of light induced state quenching of ferrioxalate compleses by peroxide. Fast kinetic events and interaction with toxic pollutions. Jouranl of Photochemistry and Photobiology A,1996,99:145-153
    [42]Hislop K A, Bolton J A. The photochemical generation of hydroxyl radicals in the UV-vis ferrioxalate/H2O2 system. Environmental Science and Technology,1999, 33,3119-3126
    [43]Huston P, Piganatello J.J. Reduction of perchloralkanes by ferrioxalated carboxylate radical proceeding mineralization by the photo-Fenton. Environmental Science and Technology,1996,30:3457-3463
    [44]Wu F, Deng N, Zuo Y. Discoloration of dye solutions induced by solar photolysis of ferrioxalate in aqueous solutions. Chemosphere,1999,39:2079-2083
    [45]Pupo Nogueira R F, Guimaraes J R. Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system. Water Research,2000,34(3): 895-901
    [46]Lee Y, Jeon J, Lee C, et al. Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process. Chemosphere,2003,51(9):901-912
    [47]Jones O A H, Voulvoulis N, Lester J N. Human pharmaceu-ticals in wastewater treatment processes. Critical Reviews. Environmental Science and Technology, 2005,35:401-427
    [48]Ramunas S, Glenn T C. Elevated Microbial Tolerance to Metals and Antibiotics in Metal Contaminated Industrial Environments. Environmental Science and Technology,2005,39:3671-3678
    [49]Chee-Sanford J C, Aminov R I. Occurrence and diversity of tetracycline genes in lagoons and groundwater underlying to swine production facilities. Applied Environmental Microbiology,2001,65:1494-1052
    [50]Beare M H, Parmelee R W, Hendrix P F, et al. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs,1992,62(4):569-591
    [51]潘炜,王春燕.关注抗生素对食品的污染.环境与健康杂志,2005,4(2):26—27
    [52]Christa S M, Eva M, Marc J F S, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt valley watershed, Switzerland. Environmental Science and Techology,2003,37(24):5479-5486
    [53]Arslan-Alaton I, Dogruel S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. Journal of Hazardous Materials,2004,112: 105-113
    [54]Andreozzi R, Canterino M, Marotta R, Paxeus N. Antibiotic removal from wastewaters:The ozonation of amoxicillin Journal of Hazardous Materials,2005, 122:243-250
    [55]唐玉芳.类Fenton法处理阿莫西林废水的研究:[湖南大学硕士学位论文].湖南大学,2010
    [56]Seibig S, Van Eldik R. Kinetics of [Fe-Ⅱ(EDTA)] oxidation by molecular oxygen revisited. New evidence for a multi-step mechanism. Inorganic Chemistry,1997, 36:4115-4120
    [57]Ndjou'ou A C, Bou-Nasr J, Cassidy D P. The effect of Fenton reagent dose on co-existing chemical and microbial oxidation in soil. Environmental Science and Technology,2006,40(8):2778-2783
    [58]Zhou T, Li Y Z, Wong F S, Lu X H. Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance. Ultrasonic Sonochemistry,2008,15:782-790
    [59]王里奥,崔志强,钱宗琴,等.微生物固定化的发展及在废水处理中的应用.重庆大学学报,2004,27(3):125—129
    [60]朱启忠.生物固定化技术及应用.第一版.北京:化学工业出版社,2009,1-15
    [61]马明娟,陈冬.固定化微生物技术在废水处理中的研究与应用.江西农业学报.2007,19(17):117—120
    [62]曹亚莉,田沈,赵军,等.固定化微生物细胞技术在废水处理中的应用.微生物学通报,2003,30(3):77—81
    [63]杨勇,李彦锋,拜永孝,等.酶固定化技术用载体材料的研究进展.化学通报,2007,4:257—263
    [64]卢学强,唐运平,隋峰,等.制革废水综合处理技术研究.城市环境与城市生态,1999,12(6):22—24
    [65]李闻欣,付强,马清才.生物接触氧化法处理制革综合废水的常见问题及对策.中国皮革,2002,31(9):10-13
    [66]Kourkoutas Y, Bekatorou A, Banat I M, et al. Immobilization technologies and support materials suitable in alcohol beverages production:a review. Food Microbiology,2004,21,377-397
    [67]Chen K C, Wu J Y, Huang C C, et al. Decolorization of azo dye using PVA-immobilized microorganisms. Journal of Biotechnology,2003,101:241-252
    [68]陈铭,周晓云.固定化细胞技术在有机废水处理中的应用与前景.水处理技术,1997,23(2):98—102
    [69]黎刚.固定化技术进展.中国生物工程杂志,2002.22(5):45-48
    [70]余刚,杨志华,祝万鹏,等.染料废水物理化学脱色技术的现状与进展.环境科学.1994,15(4):75-79
    [71]江凯民.印染废水治理技术进展.环境科学,1991,12(4):62-67
    [72]Crini G. Non-conventional low-cost adsorbents for dye removal:A review. Bioresource Technology,2006,97:1061-1085
    [73]Parshetti G K, Telke A A, Kalyani D C, et al. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials,2010,176:503-509
    [74]Paszczynski A, Crawford R C. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnology Progress,1995,11:368-379
    [75]Chao W L, Lee S L. Decoloration of azo dyes by three white rot fungi:influence of carbon source. World Journal of Microbiology and Biotechnology,1994,10: 556-559
    [76]Shin K S, Kim C J. Decolorisation of artificial dyes by peroxidase from the white-rot fungus Pleurotus ostreatus. Biotechnology Letters,1998,20:569-572
    [77]Swamy J, Ramsay J A. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme and Microbial Technology,1999,24:130-137
    [78]Martins M A M, Cardoso M H, Queiroz M J, et al. Biodegradation of azo dyes by the yeast Cardida zeylanoides in batch aerated cultures. Chemosphere,1999,38: 2455-2460
    [79]Dilek, FB, Taplamacioglu, HM, Tarlan, E. Colour and AOX removal from pulping effluents by algae. Applied Microbiology and Biotechnology,1999,52: 585-591
    [80]Yang F, Yu J. Development of a bioreactor system using an immobilized white rot fungus for decolourization, Part Ⅱ:Continuous decolourization tests. Bioprocess Engineering,1996,16:9-11
    [81]Palleria S, Chambers R P. Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolourization and AOX reduction of paper mill effluents. Bioresource Technology,1997,60:1-8
    [82]Marwaha S S, Grover R, Prakash C, et al. Continuous biobleaching of black liquor from the pulp and paper-industry using an immobilized cell system. Journal of Chemical Technology and Biotechnology,1998,73:292-296
    [83]Zhang F M, Knapp J S, Tapley K N. Development of bioreactor systems for decolorization of orange Ⅱ using white rot fungus. Enzyme and Microbial Technology,1999,24:48-53
    [84]Chang J S, Chou C, Chen S Y. Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry,2001,36:757-763
    [85]Zhang L, He D, Chen J, et al. Biodegradation of 2-chloroaniline,3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. Journal of Hazardous Materials,2010,179:875-882
    [86]Zhang T, Zhang J L, Liu S J, et al. A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3. Journal of Environmental Science, 2008,20:717-724
    [87]Sheludchenko M S, Kolomytseva M P, Travkin V M, et al. Degradation of aniline by Delftia tsuruhatensis 14S in batch and continuous processes. Applied Biochemistry and Microbiology,2005,41:465-468
    [88]Liang Q F, Takeo M, Chen M, et al. Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology,2005,151:3435-3446
    [89]Huang C H, Renew J E, Smeby K L, et al. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Water Resources Update,2001,120:30-40
    [90]Andreozzi R, Caprio V, Ciniglia C, et al. Antibiotics in the Environment: Occurrence in Italian STPs, Fate, and Preliminary Assessment on Algal Toxicity of Amoxicillin. Environmental Science and Technolology,2004,38:6832-6838
    [91]Potter F J, Roth J A. Oxidation of chlorinated phenols using Fenton reagent. Hazardous Waste and Hazardous Materials,1993,10:151-170
    [92]Sara B, Vittorio C, Roberta C, et al. Simple and rapid liquid chromatography-tandem mass spectrometry confirmatory assay for determining amoxicillin and ampicillin in bovine tissues and milk. Agricultural and Food Chemistry,2004, 52(11):3286-3291
    [93]Holstege D M, Puschner B, Whitehead G, et al. Screening and mass spectral confirmation of β-lactam antibiotic residues in milk using LC-MS/MS. Journal of Agricultural and Food Chemistry,2002,50(2):406-411
    [94]Sellers R M. Spectrophotometric determination of hydrogen-peroxide using potassium titanium (Ⅳ) oxalate. Analyst,1980,105:950-954
    [95]Jardim W F. Rohwedder J J R. Chemical oxygen demand (COD) using microwave digestion, Water Research,1989,23:1069-1071
    [96]Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system. Environmental Science and Technolology, 2005,39:6198-6201
    [97]Nowack B. Environmental Chemistry of Aminopolycarboxylate Chelating Agents. Environmental Science and Technolology,2002,36:4009-4016
    [98]Noradoun C E, Cheng I F. EDTA Degradation Induced by Oxygen Activation in a Zero valent Iron/Air/Water System. Environmental Science and Technolology, 2005,39:7158-7163
    [99]Burbano A A, Dionysiou D D, Suidan M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research,2005, 39(1):107-108
    [100]Malik P K. Oxidation of Safranine T in Aqueous Solution Using Fenton's Reagent:Involvement of an Fe(Ⅲ) Chelate in the Catalytic Hydrogen Peroxide Oxidation of Safranine T. The Journal of Physical Chemistry A,2004,108: 2675-2681
    [101]Engelmann M D., Bobier R T., Hiatt T, et al. Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron. BioMetals, 2003,16:519-527
    [102]Anotai J, Lu M C, Chewpreecha P. Kinetics of aniline degradation by Fenton and electro-Fenton processes. Water Research,2006,40:1841-1847
    [103]Walling C, Kurz M, Schugar H J. The iron(Ⅲ)-ethylenedi-aminetetraacetic acid-peroxide system. Inorganic Chemistry,1970,9:931-937
    [104]Sun Y F, Pignatello J J. Activation of hydrogen peroxide by iron (Ⅲ) chelates for abiotic degradation of herbicides and insecticides in water. Journal of Agricultural and Food Chemistry,1993,41:308-312
    [105]朱淮武.有机分子结构波谱解析.北京:化学工业出版社,2005,29—75
    [106]Song W H, Chen W S, Cooper W J, et al. Free-Radical Destruction of β-Lactam Antibiotics in Aqueous Solution. Journal of Agricultural and Food Chemistry, 2008,112:7411-7417
    [107]Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Research,2008,42(1-2):395-403
    [108]Huber M M, Canonica S, Park G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science and Technology,2003,37(5):1016-1024
    [109]Kummerer K, Al-Ahmad A, Mersch-Sundermann V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere,2000,40(7):701-710
    [110]Migliore L, Civitareale C, Brambilla G, et al. Toxicity of several important agricultural antibiotics to Artemia. Water Research,1997,31(7):1801-1806
    [111]da Silva M F, Tiago I, Verissimo A, et al. Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiology Ecology,2006,55:322-329
    [112]Javier Benitez F J, Acero J L., Real F J. Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Matererials,2002,89(1):51-65
    [113]Howsawkeng J, Watts R J, Washington D L, et al. Evidence for simultaneous abiotic-biotic oxidations in a microbial-Fenton's system. Environmental Science and Technology,2001,35(14):2961-2966
    [114]Tao Z, Yaozhong L, Fook-Sin W, et al. Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance. Ultrasonics Sonochemistry,2008,15(5):782-790
    [115]李春娟,马军,余敏,等.EDTA催化Fe3+/H2O2降解水中孔雀石绿环境科学2008,29(5):1259—1260
    [116]刘英艳,刘勇弟.碱性条件下UV/FeEDTA/H2O2降解2,4-二氯苯酚的研究2006,29(5):17—23
    [117]Shen T T, Li X M, Tang Y F, et al. EDTA and electricity synergetic catalyzed Fe3+/H2O2 process for amoxicillin oxidation. Water Science and Technology, 2009,60(3):761-770
    [118]Gamal A S. Two Selective Spectrophotometric methods for the determination of Amoxicillin and Cefadroxil. Analyst,1996,121:641-645
    [119]APHA (American Public Health Association),1995. Standard Methods for theExamination of Water and Wastewater,19th ed. Washington, DC, USA
    [120]Nagele E, Moritz R. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MSn and accurate mass determination by ESI TOF. Journal of the American Society for Mass Spectrometry,2005,16: 1670-1676
    [121]Sun Y, Pignatello J J. Chemical treatment of pesticide wastes:Evaluation of Fe (III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circum neutral pH. Journal of Agricultural and Food Chemistry,1992,40:332-337
    [122]Nicoli M C, Calligaris S, Manzocco L. Effect of enzymatic and chemical oxidation on the antioxidant capacity catechin model systems and apple derivatives. Journal of Agricultural and Food Chemistry,2000,48(10):4576-4580
    [123]Zhou M H, Yu Q H, Lei L C, et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology,2007,57(2):380-387
    [124]Bossmann S H, Oliveros E, Gob S, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. The Journal of Physical Chemistry A,1998,102:5542-5550
    [125]Robinson T, McMullan G, Marchant R, et al. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative. Bioresource Technology,2001,77:247-255
    [126]Baiocchi C, Brussino M C, Pramauro E, et al. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. International Journal of Mass Spectrometry,2002,214 (2):247-256
    [127]Mittal A, Malviya A, Kaur D, et al. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. Journal of Hazardous Materials,2007,148:229-240
    [128]Haque E, Jun J W, Jhung S H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials,2011,185: 507-511
    [129]Zhu H Y, Jiang R, Xiao L,et al. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized c-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresource Technology,2010,10 (14):5063-5069
    [130]Vinodgopal K, Peller J, Makogon O, et al. Ultrasonic mineralization of a reactive textile azo dye remazol black B. Water Research,1998,32:3646-3650
    [131]Guettai N, Ait Amar H. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part Ⅰ:Parametric study. Desalination, 2005,185 (1-3):427-437
    [132]Dai K, Chen H, Peng T Y, et al. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere,2007,69 (9):1361-1367.
    [133]Carliell C M, Barclay S J, Buckley C A. Treatment of exhausted reactive dye bath effluent using anaerobic digestion:laboratory and full scale trials. Water SA, 1996,22:225-233
    [134]刘华丽.印染废水的生物处理技术.环境科学与技术,1996,1:42—45
    [135]徐文东,文湘华.微生物在含染料废水处理中的应用.环境工程学报,2000,1(1):9—16
    [136]沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,2004,28-30
    [137]陈昆明,夏叶子,章圣辉,等.经典酚/氯仿抽提法和纯化试剂盒法提取全血基因组DNA的比较.浙江医学,2010,32(5):674—676
    [138]Radianingtyas H, Robinson G K, Bull A T. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology,2003,149: 3279-3287
    [139]Saitou N, Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4(4):406-425
    [140]Felsenstein J. Confidence limits on phylogenies:An approach using the bootstrap. Evolution,1985,39(4):783-791
    [141]Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA),2004,101(30):11030-11035
    [142]Cogdell R J, Southall J, Gardiner A T, et al. How purple photo synthetic bacteria harvest solar energy. Comptes Rendus Chimie,2006,9:201-206
    [143]金德才,吴学玲,梁任星,等.一株DMP降解菌的分离鉴定及其降解特性.微生物学通报,2009,36(9):1318-1323
    [144]Xiao C, Ning J, Yan H, et al. Biodegradation of Aniline by a Newly Isolated Delftia sp. XYJ6. Chinese Journal of Chemical Engineering,2009,17(3): 500-505
    [145]Zissi U, Lyberatos G. Azo-dye Biodegradation under anoxic condition. Water Science and Technology,1996,34:495-500
    [146]Zhang C, Zhu X, Liao Q, et al. Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. International Journal of Hydrogen Energy,2010,35:5284-5292
    [147]Ardag Akdogan H, Kasikara Pazarlioglu N. Fluorene biodegradation by P. ostreatus-Ⅱ:biodegradation by immobilized cells in a recycled packed bed reactor. Process Biochemistry,2011,46:840-846
    [148]Ardag Akdogan H, Kasikara Pazarlioglu N. Fluorene biodegradation by Posteratus-I:biodegradation by free cells. Process Biochemistry,2011,46: 834-839
    [149]Nagadomi H, Kitamura T, Watanabe M, et al. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria. Biotechnology Letters,2000,22:1369-1374
    [150]Nagadomi H, Takahashi K, Sasaki K, et al. Simultaneous removal of chemical oxygen demand and nitrate in aerobic treatment of sewage wastewater using an immobilized photosynthetic bacterium of porous ceramic plates. World Journal of Microbiology and Biotechnology,2000,16:57-62
    [151]FiBler J, Kohring G W, Gitthorn F. Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas Palustris. Applied Microbiology and Biotechnology,1995,44:43-46
    [152]Takeno K, Yamaoka Y, Sasaki K. Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria. World Journal of Microbiology and Biotechnology,2005,21:1385-1391
    [153]Xu P, Qian X M, Wang Y X, et al. Modeling for waste water treatment by Rhodopseudomonas Palustris Y6 immobilized on fibre in a columnar bioreactor, Applied Microbiology and Biotechnology,1996,44:676-682
    [154]Wang X, Liu Y, Hu Z, et al. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities, Journal of Hazardous Materials,2009,169:1061-1067
    [155]Zhang Y, Wan J, Ke Y. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. Journal of Hazardous Materials,2010,177:750-754
    [156]Wang S, Zhou S. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. Journal of Hazardous Materials,2011,185:77-85
    [157]Wei C, Lin W Y, Zainal Z, et al. Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media:Toward a Solar-Assisted Water Disinfection System. Environmental Science and Technology,1994,28:934-938
    [158]Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO2 thin films:dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A,1997,106:51-56
    [159]Watts R J, Kong S, Orr M P, et al. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Research,1995,29:95-100
    [160]Hong J L, Otaki M. Effects of photocatalysis on biological decolorization reactor and biological activity of isolated photosynthetic bacteria. Journal of Bioscience and Bioengineering,2003,96:298-303
    [161]Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications. Water Research,2008,42:4591-4602
    [162]Adams L K, Lyon D Y, Alvarez P J J. Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research,2006,40:3527-3532
    [163]de-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology,2010,101:1611-1627
    [164]Solozhenko E G, Soboleva N M, Goncharuk V V. Decolourization of azo dye solutions by Fenton's oxidation. Water Research,1995,29:2206-2210
    [165]Aytas S, Akyil S, Aslani M A A, Aytekin U. Removal of uranium from aqueous solution by diatomite. Journal of Radioanalytical and Nuclear Chemistry,1999, 240:973-976
    [166]Al-Ghouti M A, Khraisheh M A M, Ahmad M N M, et al. Adsorption behaviour of methylene blue onto Jordanian diatomite:A kinetic study. Journal of Hazardous Materials,2009,165:589-598
    [167]Khraisheh M A M, Al-degs Y S, Mcminn W A M. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal,2004,99:177-184
    [168]Li X, Bian C, Chen W, et al. Polyaniline on surface modification of diatomite:a novel way to obtain conducting diatomite fillers. Applied Surface Science,2003, 207:378-383
    [169]Gala'n E, Gonza'lez I, Mayoral E, et al. Properties and applications of diatomitic materials from SW Spain. Applied Clay Science,1993,8:1-18
    [170]Erdogan B, Demirci S, Akay Y. Treatment of sugar beet juice with bentonite, sepiolite, diatomite and quartamin to remove color and turbidity. Applied Clay Science,1996,11(1):55-67
    [171]A1-Degs Y S, Tutunju M F, Shawabkeh R A. The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+ and Cd2+ from water. Separation Science and Technology,2000.35:2299-2310
    [172]Han Z, Yan H. Sodium Alginate and Diatomite as Entrapping Agents for Immobilizing the Desulfurization Bacteria of Rhodococcus sp. H2412. Chemical Industry and Engineering,2006,23 (6):520-523
    [173]翟晓萌,李道棠.海藻酸钠固定化包埋微生物处理有机微污染源水.环境科学,2000,21(6):80-84
    [174]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较.环境科学,1993,14(2):11-15
    [175]Wu J L, Yang Y S, Lin J H. Advanced tertiary treatment of municipal wastewater using raw and modified diatomite. Journal of Hazardous Materials,2005,127: 196-203
    [176]Jalil A A, Triwahyono S, Hazirah Adam S, et al. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. Journal of Hazardous Materials,2010,181:755-762
    [177]Rocher V, Siaugue J M, Cabuil V, et al. Removal of organic dyes by magnetic alginate beads. Water Research,2008,42:1290-1298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700