用户名: 密码: 验证码:
高硅白云石熔融还原炼镁新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是全球第一大产镁国,采用的是皮江法热还原炼镁技术。随着科技的不断进步和人类环境的日益恶化,技术落后的皮江法成为了国家限制发展项目。本文结合重庆万盛地区拥有丰富的高硅白云石资源,提出了高生产率、低能耗、低污染的硅浴熔融还原炼镁新技术。对熔融还原炼镁工艺的一些基本现象和规律进行了研究,以期为重庆高硅白云石资源的有效利用提供参考。本文通过试验获得了以下结论:
     ①该白云石中Ca和Mg元素分别占矿物总质量的21.06%和12.66%,且n(CaO):n(MgO)为1.00。杂质Si含量偏高,含SiO_2为1.6%,且分布不均匀。成分分析表明万盛白云石是典型的高硅白云石。该白云石的主要物相是CaMg(CO_3)_2复盐,并含有少量的SiO_2相。白云石在受热分解过程中,杂质相SiO_2会与分解产生的CaO结合形成Ca_2SiO_4相。万盛白云石受热分解大约从740℃开始,到880℃结束,失重率为46.4%。
     ②为了获得高质量煅白(煅烧白云石),根据万盛白云石矿的热分析结果进行了白云石煅烧实验,考察了煅烧温度、煅烧时间和白云石粒度三个因素对煅白质量的影响。通过正交实验得出各因素对煅白质量的影响顺序为:煅烧温度、白云石粒度、煅烧时间。经优化的最佳工艺为:煅烧温度为1050℃,白云石粒度范围为6~13mm,煅烧时间为60min。该工艺下白云石的分解率为98.41%,煅白的水化活性为32.07%。是满足炼镁工业生产用的高质量煅白。
     ③煅白中CaO和MgO均为碱性氧化物,熔点很高。通过往煅白中加入Al_2O_3和SiO_2造渣,能够获得完全熔融的液态。使用热力学软件Factsage模拟了在1600℃下往理想煅白中加入不同量Al_2O_3和SiO_2时炉渣的熔融性,结果表明随着炉渣中Al_2O_3和SiO_2加入量增加,未熔化的固体逐渐减少,直至消失,且CaO较MgO先溶入炉渣中。结合CaO-MgO-Al_2O_3-SiO_2四元相图,通过炉渣熔融性模拟和验证实验得出:加入Al_2O_3和SiO_2造渣时,含有大约55%煅白和45%的造渣剂的炉渣能在1600℃下获得完全熔融的液态。
     ④对硅浴熔融还原MgO的热力学进行了分析。在不考虑反应物和生成物在液态中活度的理想状态下,反应在常压下所需要的初始温度高达1925℃,当系统压强降低为1×10~4Pa时,反应能够在1550℃进行;而在实际熔融还原过程中,物质的活度对熔融还原影响较大,而且在还原过程中物质的活度也会随着反应的进行而不断变化。为了使后期的熔融还原反应顺利进行,可以采用更低的系统压力。
     ⑤在真空下进行了硅浴熔融还原MgO实验,考察了渣系成分、CaF_2添加量、反应温度、反应时间和75%硅铁合金添加量对渣中MgO还原率的影响。渣系成分对MgO的还原影响很大,渣中SiO_2量较多的情况下,会增大渣中SiO_2的活性,抑制反应的进行。增大造渣剂中Al_2O_3/SiO_2比值,渣中MgO的还原率提高显著,实验获得的较为理想的炉渣成分为:55%CaO·MgO-35%Al_2O_3-10%SiO_2。对该成分炉渣进行了正交实验,结果表明其他四个因素对MgO还原率的影响顺序为:反应温度、还原剂添加量、反应时间、CaF_2添加量。该成分炉渣在反应温度为1600℃,还原剂添加量n(Si)/n(2MgO)为1.2,反应时间为120min,CaF_2添加量为3%的工艺条件下,渣中MgO的还原率高达97.3%。
     ⑥结合实验数据,对硅浴熔融还原MgO进行了动力学分析。结果表明硅浴熔融还原反应是二级化学反应。提高Al_2O_3/SiO_2比值、反应温度和CaF_2加入量等都能不同程度的提高还原反应速率。在反应温度1550~1600℃间表观反应活化能为586kJ/mol。熔融还原反应由于在高温下进行,界面化学反应迅速,氧化物在炉渣中的传质成为了整个熔融还原过程的限制环节。
     ⑦通过分别对镁的饱和蒸气压和高温熔融还原形成的蒸气压进行热力学计算发现,在进行MgO熔融还原时,反应的温度越高,所对应的露点温度就越高。反应温度为1600℃时,对应的露点为870℃,高出纯镁的熔点(651℃)将近200℃。该反应温度下形成的镁蒸气在冷凝时绝大部分会先形成液态金属镁。如果冷凝温度控制在651℃时,会有96%的镁蒸气形成液态,剩余的部分则需要继续降温直接冷凝成固态。
     ⑧自行设计了一台实验室用500g级小型硅钼棒真空炉,加热功率为4kW,在全功率下可以在1h之内使炉膛温度升高到1600℃。与万盛博奥镁业金属有效公司共同研制了一台10kg级可连续加料的试验真空熔融还原炉,加热元件采用高温石墨,加热功率为30kW,最高使用温度为1800℃。
China is the largest primary magnesium producer in the world, and the primarymagnesium mainly produced by Pidgeon process. With the growing advancement ofscience and technology and the continuous deterioration of hunan environment, thetechnological backwardness Pidgeon process has became one of national limiteddevelopment projects in China. Combining with rich high-silica dolomite resources inWansheng of Chongqing, this paper developed a new technology of magnesiumproduction by smelting reduction, which has high productivity, low energy consumptionand low pollution. In order to provide references for effective utilization of high-silicadolomite in Chongqing area, some of the basic phenomena and laws of smeltingreduction in silica bath were studed in this paper and the results are as follows:
     ①The chemical composition of Ca, Mg and Si in Wansheng dolomite were21.06%,12.66%and1.6%, respectively, which has the n(CaO)/n(MgO)ratio of1.00. Theimpurity of Si was distributed unevenly with higher chemical composition level indolomite. The analysis of chemical composition indicated that Wansheng dolomite wasa typical high-silica dolomite. Detected by XRD, the mian phase of Wansheng dolomitewas CaMg(CO_3)_2, and the impurity phase was SiO_2. When Wansheng dolomite wasdecomposed by heating, the phase of CaMg(CO_3)_2decomposed into two phases of CaOand MgO. Then, thecombination reaction between CaO and SiO_2was occurred and newimpurity phase of Ca_2SiO_4was formed. The decomposition of Wansheng dolomite wasfrom740℃to880℃end with the weight loss rate of46.4%.
     ②The order of impacts of various process factors on quality of calcined dolomitewas: calcining temperature, dolomite particle seize and calcining time. When thedolomite of particle seize between6and13mm was calcined at1050℃for60min, thecalcined dolomite with high quality was obtained, which the decomposition rate anddegree of activity were98.41%and32.07%, respectively.
     ③CaO and MgO in calcined dolomite are alkaline earth oxides and have veryhigh melting temperatures. In order to get molten slag under the experimentalconditions, it was required to mix appropriate Al_2O_3and SiO_2with calcined dolomite.Through software simulation, thermodynamic analysis and experimental verification,it’s found that the unmelted solid reduced gradually with the addition amount of Al_2O_3and SiO_2increasing and CaO dissolved in the slag before MgO. It’s could got molten slag which contained about55%calcined dolomite and45%slagging agent at1600℃.
     ④The smelting reduction was thermodynamically analyzed. Under the idealstate without considering the activity of the reactants and products in the liquid, thestarting temperature of silicothermic reduction of MgO in molten slag achieved1925℃under atmosphere. When the system pressure reduced to1×10~4Pa, the reductionreaction could be conducted in1550℃. In actual smelting reduction process, theactivity of substance had important impact on reduction reaction and could continuouschange as reduction proceeding. It’s could use lower system pressure to assure that thelatter stage of smelting reduction could be carried out smoothly.
     ⑤The experiments of silicothermic smelting reduction were carried out undervacuum and the influence of various process factors on reduction extent of MgO in slagwere studied. The chemical composition of slag had important impact on smeltingreduction. Under condition of slag containing more SiO_2, the reduction reaction couldbe restrained because of activity of SiO_2increasing. Reduction rate of MgO couldimprove as the ratio of Al_2O_3/SiO_2increasing. By orthogonal experiment, it’s could gotthat the order of impacts of other various process factors on reduction extent of MgOwas: reaction temperature, the addditon amount of75%ferrosilicon alloy, reaction timeand the addition amount of CaF_2.The experimental results showed that the idealcomposition of slag was55%CaO·MgO-35%Al_2O_3-10%SiO_2and reduction extent ofMgO in this slag was achieved up to97.3%under such optional condition of reactiontemperature of1600℃, n(Si)/n(2MgO)ratio of1.2, reduction time of120min and addingCaF_2of3%, reduction extent of MgO was achieved up to97.3%.
     ⑥The kinetics of silicothermic smelting reduction were studied and the resultsindicated that silicothermic smelting reduction was second order chemical reation andthe reduction extent of MgO inceased by increasing either one of the following factors:the initial mass ratio of Al_2O_3/SiO_2, the addition of CaF_2, the initial molar ratio ofSi/2MgO, and reaction temperature. The overall smelting reduction was controlled bymass transfer in slag with an apparent activation energy586kJ/mol.
     ⑦In silicothermic smelting reduction, the dew point temperature ofmagnesium vapor increased as reaction temperature increasing. When reduction processwas carried at1600℃, the corresponding dew point temperature of magnesium vaporwas870℃, which higher than magnesium melting point(651℃) nearly200℃.If thecoolling temperature of magnesium vapor was controlled at651℃, magnesium vapor of96%converted into liquid, the other vapor could condensated directly to solid by decearing coolling temperature below651℃.
     ⑧A500g-calss and a10kg-class furnace for vacuum smelting reduction weredeveloped. The500g-calss laboratory small furnace had4kW power heated by siliconmolybdenum rod and the furnace temperature was increased to1600℃at full power in1h. The10kg-class furnace which had continuous feeding charge had30kW powerheated by graphite heater and could achieved to the maximum temperature of1800℃.
引文
[1] D.A. Kramer. Magnesium, its alloys and compounds[M]. U. S. Geological Survey Open-FileReport.2002.
    [2]杨遇春.魅力四射的镁[J].有色金属再生与利用,2004,4:30-31.
    [3]夏德宏,余涛.高速发展的绿色工程材料--金属镁[J].金属世界,2004,6:41~42.
    [4]韩继龙,孙庆国.金属镁生产工艺进展[J].盐湖研究,2008,16(4):59-64.
    [5]师昌绪,李恒德,王淀佐,李依依,左铁镛等.加速我国金属镁工业发展的建议[J].材料导报,2001,15(4):5-6.
    [6]陈丽霓.轻金属冶炼与环境保护[M].沈阳:东北大学出版社,1991.
    [7]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991.
    [8]徐日瑶.金属镁生产工艺学[M].长沙:中南大学出版社,1993.
    [9]许并杜,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社,2006.
    [10] Х. Л. Стрелед. Злектролитичекое поручение магиия[M].Морква,1972.
    [11]顾学民、龚毅生、减希文、吕云阳主编.《无机化学丛书》第二卷—铍、碱土金属[M].北京:科学出版社,1998.10:83-234.
    [12]李志华.真空煤还原氧化镁的研究[D].昆明:昆明理工大学,2004:7.
    [13]孟树昆,徐河.发挥资源优势,提高工业化水平[J].中国有色金属报,2003.5:29.
    [14]徐日瑶主编,《有色金属提取冶金手册》编辑委员会编.有色金属提取冶金手册(镁)[M].北京:冶金工业出版社,1992.
    [15] P. Duhaime, P. Mercille, M. Pineau. Electrolytic process technologies for the production ofprimary magnesium[J]. Mineral Processing and Extractive Metallurgy,2002,111(2):53-55.
    [16]马鸿文,曹瑛等.中国金属镁工业的环境效应与可持续发展[J].现代地质,2008,22(5):829-837.
    [17] T.Y. Zuo, W.B. Du. The developing strategy of Chinese magnesium and magnesium alloy[J].Journal of Guangdong Non-Ferrous Metals,2005,15(2,3):1.
    [18] L.M. Pidgeon. Method and apparatus for producing magnesium[P]. U.S.Pat.,2330143,1943.9.21:1.
    [19] J.M. Toguri, L.M. Pidgeon. High-temperatue studies of metallurgical processes part Ⅰ: thethemal reduction of magnesium oxide with silicon[J]. Canadian Journal of Chemistry,1961,39:540-547.
    [20] J.M. Toguri, L.M. Pidgeon. High-temperatue studies of metallurgical processes part Ⅱ: thethemal reduction of calcined dolomite with silicon[J]. Canadian Journal of Chemistry,1962,40:1769-1776.
    [21] J.R. Wynnyckyj, L.M. Pidgeon. Equilibria in the silicothermic reduction of calineddolomite[J]. Metallurgical Transactions,1971,4(2):975-982.
    [22] R.V. Misra, V.S. Sampath, P.P. Bhatnagar. The scope for the development of the magnesium[J].Light Metal Industry in India,1961:5-200.
    [23] W.T. Hughes, C.E. Ransley, E.F. Emley. Reaction kinetics in the production of magnesium bymolomite-ferrosilicon(Pidgeon) process[C] Advanced Extractive Metallurgy ProcessingSymposium,1967:54-429.
    [24] M. Halmann, A. Frei, A. Steinfeld. Magnesium production by the Pidgeon process involvingdolomite calcinationand MgO silicothermic reduction: thermodynamic and environmentalanalyses[J]. Industrial and Engineering Chemistry Research,2008,47:2146-2154.
    [25] F. Cherubini, M. Raugei, S. Ulgiati. LCA of magnesium production technological overviewand worldwide estimation of environmental burdens[J]. Resources, Conservation andRecycling,2008(52):1093-1100.
    [26] S. Ramakrishnan, P. Koltun. Global warming impact of the magnesium produced in Chinausing the Pidgeon process[J]. Resources, Conservation and Recycling,2004(42):49-64.
    [27] S.K. Barua, J.R. Wynnyckyj. Kinetics of the silicothermic reduction of calcined dolomite inflowing hydrogen[J]. Canadian Metallurgical Quarterly,1981,20(3):295-306.
    [28] W. Wulandari, G. Brooks, M.A. Rhamdhani, B.J. Monaghan. Kinetcis of silicothermicreduction of clacined dolomite in flowing argon atmosphere[C] High Temperature ProcessingSymposium,2010:77-79.
    [29] I.M. Morsi, K.A. Elbarawy, M.B. Morsi, S.R. Abdei-gawad. Silicothernic reduction ofdolomite ore under inert atmosphere[J]. Canadian Metallurgical Quarterly,2002,41(1):15-28.
    [30]李华清,谢水生等.水煤浆技术在镁生产中的应用[J].工业加热,2005,35(5):21-23.
    [31]梁冬梅,陈瑞唐等.硅热法炼镁的节能新技术——蓄热式镁还原炉[J].铝镁通讯,2008,1:28-30.
    [32]窦韶旭,游国强,李爱听,龙思远,章宗和.采用热力学分析白云石中二氧化硅对硅热法炼镁的影响[J].中国有色金属学报,2011,21(12):3129-3136
    [33]徐日瑶,刘宏专.皮江法炼镁与镁非金属功能材料生产的组合是节能、环保型先进工艺[J].世界有色金属,2006,1:16-19.
    [34] F. Gao, Z.R. Nie, Z.H. Wang, X.Z. Gong, T.Y. Z. Assessing environmental impact ofmagnesium production using Pidgeon process in China[J]. Transactions of NonferroursMetals Society of China,2008,18:749-754.
    [35] X.M. Mei, A. Yu, S.X. Shang, T.B. Zhu. Vertiacal larger-diameter vacuum retort magnesiumreduction furnace[C]. Magnesium Technology.2001:13-15.
    [36] T.B. Zhu, W.Y Li, X.M. Mei, A. Yu, S.X. Shang. Innovative vacuum distillation formagnesium recycling[C]. Magnesium Technology.2001:55-60.
    [37] A. Yu, H. Hu, N.Li. Mathematical modelling of magnesium reduction in a novel verticalPidgeon process[J]. Modelling and Simulation in Materials Science and Enginering,2002,10:413-423.
    [38] R.B. Li, J.J. Wei, L.J. Guo, S.J. Zhang. Numerical simulation of magnesium production by thePidgen process part Ⅰ: a new model for magnesium reduction process in a horizontalretort[C]. Seventh International Conference on CFD in the Minerals and Process Industries,2009:1.
    [39] S.J. Zhang, R.B. Li, J.J. Wei, L.J. Guo. Numerical simulation of magnesium production by thePidgen process part Ⅱ: coupling of the magnesium reduction in the retorts with thesurrounding thermal-flow fields in a coal-fired furnace[C]. Seventh International Conferenceon CFD in the Minerals and Process Industries,2009:1.
    [40]刘金平,杨雪春等.皮江法炼镁技术的缺陷及改进途径[J].冶金能源,2004,24(5):21-23.
    [41] C.B. Wilson. Modern production process for magnesium[J]. Light Metals,1996:1075-1079.
    [42] J.M. Logerot, J. Moyen. Magnesium Production Methods--Raw Materials and Availability[J].Light Metals,1982,11(40):27-30.
    [43] G. Brooks, M. Cooksey, G. Wellwood, C.Gooders. Challenges in light metals production[J].Mineral Processing and Extractive Metallurgy,2007,116(1):25-33.
    [44] J. Artru, J. Marchal. Process of manufacturing magnesium[P]. U.S.Pat.,2971833,1961.2.14:1-3.
    [45] J. Avery. Process for the production of magnesium[P]. U.S.Pat.,3579326,1971.5.18:1-5.
    [46] J. Avery. Use of high-silion as the reductant for the metallothermic production ofmagnesium[P]. U.S.Pat.,3681053,1972.8.1:1-3.
    [47] J. Avery. Metallothermic production of magnesium[P]. U.S.Pat.,3698888,1972.10.17:1-2.
    [48] J. Avery. Metallothermic production of magnesium in the presence of a substantially staticatmosphere of inert gas[P]. U.S.Pat.,3994717,1976.11.30:1.
    [49] J. Johnston, R. Sanders, J. Wood. Process for producing magnesium utilizing aluminum metalreductant[P]. U.S.Pat.,4033759,1977.7.5:1~4.
    [50] N. Barczan, A. Schoukens. Thermal production of magnesium[P]. U.S.Pat.,4699653,1987.11.13:1-5.
    [51] R. Chritin. Method of producing magnesium vapor at atmospheric pressure[P]. U.S.Pat.,5383953,1995.1.24:1.
    [52] R. Chritin. Equilibra among metal, slag, and gas phases in the magnetherm process[J].LightMetals,1980,981-955.
    [53] M. Maeshall, L. Zikui, R. Chritin. A computational thermodynamic analysis of atmosphericmagnesium production[C]. Magnesium Technology.2001:13-15.
    [54] C.S. Ritter, D.R. Sadoway. A thermochemical study of the behavior of impurities in themagnetherm process [J] The Metallurgical Society of AIME, Light Metals,1988:799-805.
    [55] W. Wulandari, M.A. Rhamdhani, G. Brooks, B.J. Monaghan. Distribution of impurities inmagnesium via siliconthermic reduction[C]. Proceeding of European MetallurgicalConference,2009:1401-1415.
    [56] D. Minic, D. Manasijevic, J. Dokic et a1.Silicothermic reduction process in magnesiumproduction thermal analysis and characterization of the slag[J].Journal of Thermal Analysisand Calorimetry,2008,93(2):411~415.
    [57]李树林.对熔渣导电半连续硅热法真空炼镁还原炉内衬的工业性实践及探讨[J].轻金属,1991,11:43-47.
    [58] M. Abdellatif. Mintek thermal magnesium process(MTMP)-theoretical and operationalaspects[C] Southern African Pyrometallurgy2006International Conference,2006:329-341.
    [59] A. Schoukens, M. Abdellatif, M. Freeman. Technological breakthrough of the mintek thermalmagnesium process[C] The Light Metals Conference-Production of Magnesium, Aluminumand Titanium in the21st Century,2006,106(1):25-29.
    [60] M. Abdellatif. Pilot plant demonstration of the mintek thermal magnesium process[C]Proceedings of the International Symposium on Magnesium Technology in the Global Age,2006:67-80.
    [61] M. Abdellatif, M. Freeman. Mintek thermal magnesium process: status and prospective[C]Adacnced Metals Initiative,2008:1-13.
    [62] M. Abdellatif. Atomospheric thermal magnesium extraction[C] Minerals EngineeringConferences-Pyrometallurgy,2005:1-12.
    [63] M. Abdellatif. Refining testwork on crude magnesium produced in the mintek thermalmagnesium process [C] Southern African Pyrometallurgy2006International Conference,2006:343-355.
    [64] R. Kononov, O. Ostrovski, S. Ganguly. Carbothermal reduction of manganese oxide indifferent[J]. Metallurgical and Materials Transactions B,2008,39(5):662-668.
    [65] W. Sen, B.Q. Xu, B. Yang, H.Y. Sun, J.X. Song, H.L. Wan, Y.N Dai. Preparation of TiCpowders by carbothermal reduction method in vacuum [J]. Transactions of Nonferrous MetalsSociety of China,2011,21(1):185-190.
    [66] F.L. Zhu, H.B. Yuan, Q.C. Yu, B. Yang, B.Q. Xu, Y.N Dai. Behavior of titanium dioxide inalumina carbothermic reduction-chlorination process in vacuum[J]. Transactions ofNonferrous Metals Society of China,2011,21:1855-1859.
    [67] J.P. Murray, A. Steinfeld, E.A. Fletcher. Carbothermal reduction of metal-oxides[J]. Energy,1995,7(20):695-704.
    [68] H.B. Yuan, B. Yang, Q.C. Yu, Y.B. Feng, Y.N Dai. Alumium production bycarbothermic-chlorination reduction of alumina in vacuum[J]. Transactions of NonferrousMetals Society of China,2010,20(8):1505-1510.
    [69] M. Halmann, A. Frei, A. Steinfeld. Vacuum carbothermic reduction of Al2O3, BeO, MgO-CaO,TiO2, ZrO2, HfO2+ZrO2, SiO2,+Fe2O3, and GeO2to metals-a thermodynamic study[J].Mineral Processing and Extractive Metallurgy,2011,32:247-266.
    [70] L.Z Xiong, Q.Y. Chen, Z.L. Yin, P.M. Zhang, Z.Y. Ding, Z.X. Liu. Preparation of metal zincfrom hemimorphite by vacuum carbothermic reduction with CaF2as catalyst[J]. Transactionsof Nonferrous Metals Society of China,2012,22(3):694-699.
    [71]戴永年,杨斌编著.有色金属材料的真空冶金[M].北京:冶金工业出版社,2000.
    [72] G. Warren, A. Cameron. Process for producing manesium[P]. U.S.Pat.,4572736,1986.12.25:1.
    [73] F. Hansgirg. Production of magnesium[P]. U.S.Pat.,2582119,1952.1.8:1.
    [74] T.A. Duncan. Production of magnesium by the carbothermic process at Permanente[J].Transaction of American Institute of Mining, Metallurgical and Petroleum Engineers,1944:308-314.
    [75] R. Winand. Produetion of Magnesium by Vacuum Carbothermic Reduetion of CalinedDolomite[J]. Transactions of the Institution of Mining and Metallurgy(SectionC),1990:105-111.
    [76] A. Donaldson, R.A. Cordes. Rapid plasma quenching for the production of ultrafine metal andceramic powders[J]. Journal of the Minerals, Metals and Materials,2005,57(4):58-63.
    [77] C.A. Eckert, R.B. Irwin, J.S. Smith. Thermodynamic activity of magnesium in severalhighly-solvating liquid alloys[J]. Metallurgical Transaction B,1983,14:451~458.
    [78] A.M. Cameron, D.L.Canham, V.G. Aurich. Magnesium Production by plasma-poweredprocessing[J]. Journal of the Minerals, Metals and Materials,1990,42(4):46-48.
    [79] G. Brooks, S. Trang, P. Witt, M.N.H. Khan, M. Nagle. The carbothermic route tomagnesium[J]. Journal of the Minerals, Metals and Materials,2006,5:51-55.
    [80] T. Yoshikawa, K. Morita. Carbothermic reduction of MgO by microwave irradiation[J].Materials Transactions,2003,44(4):722-726.
    [81] Y. Tian, T. Tao, B. Yang, Y.N Dai, B.Q. Xu, S. Geng. Behavior analysis of CaF2in magnesiacarbothermic reduction process in vacuum[J]. Metallurgical and Materrials Transaction B,2012,43(3):657-661.
    [82]李志华.真空中煤还原氧化镁的研究[D].昆明理工大学,2004.
    [83]高家诚,陈小华,唐祁峰.氟化钙催化碳热还原氧化镁的试验研究.功能材料,2012,43(10):1312-1315.
    [84] L.Hong, O. Kieji,S. Masamichi. Nonisothermal gravimetric investigation on kinetics ofreduction of magnesia by aluminum[J]. Metallurgucal and Materials Transaction B,1999,12(30):1003-1008.
    [85] R.T. Li, W.Pan, a, S. Masamichi, J.Q. Li. Catalytic reduction of magnesia by carbon[J].Thermochimica Acta,2003(398):265-267.
    [86] R.T. Li, W.Pan, a, S. Masamichi, J.Q. Li. Kinetics of reduction of magnesia with carbon[J].Thermochimica Acta,2002(390):145-151.
    [87] R.T. Li, W.Pan, a, S. Masamichi, J.Q. Li. Kinetics and mechanism of carbothermic reductionof magnesia[J]. Metallurgical and Materials Transaction B,2003,34:433-437.
    [88] K. Grjotheim, O. Herstad, J.M. Toguri. The aluminum reduction of magnesium oxide.1.vaporpressure of magnesium over system Al-MgO[J]. Canadian Journal of Chemistry,1961,39(3):443-450.
    [89] K. Grjotheim, O. Herstad, J.M. Toguri. The aluminum reduction of magnesium oxide.2.vaporpressure of magnesium over system Al-MgO-CaO[J]. Canadian Journal of Chemistry,1961,39:2290-2294.
    [90] K. Grjotheim, O. Herstad, J.M. Toguri. The aluminum reduction of magnesium oxide.2.vaporpressure of magnesium over system Al-Mg2SiO4[J]. Canadian Journal of Chemistry,1963,41:739-742.
    [91] J. Yang, M. Kuwabara, Z.Z. Liu, T. Asano, M. Sano. Mechanism of aluminotbermic reductionof MgO[J]. Journal of the Iron and Steel Institute of Japan,2006,92(4):7-13.
    [92] J. Yang, M. Kuwabara, Z.Z. Liu, T. Asano, M. Sano. In situ observation of aluminothermicreduction of MgO with high temperature optical microscope[J]. Journal of the Iron and SteelInstitute of Japan,2006,46(2):202-209.
    [93] H. Lan, K. Okumura, M. Sano. Nonisothermal gravimetric investigation on kinetics ofreduction of magnesia by aluminum[J]. Metallurgical and Materials Transactions B,1999,30:1003-1008
    [94] J. Yang, M. Kuwabara, T. Sawada, M. Sano. Rate of isothermal reduction of MgO with Al[J].Tetsu to Hagane,2007,93(3):201-207.
    [95]冯乃样,王耀武.一种以菱镁石和白云石混合矿物为原料的真空热还原法炼镁技术[J].中国有色金属学报,2011,21(10):2678-2686.
    [96] Y.W. Wang, N.X. Feng, J. You, W.X. Hu, J.P. Peng, Y.Z. Di, Z.H. Wang. Study on extractingaluminum hydroxide from reduction slag of magnesium smelting by vacuum aluminothermicreduction[C]. Magnesium Technology2000
    [97]郭清富.铝热法炼镁和半连续硅热法炼镁的理论炉渣成分计算[J].轻金属,1991,7:40-41.
    [98]吴贤熙.铝硅铁合金炼镁的研究[J].有色金属,2000,52(2):72-74.
    [99] R.A. Chritin. Therma reduction process for production of manesium[P]. U.S.Pat.,4478637,1984.10.23:1-5.
    [100] J.D.T. Capocchi, V. Rajakumar. Reduction of molten MgO-bearing slags withferroaluminium[C]. Magnesium Technology,2000:53-63.
    [101] M. Hirohisa, S. Hiroshi. Process for manufacture of metallic magnesium[P]. U.S.Pat.,4437886,1984.3.20:1-12.
    [102]彭建平,陈世栋,武小雷,胡文鑫,冯乃祥.碳化钙热法炼镁试验研究[J].轻金属,2009,3:47-49.
    [103]彭建平,冯乃祥,陈世栋,狄跃忠,武小雷,胡文鑫. CaC2还原MgO热力学分析与实验研究[J].真空科学与技术学报,2009,29(6):637-640.
    [104]彭建平,冯乃祥,陈世栋,武小雷,王紫千.碳化钙真空还原镁热力学分析及试验[J].真空,2009,46(3):15-17.
    [105]徐冬,张显鹏,李刚,程恩庆,施春辉.碳化钙真空热法还原硼镁石矿新工艺研究矿[J].2008,17(2):39-44.
    [106]武小雷,冯乃祥,张显鹏,程恩庆,施春辉.热法炼镁过程中镁结晶位置的计算[C].真空技术与表面工程,2009:8-11.
    [107]夏德宏,尚迎春.基于钙还原剂的金属镁生产新工艺[J].有色金属,2008,2:45-47.
    [108]萧泽强.冶金中单元过程和现象的研究[M].北京:冶金工业出版社,2006.
    [109]刘日新,许志宏.熔融还原技术最新进展[J].矿冶,1997,6(2):68-74.
    [110]张汉泉,朱德庆.熔融还原的现状及今后研究的方向[J].烧结球团,2001,26(4):11-14.
    [111]杨天均.熔融还原[M].北京:冶金工业出版社,1998.
    [112]董凌燕.过程熔化还原规律及熔渣性质的研究[D].重庆:重庆大学,1999.
    [113] B. Sarma, A.W. Crambler, R.J. Fruehan. Reduction of FeO in smelting slags by solidcarbon:experimental results[J]. Metallurgical and Material Tansactions B,1996,27(10):717-730.
    [114] R.K. Parmguru, R.K. Galgali, H.S. Ray. Influence of slag and foam characteristics onreduction of FeO-containing slags by solid carbon[J]. Metallurgical and Material TansactionsB,1997,28(10):805-810.
    [115] J.C. Lee, D.J. Min, S.S. Kim. Reaction mechanism on the smelting reduction of iron ore bysolid carbon[J]. Metallurgical and Material Tansactions B,1997,28(11):1019-1029.
    [116] T. Utigard, G. Sanchez, J. Manriquze, A. Luraschi et al. Reduction kinetics of liquid ironoxide–containing slags by carbon monoxide[J]. Metallurgical and Material Tansactions B,1997,28(10):821-826.
    [117] K. Mondal, H. Lorethova, E.Hippo et al. Reduction of iron oxide in carbon monoxideatmosphere—reaction controlled kinetics[J]. Fuel Processing Technology,2004,86:33–47.
    [118] P. Basu, H.S. Ray. Application of thermal analysis to study smelting reduction kinetics [J].Journal of Thermal Analysis,1995,45:1533-1540.
    [119]黄宗泽,肖兴国,肖泽强.石墨还原CaO-SiO2-Al2O3-FeO-CaF2渣系中FeO的动力学[J].化工冶金,1994,15(4):283-288.
    [120]黄宗泽,肖兴国,肖泽强.固体碳还原熔渣中FeO反应的动力学研究[J].东北大学学报,15(2):140-144.
    [121]杨学民,郭占成,于宪溥,艾菁,王大光. CO还原CaO-SiO2-Al2O3-FeO渣系研究[J].金属学报,1994,30(11):491~498.
    [122]杨学民,王大光,刘天中,宣德茂,唐武成. CO还原液态铁氧化物的动力学研究[J].化工冶金,1994,15(1):7-14.
    [123]杨学民,王大光,宣德茂,唐武成. CO还原含FeO二元炉渣反应速度研究(Ⅰ)[J].化工冶金,1993,14(13):195-198.
    [124]杨学民,王大光,宣德茂.CO还原CO-SiO2-FeO三元渣系的研究[J].金属学报,1993,29(8):341-346.
    [125]杨学民,王大光,宣德茂,唐武成. CO还原含FeO二元炉渣反应速率研究(Ⅱ)[J].化工冶金,1995,16(1):1-4.
    [126] Z.C. Guo, Y.S. Xie, D.G. Wang. Evluation of sulfur distribution in the process of coal-basedsmelting reduction ironmaking[J]. Energy Convers. Mgmt,1997,38:1413-1419.
    [127]高斌,杨天均.熔融还原过程硅还原氧化行为[J].北京科技大学学报,2001,23(5):401~405.
    [128] P. R. Taylor, W.M. Wang. A laboratory investigation of the reduction of chromium oxide by areverse-polarity DC plasma-driven molten oxide electrolysis process[J]. Plasma Chemistryand Plasma Processing,2002,22(9):387-400.
    [129]刘岩,姜茂发,许力贤等.铬矿熔融还原不锈钢直接合金化的热力学分析[J].钢铁研究学报,2006,18(11):15-18.
    [130] H.J. Li, A.E. Morris, D.G.C. Robertson. Thermodynamic model for MnO-containing slags andgas-slag-mtal equilibrium inferromanganese smelting[J]. Metallurgical and MaterialTansactions B,1998,29(11):1181-1191.
    [131]王渭源,邹元燨.液态高炉型渣中MnO的活度及还原速率[J].金属学报,1963,6(1):40-51.
    [132] S.Q. Guo, G.C. Jiang, J.L. Xu, K.D. Xu. Kinetics of reduction of MnO in molten slag withcarbon undersaturated liquid iron[J]. Journal of the Iron and Steel Institute of Japan,2000,7(1):1-5.
    [133] G.G. Richards, J.K. Brimacombe, G.W. Toop. Kinetics of the ainc slag-fuming process: part I.industrial measurements[J]. Metallugucal Tansactions B,1985,16(9):513-527.
    [134] G.G. Richards, J.K. Brimacombe, G.W. Toop. Kinetics of the ainc slag-fuming process: part Ⅱ.mathematical model [J]. Metallugucal Tansactions B,1985,16(9):529-540.
    [135] G.G. Richards, J.K. Brimacombe, G.W. Toop. Kinetics of the ainc slag-fuming process: part Ⅲ.model predictions and analysis of process kinetics[J]. Metallugucal Tansactions B,1985,16(9):541-549.
    [136]冯可芹,张丙怀. CaO-SiO2-Al2O3-MgO-TiO2渣系熔融还原过程中钛还原行为的研究[J].钢铁钒钛,1994,15(4):33-39.
    [137]刘清才.钒钛磁铁矿熔态还原速度与渣相结构的关系[J].金属学报,1996,32(10):1081-1086.
    [138]杨勇,宋波,姜钧普,蔡开科,杨素波,文永才. CaO-SiO2-Al2O3-MgO-V2O5渣系中钒还原动力学研究[J].钢铁钒钛,2005,26(4):1-6.
    [139]郭培民,赵沛,李正邦.碳、硅铁及碳化硅对白钨矿还原动力学的影响[J].特殊钢,2007,28(2):7-9.
    [140]孙长余,郭兴敏,李菲.非接触式熔融还原法制备金属镍[J].中国有色金属学报,2010,20(10):2045-2050.
    [141]倪文,马明生,王亚利,王中杰,刘凤梅.熔融还原法镍渣铁的热力学与动力学[J].北京科技大学学报,2009,31(2):163-168.
    [142]郭占成,王大光,许志宏.磷矿石熔融还原(Ⅰ):磷酸盐还原实验研究[J].化工学报,1994,45(3):257-264.
    [143]郭占成,王大光,许志宏.磷矿石熔融还原(Ⅱ):磷酸盐还原实验研究[J].化工学报,1994,45(3):265-271.
    [144] C.Z. Jing. The pidgeon process in China and its future[C]. Magnesium Technology,2001:7-10.
    [145]黄希枯.钢铁冶金原理[M].北京:冶金工业出版社,2004.
    [146] M. Samtani, D. Dollimore, F.W. Wilburn, K. Alexander. Isolation and identification of theintermediate and final products in the thermal decomposition of dolomite in an atmosphere ofcarbon dioxide[J]. Thermochimica Acta,2001,367:285-295.
    [147] P. Engler, M.W. Santana, M.L. Mittleman, D. Balazs. Non-isothermal, in situ XRD analysis ofolomite decomposition[J]. The Rigaku Journal,1988,5(2):3-8.
    [148] K. Gallucci, F. Paolini, L.D. Felice, C. Courson. SEM analysis application to study CO2capture by means of dolomite[J]. Diffusion Fadamental,2007,7(5):1-11.
    [149] H. Galai, M. Pijolat, K. Nahdi, M. Trabelsi-Ayadi. Mechanism of growth of MgO and CaCO3during a dolomite partial decomposition[J]. Solid State Ionics,2007,178:1039-1047.
    [150] K. Gallucci, S. Stendardo, P.U. Foscolo. CO2capture by means of dolomite in hydrogenproduction from syn gas [J]. International Journal of Hydrogen Energy,2008,33:3049-3055.
    [151] E.S. Freeman, B. Carroll. The application of thermoanalytical techniques to reactionkineties[J]. Journal Physical and Chemcal,1958,62:394-397.
    [152] A.W. Coats, J.P. Redfern. Accurate kinetic parameters from thermogravimetric data[J]. Nature,1964,201(4):68.
    [153]德国钢铁工程师协会编.渣图集[M].北京:冶金工业出版社,1989.
    [154] W. Bale, P. Chartrand, S.A. Degterov S A,et a1.Factsage thermochemical software anddambases[J]. Calphad,2002,26(2):198-225.
    [155] У. Верятии. Д Термодинамическиеп свойства неоргани-ческих веществ[M]. М.Атомизлат,1965.
    [156]张鉴.冶金熔体的计算热力学[M].北京:冶金工业出版社,1998.
    [157] J.D.T. Capocch, V. Rajakumar. Reduction of molten MgO-bearing slages withferroaluminium[C]. Magnesium Technology2000.
    [158]赵玉翔,沈颐身.现代冶金原理[M].北京:冶金工业出版社,1993.
    [159]王渭源,邹元燨.液态高炉型渣中MnO的活度及还原速率[J].金属学报,1963,6(1):40-50.
    [160]黄先明,李殷泰. FeO熔渣还原动力学研究[J].东北工学院学报,1989,10(2):123-128.
    [161]戴永年,赵忠.真空冶金[M].北京:冶金工业出版社,1988.
    [162]国营北京建中机器厂主编.电阻炉设计[M].北京:新时代出版社,1982.
    [163]张继玉.真空电阻[M].北京:冶金工业出版社,1994.
    [164]孙士琦,马元,王树理,滕大常.真空电阻炉设计[M].北京:冶金工业出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700