用户名: 密码: 验证码:
不锈钢表面微、纳米薄膜的制备及光催化和抗菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢具有良好的耐蚀性、耐热性,以及优异的机械强度和延展性,并且表面光亮,已广泛用于建筑材料、卫浴洁具、厨房用品、家用电器和医疗器械等领域。在室外使用环境中,不锈钢制品的表面容易受到灰尘、油污的沾染;在室内等环境中使用,还常常会粘附水渍,从而滋生细菌,威胁人们的健康,在公众场所还将造成交叉传染。不锈钢制品在使用过程中需要进行定期清洗,尤其是在幕墙、屋顶及野外等场合使用的不锈钢制品,清洗难度大、人工耗费高,因此制备光催化和抗菌功能的不锈钢具有广阔的应用前景。本文采用电化学阳极化在不锈钢表面原位形成Fe_2O_3纳米孔阵列,首次研究了这种在不锈钢表面原位生成纳米孔结构的光催化性能,通过高能离子注入、化学水热等手段,在不锈钢表面形成TiO_2、WO_3半导体光催化剂掺杂的纳米复合结构,使不锈钢在光照条件下具有自清洁功能和良好的抑菌杀菌能力,同时保持不锈钢表面的硬度、机械强度、光洁度和耐蚀性能等性质基本不变。这种具有光催化性能的不锈钢可大量节省不锈钢制品的清洗、保洁费用,将产生良好的社会和经济效益。主要研究工作如下:
     1)通过阳极氧化法在不锈钢表面原位生成纳米孔结构。系统研究了阳极氧化条件对不锈钢表面纳米孔结构的影响。分别在高氯酸乙二醇溶液、NH_4F溶液、NH_4Cl溶液、硫酸根溶液和磷酸二氢钠溶液中,以抛光的不锈钢片为阳极,在合适电压、温度和时间范围内进行阳极氧化。结果表明,在所选溶液体系下,均能在不锈钢表面获得纳米孔阵列结构,纳米孔主要由Fe_2O_3和Cr_2O_3组成,直径在30~300nm之间,深度范围为10~130nm,纳米孔的形貌和结构可以根据阳极氧化实验条件进行调控。本文制备的不锈钢表面纳米孔阵列,将进一步拓宽不锈钢的应用领域,为实现不锈钢功能化的研究奠定基础。
     2)通过对高氯酸乙二醇溶液的浓度、电压和时间的控制,制备了具有规则均匀纳米孔结构表面的不锈钢。当温度为5℃、阳极氧化电压40V、高氯酸溶液浓度为5vol%、阳极氧化时间10分钟时,所制备的纳米孔直径约100nm,深度为26nm,纳米孔阵列主要由为Fe_2O_3和Cr_2O_3组成,此时不锈钢表面薄膜表现出最大的光催化活性。在高氯酸乙二醇溶液中阳极氧化制备的不锈钢纳米孔结构不会改变不锈钢光洁美观的表面,同时保持了不锈钢良好的耐蚀性能。
     3)在不锈钢表面通过阳极氧化制备纳米孔阵列,通过离子注入对不锈钢纳米孔结构进行掺杂,经退火在不锈钢表面形成Fe_2O_3/TiO_2复合薄膜,以提升光催化性能。结果表明,加速电压为50kV下注入3×10~(15)atoms/cm~2剂量的钛离子,然后450℃退火2小时,所得Fe_2O_3/TiO_2复合薄膜比阳极氧化形成的纳米孔阵列的光催化性能提高4.6倍,并且耐蚀性能比不锈钢本体有所提高。
     4)在不锈钢表面通过阳极氧化制备纳米孔阵列,利用化学水热法负载TiO_2/WO_3,以提升光催化性能。结果表明,以0.010mol/L (NH_4)_2TiF_6和0.0066mol/L Na_2WO_4混合溶液为前驱体,120℃水热3小时所制备的复合薄膜光催化性能,比阳极氧化形成的纳米孔阵列的光催化性能提高15.7倍。这种复合薄膜的光催化性能,比同样条件下单独负载TiO_2和WO_3分别提高了5倍和8倍,其良好的光催化性能应归功于TiO_2/WO_3异质结的形成,延迟了光生电子与空穴的复合,从而使光催化活性显著提高。
     5)在不锈钢表面通过阳极氧化制备纳米孔阵列,利用化学水热法负载SnO_2,以提升光催化性能。结果表明,以0.030mol/L SnCl_4溶液为前驱体,220℃水热3小时所制备复合薄膜光催化性能,比阳极氧化形成的纳米孔阵列的光催化性能提高11.8倍。SnO_2是n型半导体,在阳极氧化的不锈钢表面形成Fe_2O_3/SnO_2异质结,从而使光催化性能明显提高。并且负载SnO_2的薄膜具有良好导电性能,表现出显著的光电流响应,在相同条件下,其光电流比阳极氧化的纳米孔阵列提高了14.8倍。
     6)为弥补单一金属抗菌离子在抗菌广谱性方面的不足,开展了双元抗菌元素的不锈钢研制,以降低贵金属银的用量,改善不锈钢的耐蚀性能和使用安全性。首次采用利用双层辉光离子渗金属技术制备了含Ag/Cu、Cu/Zn的抗菌不锈钢,所得渗层在不锈钢表面分布均匀,耐腐蚀性能有所提高。抗菌不锈钢抗菌广谱性好,杀菌效率高,对革兰氏阴性菌大肠杆菌和革兰氏阳性菌金黄色葡萄球菌的杀菌率都达到100%。
Stainless steels are essential base materials with a host of commercial applications, such asbuilding materials, sanitary wares, kitchenwares, household appliances and medical apparatusdue to its advantages of resistance to corrosion and heating, good mechanical properties andductibility, and high polish surface. However, composite organic, inorganic and biologicalfouling occurs on stainless steel surface. The surface fouling will lower the corrosion resistanceand smear the high polish surface of stainless steels. Traditional heavy manual cleaning worksfor curtain walls and roof glazing systems are accompanied by great risk and high cost tocleaners and architectures. Protection of stainless steels from corrosion and keeping the surfaceclean are an area of study commanding considerable attention. Photocatalytic processes arewidely recognized as viable stategies to solve the surface fouling problems, because organicspecies can be completely mineralized to carbon dioxide or become nontoxic materials byphotocatalytic pathways. For the first time, several strategies were proposed to developphotocleanable and antibacterial stainless steels. Micro-and nanocomposites films composed ofFe_2O_3, TiO_2and WO_3were prepared on stainless steels by electrochemical anodization, ionimplantation and hydrothermal reactions. The as-prepared composite films on stainless steelswith favourable photocatalytic properties and excellent antibacterial performance demonstratecomparable hardness, mechanical properties, high polish surface and corrosion resistance tothose of original surface of stainless steels. The composite films on stainless steels withremarkable photocatalytic activities will exhibit potential applications particularly for outdoorpurpose and will considerably reduce the cleaning cost. Great social and economic benefits willbe expected. The main research works are as follows:
     1) Nanopores arrays (NPAs) on stainless steels surface are prepared by electrochemicalanodization. The morphology, microsture and chemical composition of the NPAs areinvestigated. The anodization process was carried out with a polished stainless steel foil servedas the anode in several solutions, such as perchloric acid, NH_4F, NH_4Cl, SO42-and NaH2PO4.Uniform NPAs composed of Fe_2O_3and Cr_2O_3were prepared in these solutions, with diametersin the range of30~300nm, and depths in the range of10~130nm. The morphology andmicrosture of the NPAs can be controlled by anodization process. The controllable formation ofNPAs will expand the applications of stainless steels and provide a set of systematic methodsfor functionalization of stainless steels.
     2) Formation of NPAs on the surface of stainless steel is demonstrated by anodization inethylene glycol (EG) solution containing perchloric acid. Perchloric acid concentration, appliedvoltage and anodization time of anodization process are investigated. The maximum depth of anodic overlayer is26nm composited by Fe_2O_3and Cr_2O_3after anodization in5vol%HClO4EG solution at40V for10min. The anodized stainless steel shows significant photocatalyticactivities, which should be attributed to the photocatalytic performance of Fe_2O_3and theFe_2O_3-Cr_2O_3heterojunction. Moreover, the formation of NPAs does not damage the polishappearance of stainless steels and remains good corrosion resistance.
     3) Anodized stainless steel was implanted by Ti ions at an extracting voltage of50KVwith an implantation dose of3×10~(15)atoms/cm~2. The implanted stainless steel was then annealedin air at450℃for2h. The results showed that the Fe_2O_3-TiO_2composite film exhibited anenhanced photocatalytic activity that is4.6times to that of as-anodized stainless steel.Meanwhile, the implanted stainless steel showed a slightly better resistance to corrosion thanthat of mechanically polished stainless steel.
     4) A one-step hydrothermal reaction was presented to prepare TiO_2/WO_3nanocompositefilms deposited on anodized stainless steel. The TiO_2/WO_3nanocomposite film prepared in0.01mol/L (NH_4)_2TiF_6and0.0066mol/L Na_2WO_4solution at120℃for3h exhibits the maximumphotocatalytic activity that is15.7times to that of as-anodized stainless steel. Thephotocatalytic activity of TiO_2/WO_3nanocomposite film is five times higher than that of pureTiO_2film and eight times higher than that of pure WO_3film. The excellent photocatalyticactivity of the nanocomposite film should be attributed to the formation of heterojunctionbetween TiO_2and WO_3nanoparticles that can facilitate the separation of photo-generatedelectron-hole pairs.
     5) Hydrothermal reaction was presented to prepare Fe_2O_3/SnO_2nanocomposite filmdeposited on anodized stainless steels. The Fe_2O_3/SnO_2nanocomposite film prepared in0.030mol/L SnCl_4solution at220℃for3h exhibits the maximum photocatalytic activity that is11.8times to that of as-anodized stainless steel. SnO_2is an n-type semiconductor. The excellentphotocatalytic activity of the nanocomposite film should be attributed to the formation ofheterojunction between Fe_2O_3and SnO_2nanocrystals that can facilitate the separation ofphoto-generated electron-hole pairs. Moreover, the conductive nanocomposite film showsconsiderable photocurrent that is14.8times higher than that of as-anodized stainless steel.
     6) Antibacterial activities of medical materials contained with only one antibacterial agentwill be compromised in many situations. Antibacterial stainless steel containing twoantibacterial agents will offset these deficiencies and will obtain high antibacterial efficiencytowards most microorganisms. Antibacterial stainless steels containing Ag/Cu or Cu/Zn wereprepared glow discharge plasma metallurgy. The corrosion resistance of stainless steel isslightly enhanced after glow discharge plasma treatment. Excellent antibacterial activities(100%) against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureusare obtained for Ag/Cu or Cu/Zn doped stainless steel.
引文
[1] Betz G, Wehner G K, Toth L. Composition-vs-depth profiles obtained with auger-electronspectroscopy of air-oxidized stainless-steel surfaces[J]. Journal of Applied Physics,1974,45:5312–5316
    [2] Ford F P, Gordon B M, Horn R M, in: Corrosion in the Nuclear Power Industry[M], ASMHandbook, vol.13C, ASM International, OH,2006, pp.341–360.
    [3] Beddoes J, Parr J G, Introduction to Stainless Steels[M],3rd edition, ASM International,Materials Park, OH, USA,1999.
    [4] Peckner D, Bernstein I M (Eds.), Handbook of Stainless Steels[M], McGraw-Hill Inc.,1977.
    [5] Pascal Payet-Gaspard. Stainless steels in Figure2012[EB/OL].[2012-11-8].http://www.worldstainless.org/statistics/crude_steel_production
    [6] Davis J R, Davis&Associates. Engineered Materials Handbook[M]. Desk Edition, ASM(Copyright1995) Section1.“guide to Material Section”:149-150
    [7]瞿圣佳,任洪岩,苏艺,等.我国钢铁行业环境现状分析与对策研究[J].环境保护科学,2012,38(3):106-111
    [8]中国钢铁工业协会网[EB/OL]. http://www.chinaisa.org.cn/gxportal/login.jsp2012-1
    [9]谢开慧.世界主要钢铁生产国钢铁蓄积量的推定[J].世界钢铁,2012,2:69-73
    [10]Stoychev D, Stefanov P, Nicolova D, et a1. Chemical composition and corrosion resistanceof passive chromate films formed on stainless steels316L and1.4301[J]. MaterialsChemistry and Physics,2002,73:252-258.
    [11]Klemem U, Silva M. Thermal Stabilityof Electrodeposited Nanocrystalline Ni-andCo-Based Materials[J]. Proceedings of Sino-Swedish Structural Materials Symposium2007.
    [12]Ishikawa Y, Yoshimura T. Importance of the surface oxide layer in the reduction of outgassing from stainless-steels[J]. Journal of Vacuum Science&Technology a-VacuumSurfaces and Films,1995,13:1847–1852.
    [13]Russell D K. Super stainless steel resist hostile environments[J]. Advanced MaterialsProcesses,1993,144(1):16-20
    [14]陆世英.我国不锈钢现状[J].钢铁,1981,16(11):70-76
    [15]曲文隆.中国不锈钢生产企业的出口现状及应对策略[J].国际市场,2012,3:30-33
    [16]中国不锈钢发展是对世界不锈钢事业的重大贡献[N].世界金属导报,2006/10/17-B03
    [17]程鹏辉,贺东风,田乃媛.我国不锈钢发展现状及展望[J].特殊钢,2007,28(3):50-52
    [18]蔡立军.关于不锈钢发展和应用潜力的思考[N].中国冶金报2011-12-2(B04)
    [19]Young B. Experimental and Numerical Investigation of High Strength Stainless SteelStructures[J]. Journal of Constructional Steel Research,2008,64(11):1225-1230.
    [20]王元清,袁焕鑫,石永久,等.不锈钢结构的应用和研究现状[J].钢结构,2010,2(25):1-17
    [21]Lo K H, Shek C H, Lai J K L, et al. Recent developments in stainless steels[J]. MaterialsScience and Engineering R,2009,65:39–42
    [22]Mani G, Feldman MD, Patel D, Agrawal CM. Coronary Stents: A Materials. Perspective.Biomaterials[J].2007,28(9):1689-1710
    [23]金宗哲.无机抗菌材料及应用[M].北京:化学工业出版社,2004
    [24]Ignatova M, Voccia S, Gabriel S, et al. Stainless steel grafting of hyperbranched polymerbrushes with an antibacterial activity: Synthesis, characterization, and properties[J].Langmuir,2009,25:891-893.
    [25]Rosmaninho R, Santos O, Nylander T, et al. Modified stainless steel surfaces targeted toreduce fouling-Evaluation of fouling by milk components[J]. Journal of FoodEngineering,2007,80:1176-1179
    [26]Toyokihara C, Nakamura S, Miyakusu K, et al. Microstructure and antimicrobial activity ofCu contained martensitic stainless steels[J]. CAMP-ISIJ,1999,12(6):1179-1181
    [27]Suzuki S, Nakamura S, Miyakusu K, et al. Antimicrobial activity of Cu contained austeniticstainless steels[J]. CAMP-ISIJ,1999,12(3):518-561
    [28]Guillemot G, Despax B, Raynaud P, et al. Plasma deposition of silver nanoparticles ontostainless steel for the prevention of fungal biofilms: A case study on Saccharomycescerevisiae[J]. Plasma Processes and Polymers,2008,5:228-238
    [29]才学敏,刘桐,唐慧琴,等.离子束辅助沉积TiN/Ag多层膜的抗菌性和抗腐蚀性[J].核技术,2007,30(12):1028-1032
    [30]Jamuna-Thevi K, Bakar S A, Ibrahim S, et al. Quantification of silver ion release, in vitrocytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2coatings onstainless steel deposited by RF magnetron sputtering[J]. Vacuum,2011,86:235-241
    [31]Pascal Payet-Gaspard. Structural Stainless Steel Case Studies[EB/OL].[2012-11-8].http://www.worldstainless.org/architecture_building_and_construction_applications/structural_applications
    [32]张宗权,杨宗立,袁胜利,等.不锈钢负载纳米TiO2光催化膜制备及对气相甲醛降解特性研究[J].机械工程材料,2004,28(4):39-42
    [33]Bestetti M, Sacco D, Brunella M F,et al. Photocatalytic degradation activity of titaniumdioxide sol–gel coatings on stainless steel wire meshes[J]. Materials Chemistry andPhysics,2010,124:1225-1227
    [34]Duminica F D, Maury F, Hausbrand R. Growth of TiO2thin films by AP-MOCVD onstainless steel substrates for photocatalytic applications[J]. Surface&CoatingsTechnology,2007,201:9304-9306
    [35]Hosseinalipour S M, Ershad-langroudi A, Hayati A N, et al. Characterization of sol–gelcoated316L stainless steel for biomedical applications[J]. Progress in Organic Coatings,2010,67:371–374
    [36]Zhang Xiangyu, Tang bin, Fan ailan, et al. Preparation and characterization of plasma Cusurface modified stainless steel[J]. Journal of Wuhan University of Technology-Mater,2012,27(2):260-264
    [37]Evans T E, Hart A C, Skedell A N. Nature of the film on colored stainless steel[J].Transactions of Institute Metal Finishing,1973,51(3):108-112
    [38]Elsener B, Addari D, Coray S, et al. Nickel-free manganese bearing stainless steel inalkaline Media—Electrochemistry and surface chemistry[J]. Electrochimica Acta,2011,56(12):4489-4491
    [39]Cheng X Q, Feng Z C, Li C T, et al. Investigation of oxide film formation on316Lstainless steel in high-temperature aqueous environments[J]. Electrochimica Acta,2011,56:5860-5863
    [40]P rna R, N mmiste E, Kikas A, et al. Electron spectroscopic study of passive oxide layerformation on Fe–19Cr–18Ni–1Al–TiC austenitic stainless steel[J]. Journal of ElectronSpectroscopy and Related Phenomena,2010,182:108-110
    [41]Grimes C, Mot G K. TiO2Nanotube Arrays: Synthesis, Properties, and Applications[J].Springer Verlag,2009.
    [42]Townsend P D, Kelly J C, Hartley N E W, Ion Implantation Sputtering and TheirApplications[J]. Academic Press, New York,1976;
    [43]张涛,宋教花,张荟星等.强流金属离子注入[J].微细加工技术,2001,4(1):22-25
    [44]Padhy N, Ningshen S, Panigrahi B K, et al. Corrosion behaviour of nitrogen ion implantedAISI type304L stainless steel in nitric acid medium[J]. Corrosion Science,2010,52:104-112
    [45]Yao Z P, Jiang Z H, Wu X H, et al. Effects of ceramic coating by micro-plasma oxidationon the corrosion resistance of Ti-6Al-4V alloy[J]. Surface Coating&Technology,2005,200(7):2445-2450
    [46]徐重.等离子表面冶金技术的现状与发展[J].中国工程科学,2002,4(2):36-45
    [47]Staia M H, Cervantes C, Viloria S. Thermochemical modeling of the CVD process of TiNon316L stainless steel substrate[J]. Surface and Coatings Technology,1995,72:145-151
    [48]Besmann T M, Spear K E, Analysis of the chemical vapor deposition of titanium diboride.Ⅰ.Equilibrium thermodynamic analysis[J]. Journal of The Electrochemical Society,1977,124:786-790
    [49]Evans P, English T, Hammond D, et al. The role of SiO2barrier layers in determining thestructure and photocatalytic activity of TiO2films deposited on stainless steel[J]. AppliedCatalysis A: General,2007,321:140-146
    [50]Briuker C J, Scherer G W. Sol-gel science the physics and chemistry of S-G processing[M].New York: academic press Inc,1990,74-81
    [51]Lev O, Tsionsky M, Rabinovich L, et al. Oranically modified sol-gel sensors[J]. AnalyticalChemistry,1995,67:22A-30A
    [52]Dave B C, Dunn B, Valentine J S, et al. Sol-gel encapsulation methods for biosensors[J].Analytical Chemistry,1994,66(22):1120A-1127A
    [53]Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides[J]. Progress insolid state chemistry,1988,18:259-341
    [54]Gupta R, Kumar A. Bioactive materials for biomedical applications using sol–geltechnology[J]. Biomedical Materials,2008,3:1-16
    [55]Druart M E, Richir J B, Poirier C, et al. Influence of sol–gel application conditions onmetallic substrate for optical applications Corrosion Engineering[J]. Science andTechnology,2011,46(6):677-684
    [56]Balamurugan A, Balossier G, Kannan S, et al. Electrochemical and structuralcharacterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings onsurgical grade316L SS for biomedical applications[J]. Ceramics International,2007,33:605-614
    [57]Yu J C, Ho W K, Lin J, et al. Photocatalytic activity, antibacterial effect, and photoinducedhydrophilicity of TiO2films coated on a stainless steel substrate[J]. Environmental Science&Technology,2003,37:2296-2301
    [58]Yoshimura M. Importance of soft solution processing for advanced inorganic materials[J].Journal of Materials Research,1998,13(4):796-802
    [59]吴键松,李海民.水热法制备无机粉体材料进展[J].海湖盐与化工,2004,33(4):22-25
    [60]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206
    [61]Zhu K J, Yanagisawa K, Onda A. Hydrothermal synthesis and morphology variation ofcadmium hydroxyapatite[J]. Journal of Solid State Chemistry,2004,177:4379-4385
    [62]Suchanek W L. Synthesis of Potassium Niobiate(KNbO3) thin films by low-temperaturehydrothermal epitaxy[J]. Chemical Materials,2004,16(6):1083-1090
    [63]Lee Y G, Watanabe T, Takata T, et al. Preparation and characterization of sodium tantalitethin films by hydrothermal-electrochemical synthesis[J]. Chemical Materials,2005,17(9):2422-2426
    [64]Valanezhad A, Tsuru K, Maruta M, et al. Zinc phosphate coating on316L-type stainlesssteel using hydrothermal treatment[J]. Surface&Coatings Technology,2010,205:2538–2541
    [65]蔡炳新.基础物理化学[M].北京:科学出版社,2001
    [66]周成凤,王志义.电解液性质对TiO2纳米管阵列形貌及生长机理的影响[J].无机材料学报,2009,24(6):1125-1131
    [67]Gong D,Grimes C A,Varghese O K,et a1.Titanium oxide nanotube arrays prepared byanodic oxidation[J].Journal of Materials Research,2001,16(12):3331-3334
    [68]Mohapatra S K, John S E, Banerjee S, et al. Water photooxidation by smooth and ultrathinα-Fe2O3nanotube arrays[J]. Chemistry of Materials,2009,21(14):3048-3052
    [69]Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO2NanotubeArrays to134μm in Length[J]. Journal of Physical Chemistry B,2006,110(33):16179-16184
    [70]Sreekantan S, Saharudin K A, Lockman Z, et al. Fast-rate formation of TiO2nanotubearrays in an organic bath and their applications in photocatalysis[J]. Nanotechnology,2010,21:1-8
    [71]Mor, G. K.; Varghese, O. K.; Paulose, M, et al. A review on highly ordered, verticallyoriented TiO2nanotube arrays: Fabrication, material properties, and solar energyapplications[J]. Solar Energy Materials and Solar Cells,2006,90(14):2011-2075
    [72]Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and Physicochemistry ofAnodic Oxide Films on Titanium and TA6V Alloy[J]. Surface and Interface Analysis,1999,27(7):629-637
    [73]Gong D,Grimes C A,Varghese O K,et a1.Titanium oxide nanotube arrays prepared byanodic oxidation[J].Journal of Materials Research,2001,16(12):3331-3334
    [74]Macak J M, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared inNa2SO4/NaF electrolytes[J]. Electrochimica Acta,2005,50(18):3679-3684
    [75]Taveira L V, Macak J M, Tsuchiya H, et a1. Initiation and growth of self-organized TiO2nanotubes anodically formed in NH4F/(NH4)2SO4electrolytes[J]. Journal of theElectrochemical Society,2005,152(10): B405-B410
    [76]Ghicov A, Tsuchiya H, Macak J M, et a1. Titanium oxide nanotubes prepared in phosphateelectrolytes[J]. Electrochemistry Communications,2005,7(5):505-509
    [77]Mohapatra S K, John S E, Banerjee S, et al. Water photooxidation by smooth and ultrathinα-Fe2O3nanotube arrays[J]. Chemistry of Materials,2009,21(14):3048-3052
    [78]Vignal V, Roux J C, Flandrois S, et al. Nanoscopic studies of stainless steelelectropolishing[J]. Corrosion Science,2000,42:1041-1053
    [79]Martin F, Del Frari D Cousty J, et al. Self-organisation of nanoscaled pores in anodic oxideoverlayer on stainless steels[J]. Electrochimica Acta,2009,54:3086-3091
    [80]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal ofPhotochemistry and Photobiology C: Photochemsitry Reviews,2000,11:1-21
    [81]Carey J H, Lawrence J, Tosine H M. Photodech lorination of PCB’s in the presence oftitanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination andToxicology,1976,16:697
    [82]Park D R, Zhang Jinlong, Ikeue Keita. Photocatalytic oxidation of ethylene to CO2and H2Oon ultrafine powdered TiO2photocatalysts in the presence of O2and H2O[J]. Journal ofCatalysis,1999,185:114-119
    [83]唐玉朝,胡春,王怡中. TiO2光催化剂反应机理及动学研究进展[J].化学进展,2002,14(3):192-199
    [84]申玉芳,龙飞,邹正光.半导体光催化技术研究进展[J].材料导报,2006,20(6):28-33
    [85]Varghese O K, Glimes C A. Appropriate strategies for determining the photoconversionefficiency of water photoelectrolysis cells: A review with examples using titaniananotubearray photoanodes[J]. Solar Energy Materials&Solar Cells,2008,92:374-384
    [86]Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, andapplications[J]. Chemical Reviews,2007,107(7):2891-2959
    [87]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2nanotube arrays indye-sensitized solar cells[J]. Nano Letters.2006,6(2):215-218
    [88]Linsebigler A L, Lu Guangquan, Yates J T. Photocatalysis on TiO2surfaces: Principles,mechanisms, and selected results[J]. Chemical Reviews,1995,95:735-758
    [89]Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation forenvironmental applications-a review[J]. Journal of Chemical Technology&Biotechnology,2002,77:102-116
    [90]The absolute energy positions of conduction and valence bands of selected semiconductingminerals[J]. American Mineralogist,2000,85:543–556
    [91]Pradhan G K, Parida K M. Fabrication, growth mechanism, and characterization of α-Fe2O3nanorods[J]. ACS Applied Materials Interfaces,2011,3(2):317-319
    [92]Uchihar T, Matsumura M, Michlo O J, et a1. Effect of ethylenediaminetetraacetic acid onthe photocatalytic activities and flat-band potentials of cadmium sulfide and cadmiumselenide[J]. Journal of Physical Chemistry,1990,94:415-419
    [93]Osugi M E, Zanoni M V B, Chenthamarakshan C R, et al. Toxicity assessment anddegradation of disperse azo dyes by photoelectrocatalytic oxidation on Ti/TiO2nanotubular array electrodes[J]. Journal of Advanced Oxidation Technologies,2008,11(3):425-434
    [94]LadouceuL M, Dodolet J E, Toufillon G, et a1. Plasma-sprayed semiconductor electrodes:photoelectrochemieal characterization and ammonia photoproduction by substoichiometrctungsten oxides[J]. Journal of Physical Chemistry,1990,94:4579-4587
    [95]Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chemical Reviews,1993,93:341-357
    [96]Mor G K, Prakasam H E, Varghese O K, et al. Vertically oriented Ti Fe O nanotube arrayfilms: toward a useful material architecture for solar spectrum water photoelectrolysis[J].Nano Letters,2007,7(8):2356
    [97]Fang Jun, Bi Xinzhen, Si Dejun, et al. Spectroscopic studies of interfacial structures ofCeO2-TiO2mixed oxides[J]. Indian Journal of Chemistry,2009,48A:480-488
    [98]Feng Wang, Xiaojun Chen, Xianluo Hu, et al. WO3/TiO2microstructures for enhancedphotocatalytic oxidation[J]. Separation and Purification Technology,2012,91:67-72
    [99]Yuan Hao, Xu Jiaqiang. Preparation, characterization and photocatalytic activity ofnanometer SnO2[J]. Indian Journal of Chemistry Engineering and Application,2010,1(3):241-246
    [100] Kontos A I, Likodimos V, Stergiopoulos T, et al. Self-organized anodic TiO2nanotubearrays functionalized by iron oxide nanoparticles[J]. Chemistry of Materials,2009,21:662-664
    [101] Niu Mutong, Huang Feng, Cui Lifeng, et al. Hydrothermal synthesis, structuralcharacteristics, and enhanced photocatalysis of SnO2/α-Fe2O3semiconductornanoheterostructures[J]. American Chemical Society Nano,2010,4(2):681–688
    [102] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,1995,293(5528):269–271
    [103] Park J H, Kim S, Allen Bard J. Novel carbon-doped TiO2nanotube arrays with highaspect ratios for efficient solar water splitting[J]. Nano Letters,2006,6(1):24-28
    [104] Colon G, Hidalgo M C, Navio J A. Photocatalytic deactivation of commercial TiO2samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylicacid[J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,138:79–85
    [105] Mungkalasiri J, Bedel L, Emieux F, et al. CVD elaboration of nanostructured TiO2-Ag thinfilms with efficient antibacterial properties[J]. Chemical Vapor Deposition,2010,16:35-41
    [106] Mungkalasiri J, Bedel L, Emieux F, et al. DLI-CVD of TiO2–Cu antibacterial thin films:Growth and characterization[J]. Surface&Coatings Technology,2009,204:887-892
    [107] Say lkan F, Asilturk M, Tatar P, et al. Photocatalytic performance of Sn-doped TiO2nanostructured mono and double layer thin films for Malachite Green dye degradationunder UV and vis-lights[J]. Journal Hazardous Materials,2007,144:140-146
    [108] Tryba, Morawski A W, Inagaki Michio, et al. Mechanism of phenol decomposition onFe-C-TiO2and Fe-TiO2photocatalysts via photo-Fenton process[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2006,179:224-228
    [109] Li Z H, Qiu N X, Yang G M. Effects of synthesis parameters on the microstructure andphase structure of porous316L stainless steel supported TiO2membranes[J]. Journal ofMembrane Science,2009,326:533-538
    [110] Shang J, Li W, Zhu Y F. Structure and photocatalytic characteristics of TiO2filmphotocatalyst coated on stainless steel webnet[J]. Journal of Molecular Catalysis A:Chemical,2003,202:187-195
    [111] Hamaker H C. Formation of deposition by electrophoresis[J]. Transactions of the FaradaySociety,1940,36:279-283
    [112] Corni I, Neumann N, Novak S, et al. Electrophoretic deposition of PEEK-nano aluminacomposite coatings on stainless steel[J]. Surface&Coatings Technology,2009,203:1349-1359
    [113] Yanagida S, Nakajima A, Kameshima Y. Preparation of a crack-free rough titania coatingon stainless steel mesh by electrophoretic deposition[J]. Materials Research Bulletin,2005,40:1335-1344
    [114] Sato N, Kawachi M, Noto K, et al. Effect of particle size reduction on crack formation inelectrophoretically deposited YBCO films[J]. Physica C: Superconductivity,2001,357-360:1019-1022
    [115] You C h, Jiang D L, Tan S H. SiC/TiC laminated structure shaped by electrophoreticdeposition[J]. Ceramics International,2004,30:813-815
    [116] Chana A H C, Portera J F, Barford J P, et al. Effect of thermal treatment on thephotocatalytic activity of TiO2coatings for photocatalytic oxidation of benzoic acid[J].Journal of Materials Research,2002,17,7:1758-1765
    [117] Patil K R, Sathaye S D, Kholam YB, et a1. Preparation of TiO2thin films by modifiedspin--coating method using an aqueous precursor[J]. Material Letters.2003.(57):775-778
    [118] Kurtz K R, Gordon R G. Chemical vapor deposition of TiN at low temperatures[J]. ThinSolid Films,1986,240:277-290
    [119] Evans P, Sheel D W. Photoactive and antibacterial TiO2thin films on stainless steel[J].Surface Coating&Technology,2007,201:9319-9324
    [120] Puddu V, Choi H, Dionysiou D D, et al. TiO2photocatalyst for indoor air remediation:Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylenedegradation[J]. Applied Catalysis B: Environmental,2010,94(3-4):211-213
    [121] Titanium Association. Titanium Machining Technology[M]. Tokyo: Nikan IndustryShinbunshya,1992: l2
    [122] Kim D S, Yang J H, Balaji S, et al. Hydrothermal synthesis of anatase nanocrystals withlattice and surface doping tungsten species[J]. Crystal Engineering Communications,2009,11:1621-1629
    [123] Zhao Xu, Liu Manhong, Zhu Yongfa. Fabrication of porous TiO2film via hydrothermalmethod and its photocatalytic performances[J]. Thin Solid Films,2007,515:7127-7134
    [124] Zhang H B, Zhou K C, Li Z Y. Plate-like hydroxyapatite nanoparticles synthesized by thehydrothermal method[J]. Journal of Physics and Chemistry of Solids,2009,70:243-248
    [125] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystalnanowires[J]. Angewandte Chemie International Edition,2002,41:4790-4793
    [126] Zhu K J, Yanagisawa K, Shimanouchi R. Preferential occupancy of metal ions in thehydroxyapatite solid solutions synthesized by hydrothermal method[J]. Journal of theEuropean Ceramic Society,2006,26:509-513
    [127] Zhu K J, Yanagisawa K, Shimanouchi R. Synthesis and crystallographic study of Pb-Srhydroxyapatite solid solutions by high temperature mixing method under hydrothermalconditions[J]. Materials Research Bulletin,2009,44:1392-1396
    [128]徐孝华.微生物世界[M].北京:农业大学出版社.1989
    [129]张界国.警惕微生物的危害[J].劳动安全与健康,1998,(6):27
    [130]童忠良.无机抗菌新材料与技术[M].北京:化学工业出版社,2006
    [131] Giesbrecht P, Kersten T, Maidhof H, et al. Staphylococcal cell wall: Morphogenesis andfatal variations in the presence of penicillin[J]. Microbiology and Molecular BiologyReviews,1998,62:1371-1414
    [132] Giesbrecht P, Wecke J, Reinicke B. On the morphogenesis of the cell wall ofstaphylococci[J]. International Review of Cytology,1976,44:225-318
    [133] Dufrene Y F. Refining our perception of bacterial surfaces with the atomic forcemicroscope[J]. Journal of Bacteriology,2004,186a:3283-3285
    [134] Braga P C, Sasso M, Maci D S. Cefodizime: effects of subinhibitory concentrations onadhesiveness and bacterial morphology of Staphylococcus aureus and Escherichia coli:comparison with cefotaxime and ceftriaxone[J]. Journal of Antimicrobial Chemotherapy,1997,39:79-84
    [135] Li Nan, Yongqian Liu, Manqi Lu. Study on antibacterial mechanism of copper-bearingaustenitic antibacterial stainless steel by atomic force microscopy[J]. Journal of MaterialsScience: Materials in Medicine,2008,19:3057-3062
    [136] Lyon B R, Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis[J].Microbiology Reviews,1987,51:88-134
    [137] Chandy T, Sharma C P. Chitosan as a biomaterial[J]. Biomaterials Artifical Cells ArtificalOrgans,1990,18:1-24
    [138] Silveira M F A, Soares N E F, Geraldine R M, et a1. Antimicrobial efficiency and sorbicacid migration from active films into pastry dough[J]. Packaging Technology and Science,2007,20(4):287-292
    [139] Sun T, Xie W M, Xu P X. Antioxidant activity of graft chitosan derivatives[J].Macromolecular Bioscience,2003,6(3):320-323
    [140] Sun T, Xie W M, Xu P X. Super oxide anion scavenging activity of graft chitosanderivatives[J]. Carbohydrate Polymers,2004,58(4):379-382
    [141] Arima Y, Nakai Y, Hayakawa R, et a1. Antibacterial effect of beta-thujaplicin onstaphylococci isolated from atopic dermatitis:Relationship between changes in thenumber of viable bacterial cells and clinical improvement in an eczematous lesion ofatopic dermatitis[J]. Journal of Antimicrobial Chemotherapy,2003,1(51): l13-122
    [142] Park Y, Kim M H, Park S C, et a1. Investigation of the antifungal activity and mechanismof action of LMWS-Chitosan[J]. Journal of Microbiology and Biotechnology,2008,18(10):1729-1734
    [143]张葵花,林松柏,谭绍早.有机抗菌剂研究现状及发展趋势[J].涂料工业,2005,35(5):45-50
    [144]江山,王立,俞豪杰,陈英.新型有机高分子抗菌剂[J].高分子通报,2002(6):57-62
    [145] Son Y A, Sun G. Durable antimicrobial nylon66fabrics: Ionic interactions withquaternary ammonium salts[J]. Journal of Applied Polymer Science,2003,90(8):2194-2199
    [146] Son Y A, Kim B S. Ravikumar K, et al. Imparting durable antimicrobial properties tocotton fabrics using quaternary ammonium salts through4-aminobenzenesulfonicacid–chloro–triazine adduct[J]. European Polymer Journal,2006,42(11):3059-3067
    [147] Riva R, Lussis P, Lenoir S, et al. Contribution of "click chemistry" to the synthesis ofantimicrobial aliphatic copolyester[J]. Polymer,2008,49(8):2023-2028
    [148] Gao B J.Qi C S,Liu Q. Immobilization of quaternary ammonium salts on graftingparticle polystyrene/SiO2and preliminary study of application performance[J]. AppliedSurface Science,2008,254(13):14159-14165
    [149] Balazs D J, Triandafillu K, Wood P, et al. Inhibition of bacterial adhesion on PVCendotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitratetreatments[J]. Biomaterials,2004,25(11):2139–2151
    [150] Baker C, Pradhan A, Pakstis L, et al. Synthesis and antibacterial properties of silvernanoparticles[J]. Journal of Nano-science and Nanotechnology,2005,5(2):244-249
    [151] Akashi A, Matsuya Y, Unemori M, et a1. Release profile of antimicrobial agents fromalphatricalcium phosphate cement[J]. Biomaterials,2001,22(20):2713-2717
    [152] Gao J A, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clayminerals[J]. Environmental Science&Technology,2005,39(24):9509-9516
    [153] Coleman N J, Bishop A H, Booth S E, et a1. Ag+and Zn2+exchange kinetics andantimicrobial properties of11angstrom tobermorites[J]. Journal of the European CeramicSociety,2009,29(6):1109-1l17
    [154] Hashimoto K, Toda Y. Evaluation method of antibacterial activity of ceramics materialswith antimicrobial characteristics and its application to phosphate compounds[J].Inorganic Materials,1996,3(9):452-459
    [155] Nagashima T, Enoki A, Fuse G. Method for assay of antibacterial activity of textile treatedwith antimicrobial and deodorant reagents[J]. Journal of Antibacterial and AntifungalAgents,1997,25(7):325-332
    [156] Kenawy E, Worley S D, Broughton R. The chemistry and applications of antimicrobialpolymers: a state-of-the-art review[J]. Biomacromolecules2007,8:1359-1384
    [157] Nakamura S, Suzuki S, Ookubo N, et al. Microstructure and antimicrobial activity of Cucontained ferritic stainless steels[J]. CAMP-ISIJ,1998,11(3):1147-1149
    [158] Zhang Xiangyu, Tang bin, Fan ailan, et al. Preparation and characterization of plasma Cusurface modified stainless steel[J]. Journal of Wuhan University of Technology-Mater,2012,27(2):260-264
    [159] Musalek R, Kovarik O, Skiba T, et al. Fatigue properties of Fe–Al intermetallic coatingsprepared by plasma spraying[J]. Intermetallics,2010,18(7):1415-1418
    [160] Wang Hefeng, Tang Bin, Li Xiuyan, et al. Antibacterial properties and corrosionresistance of nitrogen-doped TiO2coatings on stainless steel[J]. Journal of MatererialsScience&Technology,2011,27(4):309-316
    [161]张翔宇,唐宾,范爱兰,等. AISI304不锈钢表面渗Cu层对其摩擦学行为的影响[J].材料热处理学报,2011,9(32):136-140
    [162]张翔宇,蒋立,黄晓波,等.不锈钢表面渗铜扩散复合处理合金层的抗菌性能研究[J].无机材料学报,2012,27(5):519-523
    [163] Zhang Tonghe, Wei Fuzhong, Chen Jun, et al. Ion implantation of Ti, Mo, W, Mo+Cand W+C in H13steel and aluminum[J]. Materials Research Society SymposiumProceedings,1994,316:777-782
    [164] Hong I T, Koo C H. Antibacterial properties, corrosion resistance and mechanicalproperties of Cu-modified SUS304stainless steel[J]. Materials Science and EngineeringA,2005,(393):213–222
    [165] Dan Zhigang, Ni Hongwei, Xu Bofan. Microstructure and antibacterial properties of AISI420stainless steel implanted by copper ions[J]. Thin Solid Films,2005,492(1-2):93-100
    [166]倪红卫等.银离子注入剂量对2Cr13Ni2不锈钢耐蚀性能的影响研究[J].功能材料,2008,39(11):1897-1899
    [167] Mungkalasiri J, Bedel L, Emieux F, et al. CVD Elaboration of Nanostructured TiO2-AgThin Films with Efficient Antibacterial Properties[J]. Chemical Vapor Deposition,2010,16:35-41
    [168] Mungkalasiri J, Bedel L, Emieux F, et al. DLI-CVD of TiO2–Cu antibacterial thin films:Growth and characterization[J]. Surface&Coatings Technology,2009,204:887-892
    [169] Shaffei M F, El-Rehim S S, Shaaban N A, et al. Electrolytic coloring of anodic aluminumfor selective solar absorbing films: use of additives promoting color depth and rate[J].Renewable Energy,2001,23(3-4):50-51
    [170] Gong D, Grimes C A, Varghese O K, et a1. Titanium oxide nanotube arrays prepared byanodic oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334
    [171] Mohapatra S K, John S E, Banerjee S, et al. Water photooxidation by smooth andultrathin α-Fe2O3nanotube arrays[J]. Chemistry of Materials,2009,21(14):3048-3052
    [172] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and Physicochemistryof Anodic Oxide Films on Titanium and TA6V Alloy[J]. Surface and Interface Analysis,1999,27(7):629-637
    [173] Hakiki N E. Influence of surface roughness on the semiconducting properties of oxidefilms formed on304stainless steel[J]. Journal of Applied Electrochemistry,2008,38(5):679
    [174] McBee C L, Kruger J. Nature of passive films on Iron-Chromium alloys[J].Electrochimica Acta,1972,17(8):1337
    [175] Xiong G, Joly A G, Holtom G P, et al. Excited carrier dynamics of α-Cr2O3/α-Fe2O3core-shell nanostructures[J]. Journal of Physical Chemistry B,2006,110(34):16937
    [176] Chambers S A, Williams J R, Henderson M A, et al. Structure, band offsets andphotochemistry at epitaxial α-Cr2O3/α-Fe2O3heterojunctions[J]. Surface Science,2005,587(3): L197
    [177] Tanmay K G, Chakraborty M, Pramanik P. Photocatalytic performance ofnano-photocatalyst from TiO2and Fe2O3by mechanochemical synthesis[J]. Journal ofAlloys and Compounds,2011,509:8158–8164
    [178] Sajjad A K L, Shamaila S, Tian Baozhu, et al. One step activation of WOx/TiO2nanocomposites with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental,2009,91:397–405
    [179] Leghari S A K, Sajjad S, Chen F, et al. WO3/TiO2composite with morphology change viahydrothermal template-free route as an efficient visible light photocatalyst[J]. ChemicalEngineering Journal,2011,166:906-915
    [180] Uchiyama H, Yukizawa M, Kozuka H. Photoelectrochemical properties of Fe2O3-SnO2films prepared by sol-gel method[J]. Journal of Physical Chemistry C,2011,115:7050-7055
    [181] Qian Zheng, Bai Haijing, Wang Guangli, et al. A photoelectrochemical sensor based onCdS-polyamidoamine nano-composite film for cell capture and detection[J]. Biosensorsand bioelectronics,2010,25:2045-2050
    [182]康湛莹,李瑞增,车承斌.重金属离子杀菌作用的机理[J].哈尔滨科学技术大学学报,1995,19(3):103-105
    [183] Xu Jiang, Xie Xishan, Xu Zhong. Double glow plasma surface alloying technique byNi-Cr-Mo-Cu alloys[J]. Journal of University of Science and Technology BeiJing,2001,23(6):532-534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700