用户名: 密码: 验证码:
自振脉冲磨料水射流安全切割实验及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过实验研究、数值模拟、理论分析相结合的方法,在分析研究自振脉冲磨料水射流产生原理和基本特征的基础上,实验研究了自振脉冲射流的冲击特性,得出自振脉冲射流不同压力不同靶距条件下的冲击压强特性;利用冲击压强波动规律推算和高速摄像配合图像处理两种方法测算分析了自振脉冲射流的脉冲频率;针对影响自振脉冲磨料水射流切割性能的土要影响参数进行了大量切割实验,得出各影响参数同切割性能的关系;通过自振脉冲水射流切割过程中温度变化监测实验,分析得出该切割手段用于井下危险环境切割是可行的;利用Fluent数值模拟软件对自振脉冲磨料水射流流场进行了模拟分析,得出流场内部和外部速度、压力等随时间的变化规律;在分析国内外学者对水射流切割机理研究的基础上,得出自振脉冲磨料水射流的切荆机理;基于以上研究成果自主研制出一套矿用便携式自振脉冲磨料水射流安全切割装备。论文研究成果对井下高瓦斯危险条件下金属、岩石等硬质材料的安全切割提供新的技术工艺及装备,对煤矿安全生产具有非常重要的理论和现实意义。
Acccording to experimental research, numerical simulation and theoretical analysis, and based on the generation principle and basic characteristics of self-vibration pulsation abrasive waterjet ("AWJ"), this dissertation experimentally investigates the impact features and pulsation frequency of AWJ. The impact pressure features under different pressure and range of AWJ are revealed. By using the impact pressure fluctuation law and high-speed imaging method, the pulsation frequency of AWJ is estimated and analyzed, disclosing its law. With regards to main parameters affecting the cutting performance of AWJ, a lot of experiments were conducted. The relationship between the influential parameters and cutting performance is obtained, which serves to provide parameters for the development of AWJ cutting device. Through the temperature change testing experiment in the process of AWJ cutting, the feasibility of using this cutting technique in the hazardous environment of coal mine is studied. Fluent simulation software is used to analyze the flow field inside and outside the AWJ spray nozzle, finding out the time-based law of the speed and pressure inside and outside the flow field and promoting the understanding of the AWJ flow field motion law. By analyzing domestic and overseas scholars'research on waterjet cutting physics, the cutting principle of AWJ is revealed. Based on the above-mentioned research results, a set of portable AWJ safe cutting device for coal mine is independently developed. The research results provide technical equipment to safe cutting of such hard materials as metal and rock in highly hazardous environment of coal mine, and are of important theoretical and practical significance to the safe production of coal mine.
引文
[1]陈树明.激光切割技术现状与发展[J].锻压机械,2002(2):3-5.
    [2]崔巍,高军.超声切割技术在复合材料加工领域的应用[J].航空制造技术,2006(6):108-109.
    [3]Summers D. A. Water jetting Technology [M]. E & FN SPON, An Imprint of Chapman & Hall,1995.
    [4]薛胜雄等.JB/T9091-1999微小型清洗机[M].北京:机械科学研究院,1999.
    [5]李震,李锋,汪建新.高压水射流技术及应用[J].机械工程师,2009(11):33-36.
    [6]李根生,沈忠厚.自振空化射流理论与应用[M].中国石油大学出版社,2008,
    [7]李晓红,卢义玉,向文英.水射流理论及在矿业工程中的应用[M].重庆大学出版社,2007.
    [8]Labus T. J. Fluid Jet Technology Fundamentals and Application[M]. USA: American Water Jet Technology Association,1995.
    [9]将旭平,胡寿根,钟声玉.高压水射流冲击特性分析及实验研究[J].上海机械学院学报,1991,15(2):107-110.
    [10]Leach S. J, Walker G. L. Some aspects of rock cutting by speed water jets[Z], Phil. Trans. Royal Soc. of London, A 1100,1966:295-303.
    [11]P. Meng, E. S. Gekin, M. C. Len, et al. Ananalytical and exterimentals study of cleaning with moving water jets[J]. Journal of Manufacturing Science and Engineering,1998,120:230-239.
    [12]M. C. Len, P. Meng. Mathematical modeling and experimental verification of stationary water jet cleaning process[J]. Journal of Manufacturing Science and Engineering,1998,120:59-66.
    [13]R. Carford, J. Kaminski, Et Al. Chip control in tube turning using a high-pressure water jet[J]. Processing Institute of Mechanical Engineering. Part B Manufacture Engineering,1998,212:159-168.
    [14]陈波.超高压水切割机的现状与发展[J].航空制造技术,2009(6):66-68.
    [15]陈正文,薛胜雄,王永强等.高压清洗机的国际水平标志[J].清洗世界,2006(8):29-32.
    [16]刘小健.脉冲射流技术的原理及其应力特性研究[J].山东轻工业学院学报(自然科学版),2005(2):5-9.
    [17]曹源,金先龙,杜新光.水锤载荷作用下管道变形及动态应力[J].核动力工程,2010(2):33-36.
    [18]Green D. J. Technical Evaluation:300 Area Steam Line Valve Accident[M]. Hanford:Westinghouse,1993.
    [19]Wiley E. B, Streeter V. L. Fluid Transients[M]. New York:McGraw Hill,1978.
    [20]Adachi T, Ujihashi S, Matsumoto H. Impulsive Responses of a Circular Cylindrical Shell Subjected to Water Hammer Waves [J]. ASME J. Pressure Vessel Technol.1991.113:517-523.
    [21]Robert A. L. Dynamic Pipe Stresses During Water Hammer:A Finite Element Approach [J]. ASME J. Pressure Vessel Technol,2007,129(5):226-233.
    [22]Leishear R. A, Morehouse J. H. Dynamic Pipe Stresses During Water Hammer, IV, A Vibration Analysis:Second Annual Water Hammer Conference, ASEME-JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, USA[C].July 6-11,2003.
    [23]Leishear R. A, Rhodes C. A. Maximum Pipe Stresses Resulting From a Water Hammer Induced Shock Wave:A Comparison of Finite Element to Vibration Analysis Techniques[D]. University of South Carolina,2001.
    [24]曹源,金先龙,张晓敏等.基于流固偶合的水力瞬变三维模拟及管壁动态应力分析[J].振动与冲击,2009(11):70-72.
    [25]Nebeker E. B. Percussive Jet Cutting, Phase 1, Final Report Doe Contract DE-AC03-87ER80528, SAI,January,1988[R].
    [26]G M. A. Barahona.高频冲击射流技术在地下采矿与航道掘进中的应用[J].国外金属矿山,1998,3:27-30.
    [27]Han S. S, The Effects of Percussive Water Jet Parameters on Rock Cutting, Ph.D. Dissertation, T4822[Z]. Colorado School of Mines, Golden, Co., USA: 1995.
    [28]廖振方,唐川林.自激振荡脉冲射流喷嘴的理论分析[J].重庆大学学报(自然科学版),2002(2):24-27.
    [29]唐川林,胡东,裴江红.自激振荡脉冲射流动态特性的实验研究[J].水利水电技术,2006(12):71-74.
    [30]裴江红,廖振方,唐川林.自激振荡脉冲射流频率特性实验研究[J].中国机械工程,2009(1):60-63.
    [31]Kohl R. E. Rock tunneling with high speed water jet utilizing cavitating damage[J]. ASME Paper,1969,65:5-42.
    [32]Patricia M. G, Garcia, Brooks Bradford Sr. Hydrok in etic using the cleaning of exchanger tubes and pipes:Proc of the 10th American Water Jet Conference Houston, Texas,1999[C].
    [33]Jun Ishimoto. Kenjiro Kamijo. Numerical Analysis of Cavitating Flow of Liquid Helium in a Converging divering Nozzle[J]. Journal of Fluids Engineering,2003,125:749-756.
    [34]Leroux J. B, Astolfi J. A, Billard J. Y. An Experimental Study of Unsteady Partical Cavitation[J]. Journal of Fluids Engineering,2004,126:94-101.
    [35]向文英,李晓红,卢义玉等.空化射流效应的实验研究[J].中国机械工程,2006(13):1388-1391.
    [36]王学杰,李根生,康延军等.利用水力脉冲空化射流复合钻井技术提高钻速[J].石油学报,2009(1):117-120.
    [37]Richard Dvorsky, Jiri Lunacek, Ales Sliva. Dynamics analysis of cavitation disintegration of microparticles during nanopowder preparation in a new Water Jet Mill (WJM) device[J]. Advanced Powder Technology,2010,10:1016-1020.
    [38]王瑞和,沈忠厚,周卫东.高压水射流破岩钻孔的实验研究[J].石油钻采工艺,1995(1):20-25.
    [39]贾三春,张东速,王从东.旋转射流在破土中的应用[J].机床与液环2009(4):67-68.
    [40]王瑞和,周卫东,沈忠厚等.旋转射流破岩钻孔机理研究[J].中国安全科学学报,1999(S1):5-9.
    [41]陈志荣,袁隆基,高丽霞等.冰粒磨料射流系统设计[J].煤矿机械,2008(11):10-11.
    [42]向文英,李晓红,卢义玉等.磨料射流破碎岩石的性能研究[J].地下空间与工程学报,2006(1):170-174.
    [43]Ruihe Wang, Mingbo Wang. A two-fluid model of abrasive waterjet[J]. Journal of Materials Technology,2010,210:190-196.
    [44]H. C. Meng, K. C. Ludema. Wearmodels and predictive equations their form andcontent[J]. Wear,1995,181:443-457.
    [45]A. W. Momber, R. Kovacevic, H. Kwak. Alternative method for the evaluation of the abrasive water-jet cutting of grey cast iron[J]. Journal of Materials Processing Technology,1997,65:65-72.
    [46]R. Kovacevic, R. S. Momber, H. S. Kwan. Acoustic mission for understanding them mechanisms of abrasive water sensing as a tool difficult-to-machine materials[J]. Processing Institute Engineering. Part B Manufacture Engineering, 1998,212:102-107.
    [47]R. E. Williams. Acoustic emission characteristics of abrasive flow machining[J]. Journal of Manufacturing Science and Engineering,1998,120:85-89.
    [48]梁志强宋拥政温效康.磨料水射流的切割机制[J].机械工程学报,1997(3):102-107.
    [49]侯健,韩育礼.超高压磨料水射流切割系统试验研究[J].兵工学报,2000(3):253-256.
    [50]M. Hashish. Pressure Effects in AWJ Machining[J]. Journal of Engineering Material & Technology,1989(111):221-228.
    [51]Blickwedel, P. Meng, E. S. Geskin, et al. Mathematical modeling and experimental verification of stationary water jet cleaning process[J]. Journal of Manufacturing Science and Engineering,1998,120:105-109.
    [52]H. Orbanic, M. Junkar. Analysis of striation formation mechanism in abrasive water jet cutting[J]. Wear,2008,265:821-830.
    [53]E. Siores, W. C. K. Wong, L. Chen, et al. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques[J]. CIRP Annals-Manufacturing Technology,1996,45(1):327-330.
    [54]F. L. Chen, E. Siores. The effect of cutting jet variation on surface striation formation in abrasive water jet cutting[J]. International Journal of Machine Tools & Manufacture,2001,41:1479-1486.
    [55]F. L. Chen, J. Wang, E. Lemma, et al. Striation formation mechanisms on the jet cutting surface[J]. Journal of Materials Processing Technology. 2003.141:213-218.
    [56]Hamatani G, Ramulu H, Acceleration characteristics of abrasive particles in premixed abrasive water jet nozzle:Nippon fikias Gekas Ronhunshu, B Hen/Transaction of the Japan Society of Mechanical Engineers,Part B. V60. N575.1994.7:2447-2452[C].
    [57]P. Meng, E.S. Kim. M. C. Leu, et al. Analytical and experimental study of cleaning with moving water jets[J]. Journal of Manufacturing Science and Engineering,1998,120:359-365.
    [58]F M.粘性流体力学[M].北京:机械工业出版社,1982.
    [59]Shimizu, Sei Ji, Wu Ze-Long. Acceleration characteristics of abrasive particles in premixed abrasive water jet nozzle, Transaction of the Japan Society of Mechanical Engineers, Part B,1994,60(575):2447-2452.[C].
    [60]尤明庆.前混合式磨料射流喷嘴的磨损试验研究[J].流体机械,1997(1):15-17.
    [61]Ye J, Kovacevic R. Turbulent solid-liquid flow through the nozzle of premixed an abrasive Water Jet cutting system, Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,1999, 213(1):59-67[C].
    [62]R. M. Rani, S. Seshan. Studies on abrasive jet machining through statistical design of experiments[J]. Experimental Techniques,1998,24:123-127.
    [63]Madhusarathi Nanduri, David G. Taggart, Thomas J. Kim. The effects of system and geometric parameters on abrasive water jet nozzle wear[J]. International Journal of Machine Tools & Manufacture,2002,42:615-623.
    [64]杨永印,王瑞和,沈忠厚等.淹没条件下星形喷嘴射流流动特点的实验研究[J].石油学报,2001,(2):109-112.
    [65]刘俊,秦臻.高压水射流清洗作业中喷嘴的设计原理和选型依据[J].管道技术与设备,2007(5):43-44.
    [66]岳桂杰,刘善春,张友军.多股磨料组合射流喷嘴设计[J].重庆科技学院学报(自然科学版),2007(1):38-40.
    [67]崔俊奎,赵军,李国威等.前混合式磨料水射流喷嘴外流场仿真与实验[J].煤炭学报,2009(3):410-414.
    [68]张俊,李晓晖,朱玉泉.锥形喷嘴水射流反推力的研究[J].机床与液压,2007(4):139-141.
    [69]王卫民,赵晓利,仲伟君.三相磨料射流技术弹药除锈的工艺研究[J].军械工程学院学报,2007(3):65-67.
    [70]李成全,章兵,章梦涛等.油井中磨料射流割缝机理研究[J].辽宁工程技术大学学报,2005(2):211-213.
    [71]于鸿椿.应用磨料射流割缝技术改善近井地层流场的实验研究[J].石油钻采工艺,2007(3):56-58.
    [72]王瑞和,李罗鹏,周卫东等.磨料射流旋转切割套管试验及工程计算模型[J].中国石油大学学报(自然科学版). 2010(2):56-61.
    [73]孟筠青,聂百胜,姬宗锋.矿用前混合磨料水射流喷嘴设计[J].煤矿机械,2009(4):12-14.
    [74]聂百胜,孟筠青,姬宗锋.Numerical Simulation Research of Liquid-Solid Two-Phase Flow in Abrasive Water Jet Nozzle[J]. Journal of Beijing Institute of Technology,2009(2):157-161.
    [75]林柏泉,吕有厂,李宝玉等.高压磨料射流割缝技术及其在防突工程中的应用[J].煤炭学报,2007(9):959-963.
    [76]李宝玉,林柏泉,秦发秋等.高压磨料射流在防治煤与瓦斯突出方面的研究与应用[J].煤矿机械,2007(9):43-45.
    [77]聂百胜,孟笃青,兰日昌等.前混合磨料水射流切割技术在诱导顶板垮落中的应用[J].矿业研究与开发,2008(6):49-51.
    [78]刘芳彬,聂百胜.前混和磨料水射流切割安全放顶研究[J].煤矿机械,2008(3):39-41.
    [79]刘伟,钱高峰.高压磨料射流割缝技术在软煤层突出工作面的应用[J] .煤炭工程,2008(2):39-41.
    [80]周孟颖.前混合磨料射流技术在煤矿大型金属构件防腐前预处理中的应用[J].煤炭工程,2008(1):94-96.
    [81]周东平,卢义玉,康勇等.磨料射流割缝技术防突机理及应用[J] .重庆大学学报,2010(7):86-90.
    [82]李晓红,王建生,卢义玉等.脉冲磨料射流的基本理论与试验[J] .中国安全科学学报,1999(S1):86-104.
    [83]李晓红,王建生,卢义玉等.自激振荡磨料射流的基本理论与初步试验[J].中国安全科学学报,1999(S1):16-20.
    [84]李晓红,卢义玉,王建生等.自激振荡磨料射流原理及切割实验研究[J].流体机械,1999(12):11-13.
    [85]卢义玉,李晓红,王建生.自激振荡磨料射流中的磨料加速机理[J].水动力学研究与进展(A辑),2003(2):205-208.
    [86]袁恩熙.工程流体力学[M].北京:石油工业出版社,1985.
    [87]王瑞和.高压水射流破岩机理研究[M].东营:中国石油大学出版社,2010.
    [88]胡寿根,丁胜,脉冲高压水射流工作原理及研究现状[J].华东工业大学学报,1997(2):3-11.
    [89]卢义玉.磨料在振荡流中的混合机理及脉辫,磨料水射流的切割特性研究[D].重庆大学,2000.
    [90]杨林.自激振荡脉冲磨料射流的动态特性研究[D].重庆大学,2001.
    [91]李刚,龙云芳,詹承烈等.强噪声作业患精神障碍的危险因素分析[J].实用预防医学,2002(5).
    [92]卜广惠,何艳,张学新.强噪声引起听觉脑干慢波电位的即时性增大效应[J].白求恩医科大学学报,1998(1):24-26.
    [93]薛源,陶晓杰.高压水射流技术译文集[M]. 1982.
    [94]杨林,杨清文,廖振方等.前混合磨料射流在汽轮机除垢中的应用[J].华东电力,1996(3):41-42.
    [95]杨清文,王晓敏.前混合磨料水射流切割钢板和混凝土的实验研究[J].兵工学报,2005(1):133-135.
    [96]王敬涛,张沙.前混合磨料水射流水下排除爆炸物装置技术[J].解放军理工大学学报(自然科学版),2011(4):393-396.
    [97]廖勇,李晓红,卢义玉等.高围压水射流切割实验装置的设计[J].流体机械,2002(12):16-17.
    [98]廖勇,李晓红,卢义玉等.自激振荡脉冲磨料水射流的研究[J].流体机械,2003(4):4-5.
    [99]卢义玉、李晓红,雷向阳等.多功能数控水刀装置的研究[J].矿山机械,2002(8):68-70.
    [100]李宝玉.易燃易爆环境下安全切割装置的研制[J].流体机械.2005(2):42-44.
    [101]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [102]唐学林,余欣,任松长等.固-液两相流体动力学及其在水利机械中的应用[M].郑州:黄河水利出版社,2006.
    [103]高莹,金陶胜,赵彦琳等.基于多孔介质模型的土壤风蚀风洞湍流涡发生器设计的数值模拟[J].农业工程学报,2011,27(11):85-89.
    [104]吴晶峰,宁方飞.均匀各向同性湍流的脱体涡数值模拟[J].北京航空航天大学学报,2011,37(5):589-594.
    [105]贺铸,柳朝晖,郑楚光.三维均匀各向同性两相湍流的直接模拟[J].工程热物理学报,2003,24(4):621-624.
    [106]赵宗昌,尹曹勇.湍流分散体系中液滴破碎频率模型的黏性修正[J].化工学报,2006,57(12):2834-2839.
    [107]潘宏禄,史可天、马汉东DNS/LES方法在剪切湍流模拟中的应用[J],空气动力学学报,2009,27(4):444-450.
    [108]石碧青,洪海波,谢壮宁等.大气边界层风洞流场特性的模拟[J].空气动力学学报,2007,25(3):376-380,395.
    [109]孙明波,汪洪波,梁剑寒等.复杂湍流流动的混合1RANS/LES方法研究[J].航空计算技术,2011,41(1):24-29,33.
    [110]张伟,余运超,陈红勋.离心泵叶轮非设计工况下内部湍流流场的模拟[J].排灌机械工程学报,2010.28(1):38-42.
    [111]许坤,吴亚东,欧阳华.无动量亏损尾迹三维数值模拟[J].流体机械,2011,39(12):18-22,83.
    [112]刘玉英,吴辉霞.薛然然等.TRI对湍流火焰模拟中辐射源项的影响[J].燃烧科学与技术,2011,17(2):121-125.
    [113]战仁军,汪送.脉冲防暴水炮管内湍流的大涡模拟及实验验证[J].机械设计与制造,2011(8):106-108.
    [114]樊晶明,樊旭明,王军.微磨料水射流加工脆性玻璃的冲蚀机理研究[J].金刚石与磨料磨具工程,2010(3):1-5.
    [115]彭家强,宋丹路,宗营营.磨料水射流对金属材料去除力和去除模型的研究[J].机械设计与制造,2012(2):17-19.
    [116]孟筠青,聂百胜.磨料水射流切剂技术在矿山安全中的应用研究[J].中国煤炭,2008(6):45-46.
    [117]王建明,余丰,刘飞宏等.SPH和FEM耦合法模拟磨料水射流中单磨粒加速过程[J].山东大学学报(工学版),2011(5):114-120.
    [118]陆国胜.龚烈航,王强等.前混合磨料水射流磨料颗粒加速机理分析[J].解放军理工大学学报(自然科学版),2006(3):275-280.
    [119]吴玉林,唐学林,刘树红等.水力机械空化和固液两相流体动力学[M].北京:中国水利水电出版社,2007.
    [120]大融.空化与空蚀研究[J].中国基础科学,2010.12(6):3-7.
    [121]张林夫,夏维洪、空化与空蚀[M].南京:河海大学出版社, 1989.
    [122]Thomas Geike. Valentin L. Popov. A Bubble Dynamics Based Approach to the Simulation of Cavitation in Lubricated Contacts[J]. Journal of Tribology. 2009.131(1):11704-11706.
    [123]G. L. Chahinem,Y. T. Shen. Bubble Dynamics and Cavitation Inception in Cavitation Susceptibility Meters[J]. Journal of Fluids Engineering, 1986,108(4):444-452.
    [124]A. Abouel-Kasem, S. M. Ahmed. Bubble Structures Between Two Walls in Ultrasonic Cavitation Erosion[J]. Journal of Tribology, 2012,134(2):21702-21709.
    [125]C. Brennen. Discussion:"Cavitation Testing of Propellers in a Free Surface Tunnel Utilizing Micro Air Bubble Control" (Albrecht, K., and Bjorheden, O., 1975, ASME J. Fluids Eng.,97, pp.523--531)[J]. Journal of Fluids Engineering, 1975,97(4):531.
    [126]Parag V. Chitnis, Nicholas J. Manzi, Robin O. Cleveland, et al. Mitigation of Damage to Solid Surfaces From the Collapse of Cavitation Bubble Clouds[J]. Journal of Fluids Engineering,2010,132(5):51303-51306.
    [127]Ehsan Samiei, Mehrzad Shams, Reza Ebrahimi. Numerical Simulation of Cavitation Bubble Collapse in the Vicinity of a Rigid Boundary[J]. ASME Conference Proceedings,2010,2010(49170):501-506.
    [128]Bu-Geun Paik, Kyung-Youl Kim, Jong-Woo Ahn. Measurements of High Velocity Gradient Flow Using Bubble Tracers in a Cavitation Tunnel[J]. Journal of Fluids Engineering,2009,131 (9):91301-91310.
    [129]R. F. Maye, J. A. Euler, L. M. Habip. Structural Analysis of Pressure Hulls: Rib-Stiffened Cylindrical Shell With Reinforced Circular Penetration[J]. Journal of Applied Mechanics,1972,39(4):1072-1078.
    [130]田立言,黄继汤.丁彤.含沙水流中闸门槽蚀损的实验研究[J].水利水电技术,1999,30(5).
    [131]田立言,丁彤,陈嘉范等.挟沙水流中空泡溃灭的实验研究[J].水力发电学报,1999(1).
    [132]M. Fesanghary, M. M. Khonsari. A Modification of the Switch Function in the Elrod Cavitation Algorithm[J]. Journal of Tribology, 2011,133(2):24501-24504.
    [133]H. Ding, F. C. Visser, Y. Jiang, et al. Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications[J]. Journal of Fluids Engineering, 2011,133(1):11101-11114.
    [134]H. Q. Yang. Extension of the Full Cavitation Model for Cryogenic Fluids[J]. ASME Conference Proceedings,2011,2011(38921):T 10211.
    [135]A. Abouel-Kasem, F. A. Alturki, S. M. Ahmed. Fractal Analysis of Cavitation Eroded Surface in Dilute Emulsions[J]. Journal of Tribology, 2011,133(4):41403-41409.
    [136]Naoki Tani, Nobuhiro Yamanishi, Yoshinobu Tsujimoto. Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer[J]. Journal of Fluids Engineering,2012,134(2):21302-21313.
    [137]F. Addiego, J. Di Martino. D. Ruch. et al. Quantification of Cavitation in Neat and Calcium Carbonate-Filled High-Density Polyethylene Subjected to Tension[J]. Journal of Engineering Materials and Technology. 2011.133(3):30904-30907.
    [138]S. A. Karrab, M. A. Doheim, Mohammed S. Aboraia, et al. Study of Cavitation Erosion Pits on 1045 Carbon Steel Surface in Corrosive Waters[J]. Journal of Tribology,2012,134(1):11602-11606.
    [139]Shu Wang. The Analysis of Cavitation Problems in the Axial Piston Pump[J]. Journal of Fluids Engineering,2010,132(7):74502-74506.
    [140]Bostjan Gregorc, Matjaz Hribersek, Andrej Predin. The Analysis of the Impact of Particles on Cavitation Flow Development[J]. Journal of Fluids Engineering, 2011,133(11):111304-111308.
    [141]朱美洲,胡寿根.空化水射流研究现状及其应用[J].华东工业大学学报,1996(1):1-8.
    [142]李根生,沈忠厚.空化射流及其在钻井工程中的应用研究[J].石油钻探技术,1996(4):54-57.
    [143]李根生,沈忠厚,周长山等.自振空化射流冲击压力脉动特性实验研究[J].水动力学研究与进展(A辑),2003(5):570-575.
    [144]李根生,沈忠厚,李在胜等.自振空化射流提高钻井速度的可行性研究[J].石油钻探技术,2004(3):1-4
    [145]李根生,沈忠厚.自振空化射流提高钻井速度的实验研究[J].天然气工业,2006(5):52-54.
    [146]李根生,沈忠厚,周长山等.自振空化射流研究与应用进展[J].中国工程科学,2005(1):27-32.
    [147]李根生,沈忠厚,张召平等.自振空化射流钻头喷嘴研制及现场试验[J].石油钻探技术.2003(5):11-13.
    [148]史怀忠,李根生,王学杰等.水力脉冲空化射流欠平衡钻井提高钻速技术[J].石油勘探与开发,2010(1):111-115.
    [149]李根生,史怀忠,沈忠厚等.水力脉冲空化射流钻井机理与试验[J] .石油勘探与开发,2008(2):239-243.
    [150]史春祥,芮冰.煤矿液压支架用乳化液泵站[J].流体传动与控制,2007(2):35-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700