用户名: 密码: 验证码:
金属表面超声滚压加工理论及表层力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声表面滚压加工(USRP)是一种新兴的表面纳米化技术,可以提高金属材料表面的综合性能。
     本文首先在考虑应变、应变率和循环加载特性的基础上修正了非线性各向同性-随动硬化本构模型用以描述金属材料在超声表面滚压加工过程中的应力应变关系,并针对轴类用供货态和调质态40Cr钢进行了不同应变幅和不同应变速率下的对称应变控制低周疲劳试验,以获取其材料参数。
     其次,建立了基于压电效应原理的USRP动力监测系统,以40Cr钢为载体,研究了超声表面滚压的动力响应,获得了按正弦函数变化的动态冲击力的频率和幅值,结果发现随着静压力和振幅的增加,冲击力有所增加,相对于静压力,振幅的影响更为显著。据此对超声表面滚压过程进行有限元模拟,得到了加工过程中工作头的运动状态,从而进一步对工作头冲击40Cr钢表面的弹塑性球面应力波问题进行了求解。通过特征线法给出了弹塑性球面波传播的任意质点在任意时刻的应力应变状态和运动速度。
     再次,用有限元手段分析了超声表面滚压过程中整体模型的能量分布,定义并求得了超声表面滚压加工的效率和功率,获得了表面纳米化工艺中关注的表面特征参量随USRP加工参数的变化规律。模拟结果表明:经过超声表面滚压处理后,表层残余应力分布比较均匀,表面各方向的应力分量均为压应力,随着深度的增加压应力先增大后减小。随着车床主轴转速、加工头径向进给速率的降低和静压力、振幅和加工遍数的增加,最大残余压应力的数值和深度以及残余压应力范围均有不同程度的增加。表面粗糙度随着主轴转速和进给速率的增加而增加,随静压力和振幅的增加先减小后增大。通过等效塑性应变表征了材料的加工硬化程度。
     最后,采用纳米压痕技术测试了超声滚压后材料表层的力学性能,包括弹性模量、纳米硬度、以屈服强度和应变硬化指数表征的材料塑性参数和残余应力。弹性模量、纳米硬度和屈服强度由材料的表面向内部逐渐减小,并随USRP静压力、振幅和加工遍数的增加显著提高,应变硬化指数呈相反趋势。在距离表面500μm以内,40Cr钢表层残余应力均为压应力,随着距表面距离的增加,残余压应力值不断减小。
Ultrasonic surface rolling processing (USRP) is a newly developed surfacenanocrystallization technology, which can greatly improve the comprehensiveperformance of metal surface.
     This paper first chooses the nonlinear isotropic-kinematic hardening constitutivemodel to describe the stress-strain relation of material subjected to ultrasonic surfacerolling and then carries out symmetrical strain controlled low cycle fatigue tests underdifferent strain amplitude and strain rate for as-supplied, quenched and tempered40Crsteel for the sake of drawing material parameters. Meanwhile, the nonlinearisotropic-kinematic hardening constitutive model is revised considering strain, strainrate and cyclic loading characteristics.
     Secondly, the dynamic response of40Cr suffered by ultrasonic surface rolling isinvestigated. In this connection, dynamic monitoring system based on the principle ofpiezoelectric effect is established and the frequency and amplitude of dynamic impactforce which varies according to sine function are obtained. It is found that the impactforce increases as static pressure and vibration amplitude increase. Compared withstatic pressure, the influence of vibration amplitude is more significant. The motionstate of processing tip is obtained by finite element simulation, and further used forsolving the elastic-plastic spherical stress wave problem generated in dynamic impactprocess. The stress-strain state and velocity of any mass point at any time are providedthrough characteristic method.
     Energy distribution during ultrasonic surface rolling process is studied using finiteelement analysis, as well as definition and calculation of USRP efficiency and power.Also, effects of USRP parameters on surface characteristics are discussed. Simulationresults show that residual stress distribution in surface layer is evener after USRPtreatment and the surface residual stress is compressive. Compressive stress firstincreases and then decreases with the increase of depth. The magnitude and depth ofmaximum residual stress and residual stress range increase as spindle speed and feedrate decrease and static pressure, vibration amplitude, processing times increase.Surface roughness rises as spindle speed and feed rate increase and first decrease andthen increase with the increase of static pressure and vibration amplitude. Workhardening is characterized through the equivalent plastic strain.
     Finally, nanoindentation experiments are performed on the surface layer of40Crtreated by USRP to obtain the mechanical properties, including elastic modulus, nanohardness, yield strength, strain hardening exponent and residual stress. Elasticmodulus, nano hardness and yield strength gradually reduce from surface to interior,and are significantly improved with the increase of static pressure, amplitude andprocessing times, whereas strain hardening exponent presents a contrary trend. Within500μm from the surface, residual stresses are compressive and reduce with theincrease of distance from the surface.
引文
[1]方洪渊,焊接结构学,北京:机械工业出版社,2008,217~218
    [2]姜银方,现代表面工程技术,北京:化学工业出版社,2011,1~5
    [3]胡国雄,盛光敏,韩靖,塑性变形诱发表面自纳米化的研究及其应用,材料导报,2007,21(4):117~125
    [4] K. Lu, J. Lu. Nanostructured surface layer on metallic materials induced bysurface mechanical attrition treatment. Materials Science and Engineering A,2004,375~377:38~45
    [5]张聪惠,兰新哲,赵西成等,金属材料表面纳米化研究现状,铸造技术,2006,27(8):882~884
    [6]韩同伟,316L不锈钢表面纳米化后的低周疲劳性能研究:[硕士学位论文],贵州大学,2006
    [7] Juan C. Villegas, Kun Dai, Leon L. Shaw, et al. Nanocrystallization of a nickelalloy subjected to surface severe plastic deformation. Materials Science andEngineering A,2005,410~411:257~260
    [8]丛志新,王宇,浅析表面自身纳米化及其应用进展,热处理技术与装备,2008,29(1):10~14
    [9]欧信兵,张津,强烈塑性变形表面纳米化的研究现状,表面技术,2008,37(3):60~64
    [10]张俊宝,40Cr钢表面纳米化组织结构与力学性能研究:[博士后学位论文],上海交通大学,2003
    [11]Yimin Lin, Jian Lu, Liping Wang, et al. Surface nanocrystallization by surfacemechanical attrition treatment and its effect on structure and properties of plasmanitrided AISI321stainless steel. Acta Materialia,2006,54:5599~5605
    [12]N. Tsuji, S. Tanaka, T. Takasugi. Effects of combined plasma-carburizing andshot-peening on fatigue and wear properties of Ti-6Al-4V alloy. Surface&Coatings Technology,2009,203:1400~1405
    [13]Cheng Zhong, Lei Liu, Yating Wu, et al. Diffusion behavior of aluminum in thesurface layer of iron processed by shot peening. Materials Letters,2010,64:1407~1409
    [14]T. Roland, D. Retraint, K. Lu, et al. Fatigue life improvement through surfacenanostructuring of stainless steel by means of surface mechanical attritiontreatment. Scripta Materialia,2006,54:1949~1954.
    [15]K.S. Raja, S.A. Namjoshi, M. Misra. Improved corrosion resistance of Ni-22Cr-13Mo-4W Alloy by surface nanocrystallization. Materials Letters,2005,59:570~574
    [16]Z.B. Wang, N.R. Tao, S. Li, et al. Effect of surface nanocrystallization on frictionand wear properties in low carbon steel. Materials Science and Engineering A,2003,352:144~149
    [17]WeilinYan, Liang Fang, Zhanguang Zheng, et al. Effect of surface nano-crystallization on abrasive wear properties in Hadfield steel. TribologyInternational,2009,42:634~641
    [18]王婷,超声表面滚压加工改善40Cr钢综合性能研究:[博士学位论文],天津大学,2008
    [19]Shengping Wang, Yongjun Li, Mei Yao, et al. Compressive residual stressintroduced by shot peening. Journal of Materials Processing Technology,1998,73:64~73
    [20]G. Liu, J. Lu, K. Lu. Surface nanocrystallization of316L stainless steel inducedby ultrasonic shot peening. Materials Science and Engineering A,2000,286:91~95
    [21]Y.M. Xing, J. Lu. An experimental study of residual stress induced by ultrasonicshot peening. Journal of Materials Processing Technology,2004,152:56~61
    [22]K. Dai, L. Shaw. Comparison between shot peening and surface nano-crystallization and hardening processes. Materials Science and Engineering A,2007,463:46~53
    [23]巴德玛,马世宁,李长青等,超音速微粒轰击45钢表面纳米化的研究,材料科学与工艺,2007,15(3):342~346
    [24]M. Umemoto, K. Todaka, K. Tsuchiya. Formation of nanocrystalline structure incarbon steels by ball drop and particle impact techniques. Materials Science andEngineering A,2004,375~377:899~904
    [25]H. Suzuki, T. Moriwaki, T. Okino, et al. Development of Ultrasonic VibrationAssisted Polishing Machine for Micro Aspheric Die and Mold. CIRPAnnals-Manufacturing Technology,2006,55:385~388
    [26]王东坡,宋宁霞,王婷等,纳米化处理超声金属表面,天津大学学报,2007,40(2):228~233
    [27]Chang-Min Suh, Gil-Ho Song, Min-Soo Suh, et al. Fatigue and mechanicalcharacteristics of nano-structured tool steel by ultrasonic cold forging technology.Materials Science and Engineering A,2007,443:101~106
    [28]A. Tolga Bozdana, Nabil N.Z. Gindy, Hua Li. Deep cold rolling with ultrasonicvibrations-a new mechanical surface enhancement technique. InternationalJournal of Machine Tools&Manufacture,2005,45:713~718
    [29]Wang Ting, Wang Dongpo, Liu Gang, et al. Investigations on the nano-crystallization of40Cr using ultrasonic surface rolling processing. AppliedSurface Science,2008,255:1824~1829
    [30]Yong Xingping, Liu Gang, Lu Ke. Characterization and properties ofnanostructured surface layer in a low carbon steel subjected to surface mechanicalattrition. Journal of Materials Science&Technology,2003,19(1):1~2
    [31]HOU Li-feng, WEI Ying-hui, LIU Bao-sheng, et al. Microstructure evolution ofAZ91D induced by high energy shot peening. Trans.Nonferrous Met.Soc.China,2008,18:1053~1057
    [32]葛利玲,路彩虹,井晓天等,40Cr钢表面纳米化组织与性能的研究,表面技术,2008,37(2):11~13
    [33]X.J. Cao, Y.S. Pyoun, R. Murakami. Fatigue properties of a S45C steel subjectedto ultrasonic nanocrystal surface modification. Applied Surface Science,2010,256:6297~6303
    [34]I. Altenberger, B. Scholtes, U. Martin, et al. Cyclic deformation and near surfacemicrostructures of shot peened or deep rolled austenitic stainless steel AISI304.Materials Science and Engineering A,1999,264:1~16
    [35]Leon L. Shaw, Jia-Wan Tian, Angel L. Ortiz, et al. A direct comparison in thefatigue resistance enhanced by surface severe plastic deformation and shotpeening in a C-2000superalloy. Materials Science and Engineering A,2010,527:986~994
    [36]K. Dai, L. Shaw. Analysis of fatigue resistance improvements via surface severeplastic deformation. International Journal of Fatigue,2008,30:1398~1408
    [37]巴德玛,马世宁,孟凡军,38CrSi钢表面纳米结构层力学性能的研究,材料热处理学报,2007,28(5):115~119
    [38]樊新民,叶惠琼,7A04表面纳米化组织的热稳定性,材料热处理学报,2007,28(8):267~270
    [39]T. Balusamy, Satendra Kumar, T.S.N. Sankara Narayanan. Effect of surfacenanocrystallization on the corrosion behaviour of AISI409stainless steel.Corrosion Science,2010,52:3826~3834
    [40]颜婧,盛光敏,表面纳米化后表层纳米结构的热稳定性研究现状,材料导报,2008,22(6):45~48
    [41]D.T. Asquith, A.L. Yerokhin, J.R. Yates, et al. The effect of combinedshot-peening and PEO treatment on the corrosion performance of2024Al alloy.Thin Solid Films,2007,516:417~421
    [42]石继红,武保林,刘刚,表面纳米化对316L不锈钢抗点蚀性能的影响,材料保护,2008,41(5):26~28
    [43]任瑞铭,陈春焕,栾卫志等,表面纳米化对1Cr17不锈钢耐氧化性的影响,材料热处理学报,2007,28(8):188~192
    [44]Guobin Li, Jie Chen, Delin Guan. Friction and wear behaviors of nanocrystallinesurface layer of medium carbon steel. Tribology International,2010,43:2216~2221
    [45]尚福林,塑性力学基础,西安:西安交通大学出版社,2011,1~35
    [46]M. Meo, R. Vignjevic. Finite element analysis of residual stress induced by shotpeening process. Advances in Engineering Software,2003,34:569~575
    [47]T. Hong, J.Y. Ooi, B.A. Shaw. A numerical study of the residual stress patternfrom single shot impacting on a metallic component. Advances in EngineeringSoftware,2008,39:743~756
    [48]K. Dai, J. Villegas, Z. Stone, et al. Finite element modeling of the surfaceroughness of5052Al alloy subjected to a surface severe plastic deformationprocess. Acta Materialia,2004,52:5771~5782
    [49]Y.C. Lin, Xiao-Min Chen, Ge Liu. A modified Johnson-Cook model for tensilebehaviors of typical high-strength alloy steel. Materials Science and EngineeringA,2010,527:6980~6986
    [50]Qing Yu Hou, Jing Tao Wang. A modified Johnson-Cook constitutive model forMg-Gd-Y alloy extended to a wide range of temperatures. ComputationalMaterials Science,2010,50:147~152
    [51]D. Umbrello, R.M. Saoubi, J.C. Outeiro. The influence of Johnson-Cook materialconstants on finite element simulation of machining of AISI316L steel.International Journal of Machine Tools&Manufacture,2007,47:462~470
    [52]Rajiv Shivpuri, Xiaomin Cheng, Yongning Mao. Elasto-plastic pseudo-dynamicnumerical model for the design of shot peening process parameters. Materials andDesign,2009,30:3112~3120
    [53]G.H. Majzoobi, R. Azizi, A. Alavi Nia. A three-dimensional simulation of shotpeening process using multiple shot impacts. Journal of Materials ProcessingTechnology,2005,164~165:1226~1234
    [54]G.I. Mylonas, G. Labeas. Numerical modelling of shot peening process andcorresponding products: Residual stress, surface roughness and cold workprediction. Surface&Coatings Technology,2011,205:4480~4494
    [55]刘旭红,黄西成,陈裕泽等,强动载荷下金属材料塑性变形本构模型评述,力学进展,2007,37(3):361~374
    [56]Mohammad Abdel-Karim. An extension for the OhnoeWang kinematic hardeningrules to incorporate isotropic hardening. International Journal of Pressure Vesselsand Piping,2010,87:170~176
    [57]Jang Hyun Lee, Kyung Su Kim, Jae Beom Lee, et al. A numerical simulationmodel of cyclic hardening behavior of AC4C-T6for LNG cargo pump usingfinite element analysis. Journal of Loss Prevention in the Process Industries,2009,22:889~896
    [58]M. Klemenz, V. Schulze, I. Rohr, et al. Application of the FEM for the predictionof the surface layer characteristics after shot peening. Journal of MaterialsProcessing Technology,2009,209:4093~4102
    [59]S. Bagherifard, R. Ghelichi, M. Guagliano. A numerical model of severe shotpeening (SSP) to predict the generation of a nanostructured surface layer ofmaterial. Surface&Coatings Technology,2010,204:4081~4090
    [60]ASTM E8M. Standard Test Methods for Tension Testing of Metallic Materials1
    [61]ASTM E606. Standard Practice for Strain-Controlled Fatigue Testing1
    [62]Guozheng Kang, Nobutada Ohno, Akira Nebu. Constitutive modeling of strainrange dependent cyclic hardening. International Journal of Plasticity,2003,19:1801~1819
    [63]S.J. Zakavi, M. Zehsaz, M.R. Eslami. The ratchetting behavior of pressurizedplain pipework subjected to cyclic bending moment with the combined hardeningmodel. Nuclear Engineering and Design,2010,240:726~737
    [64]A.H. Mahmoudi, S.M. Pezeshki-Najafabadi, H. Badnava. Parameter determina-tion of Chaboche kinematic hardening model using a multi objective GeneticAlgorithm. Computational Materials Science,2011,50:1114~1122
    [65]Abaqus Analysis User's Manual,2009, version6.9
    [66]吕洪生,曾新吾,连续介质力学,长沙:国防科技大学出版社,1999,1~35
    [67]Efim Sh. Statnikov, Oleg V. Korolkov, Vladimir N. Vityazev. Physics andmechanism of ultrasonic impact. Ultrasonics,2006,44:533~538
    [68]M. Takaffoli, M. Papini. Finite element analysis of single impacts of angularparticles on ductile targets. Wear,2009,267:144~151
    [69]C.T. Lim, W.J. Stronge. Normal Elastic-Plastic Impact in Plane Strain. Maths.Comput. Modelling,1998,28:323~340
    [70]Baran Yildirim, Sinan Muftu, Andrew Gouldstone. Modeling of high velocityimpact of spherical particles. Wear,2011,270:703~713
    [71]Fan Li, Jingzhe Pan, Csaba Sinka. Contact laws between solid particles. Journalof the Mechanics and Physics of Solids,2009,57:1194~1208
    [72]Chuan-yu Wu, Long-yuan Li, Colin Thornton. Rebound behaviour of spheres forplastic impacts. International Journal of Impact Engineering,2003,28:929~946
    [73]杨桂通,弹塑性动力学基础,北京:科学出版社,2008,1~3
    [74]王礼立,应力波基础,北京:国防工业出版社,2005,227~238
    [75]B. Parga-Landa, S. Vlegels. Analytical simulation of stress wave propagation incomposite materials. Composite Structures,1999,45:125~129
    [76]R.A.W. Mines. A one-dimensional stress wave analysis of a lightweightcomposite armour. Composite Structures,2004,64:55~62
    [77]X. Wang, G. Lu, S.R. Guillow. Stress wave propagation in orthotropic laminatedthick-walled spherical shells. International Journal of Solids and Structures,2002,39:4027~4037
    [78]G.R. Liu, X. Han, K.Y. Lam. Stress waves in functionally gradient materials andits use for material characterization. Composites: Part B,1999,30:383~394
    [79]Marcus Stofel. Evolution of plastic zones in dynamically loaded plates usingdiferent elastic-viscoplastic laws. International Journal of Solids and Structures,2004,41:6813~6830
    [80]G.M. Nagel, D.P. Thambiratnam. A numerical study on the impact response andenergy absorption of tapered thin-walled tubes. International Journal ofMechanical Sciences,2004,46:201~216
    [81]A. H nig, W.J. Stronge. Dynamic buckling of an imperfect elastic, visco-plasticplate. International Journal of Impact Engineering,2000,24:907~923
    [82]Chuan-Yu Wu, Long-Yuan Li, Colin Thornton. Energy dissipation during normalimpact of elastic and elastic-plastic spheres. International Journal of ImpactEngineering,2005,32:593~604
    [83]Tae-Sung Eom, Hong-Gun Park. Evaluation of energy dissipation of slenderreinforced concrete members and its applications. Engineering Structures,2010,32:2884~2893
    [84]庄茁,张帆,岑松等,ABAQUS非线性有限元分析与实例,北京:科学出版社,2005,228~229
    [85]R. Bouferra, H. Pron, J.F. Henry, et al. Study of the intrinsic dissipationassociated to the plastic work induced by a ball impact. International Journal ofThermal Sciences,2005,44:115~119
    [86]A.M.S. Hamouda. Effect of energy losses during an impact event on the dynamicflow stress. Journal of Materials Processing Technology,2002,124:209~215
    [87]S.A. Meguid, G. Shagal, J.C. Stranart, et al. Three-dimensional dynamic finiteelement analysis of shot-peening induced residual stresses. Finite Elements inAnalysis and Design,1999,31:179~191
    [88]S.T.S. Al-Hassani. Numerical simulation of multiple shot impact. In:Nakonieczny, A.(Ed.), Proceedings of the7th International Conference on ShotPeening. Warschau,1999,217~227
    [89]S.A. Meguid, G. Shagal, J.C. Stranart.3D FE analysis of peening of strain-ratesensitive materials using multiple impingement model. International Journal ofImpact Engineering,2002,27:119~134
    [90]S.A. Meguid, G. Shagal, J.C. Stranart. Finite element modelling of shot-peeningresidual stresses. Journal of Materials Processing Technology,1999,92~93:401~404
    [91]A. Gariépy, S. Larose, C. Perron. Shot peening and peen forming finite elementmodelling-Towards a quantitative method. International Journal of Solids andStructures,2011,48:2859~2877
    [92]Taehyung Kim, Jin Haeng Lee, Hyungyil Lee, et al. An area-average approach topeening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots. Materials and Design,2010,31:50~59
    [93]S. M. Hassani-Gangaraj, M. Guagliano, G. H. Farrahi. Finite Element Simulationof Shot Peening Coverage with the Special Attention on Surface Nano-crystallization. Procedia Engineering,2011,10:2464~2471
    [94]H.Y. Miao, S. Larose, C. Perron. On the potential applications of a3D randomfinite element model for the simulation of shot peening. Advances in EngineeringSoftware,2009,40:1023~1038
    [95]M. Frija, T. Hassine, R. Fathallah, et al. Finite element modelling of shot peeningprocess: Prediction of the compressive residual stresses, the plastic deformationsand the surface integrity. Materials Science and Engineering A,2006,426:173~180
    [96]Sara Bagherifard, Mario Guagliano. Influence of mesh parameters on FEsimulation of severe shot peening (SSP) aimed at generating nanocrystallizedsurface layer. Procedia Engineering,2011,10:2923~2930
    [97]M. Zimmerman, V. Schulze, H.U. Baron, et al. Proceeding of the10th Inter-national Conference on Shot Peening,2008,60
    [98]H. Assadi, F. Gartner, T. Stoltenhoff, et al. Bonding Mechanism in Cold GasSpraying, Acta Mater,2003,51:4379~4394
    [99]W.Y. Li, H. Liao, C. Li, et al. On high velocity impact of micro-sized metallicparticles in cold spraying. Appl. Surf. Sci,2006,253:2852~2862
    [100]K. Schiffner, C. Droste gen. Helling. Simulation of residual stresses by shotpeening. Computers and Structures,1999,72:329~340
    [101]T.Y. Kim, H.Y. Lee, C.H. Hong, et al. A simple but effective FE model withplastic shot for evaluation of peening residual stress and its experimentalvalidation. Materials Science and Engineering A,2011,528:5945~5954
    [102]T. Hong, J.Y. Ooi, B. Shaw. A numerical simulation to relate the shot peeningparameters to the induced residual stresses. Engineering Failure Analysis,2008,15:1097~1110
    [103]张国尚,80Au/20Sn钎料合金力学性能研究:[博士学位论文],天津大学,2010
    [104]A.C. Fischer-Cripps. A review of analysis methods for sub-micron indentationtesting. Vacuum,2000,58:569~585
    [105]A. Tricoteaux, G. Duarte, D. Chicot, et al. Depth-sensing indentation modelingfor determination of Elastic modulus of thin films. Mechanics of Materials,2010,42:166~174
    [106]Hongzhi Lan, T.A. Venkatesh. Determination of the elastic and plastic propertiesof materials through instrumented indentation with reduced sensitivity. ActaMaterialia,2007,55:2025~2041
    [107]王凤江,基于纳米压痕法的无铅BGA焊点力学性能及其尺寸效应研究:[博士学位论文],哈尔滨工业大学,2006
    [108]M. Toparli, N.S. Koksal. Hardness and yield strength of dentin from simulatednano-indentation tests. Computer Methods and Programs in Biomedicine,2005,77:253~257
    [109]N. Ogasawara, N. Chiba, X. Chen. Measuring the plastic properties of bulkmaterials by single indentation test. Scripta Materialia,2006,54:65~70
    [110]M. Dao, N. Chollacoop, K. J. Van Vliet, et al. Computational modeling of theforward and reverse problems in instrumented sharp indentation. Acta mater,2001,49:3899~3918
    [111]J.M. Lee, C.J. Lee, B.M. Kim. Reverse analysis of nano-indentation usingdifferent representative strains and residual indentation profiles. Materials andDesign,2009,30:3395~3404
    [112]Z. Shi, X. Feng, Y. Huang, et al. The equivalent axisymmetric model forBerkovich indenters in power-law hardening materials. International Journal ofPlasticity,2010,26:141~148
    [113]L.M. Farrissey, P.E. McHugh. Determination of elastic and plastic materialproperties using indentation: Development of method and application to a thinsurface coating. Materials Science and Engineering A,2005,399:254~266
    [114]H. Elghazal, G. Lormand, A. Hamel, et al. Microplasticity characteristicsobtained through nano-indentation measurements: application to surfacehardened steels. Materials Science and Engineering A,2001,303:110~119
    [115]I.S. Choi, M. Dao, S. Suresh. Mechanics of indentation of plastically gradedmaterials-I: Analysis. Journal of the Mechanics and Physics of Solids,2008,56:157~171
    [116]S. Suresh, A. E. Giannakopoulos. A new method for estimating residual stressesby instrumented sharp indentation. Acta mater,1998,46:5755~5767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700