用户名: 密码: 验证码:
热喷涂制备Fe基非晶合金涂层的组织性能及其激光重熔行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据多组元非晶合金系设计理论,在Fe基非晶合金粉末中以W替换P,并采用大气等离子喷涂(APS)和超音速火焰喷涂(HVOF)工艺在Q235基体上制备了涂层,探索了在Fe基非晶合金涂层中以W替换P的可行性。针对涂层的多孔结构特征及其与基体间结合强度较低的问题,通过热处理和激光表面重熔技术对所制备的Fe基非晶合金涂层进行后处理,研究了Fe基非晶合金涂层晶化过程以及激光重熔过程中的组织、结构和性能的变化规律,并采用电化学工作站对Fe基非晶合金涂层在酸、碱、盐腐蚀介质中的耐蚀性能进行了研究。所获得的主要研究成果如下:
     首先,通过对含W与含P的Fe基非晶合金涂层(分别编号为Fe-W和Fe-P)性能的研究,证明了在Fe基非晶合金涂层中以W替换P的优越性和可行性。研究表明Fe-W涂层的断裂韧性显著高于Fe-P涂层,两者的纳米压痕硬度相近;Fe-W晶化起始温度595.4℃比Fe-P提高33.4℃;Fe-W涂层在H2SO4、NaOH和NaCl腐蚀介质中的自腐蚀电流密度分别比Fe-P涂层降低了4.9%、28.6%和21%;并且在NaCl溶液中能形成稳定的钝化膜,自腐蚀电位比Fe-P提高了9倍。
     其次,通过对Fe基非晶合金涂层进行激光表面重熔处理的研究,阐明了激光重熔合金区微观缺陷的产生机制,并提出了预测合金区高度的技术方案,为制定优化的激光表面重熔工艺方案提供了理论指导。研究表明当合金区高度小于喷涂态涂层厚度时,由于熔池底部与未熔涂层间粗糙的接触面阻碍了液态金属的流动,在熔池快速凝固过程中,内部气体残留于熔池中而形成直径大于50μm的圆形孔洞缺陷;进而由于应力集中和熔池凝固时引起的拉应力导致圆形空洞周围的合金区和未熔涂层中产生微裂纹。当重熔涂层合金区高度稍大于喷涂态涂层厚度时,合金区的微观缺陷最少,具有最优良的综合性能。通过自定义的孔隙修正系数α和激光能量有效利用率ξ分别对材料热物理性能和一维无限大平板热传导公式进行修正,可以较为准确的预测合金高度。
     最后,通过对Fe基非晶合金涂层在NaOH溶液中耐蚀性能影响因素的研究,提出贡献率的概念,为非晶合金涂层的耐蚀性能提供了评价方法。研究表明非晶相含量、孔隙率、合金元素和表面粗糙度对Fe基非晶合金涂层自腐蚀电位贡献率的大小分别为57.1%,28.7%,14.2%和0%;对自腐蚀电流密度贡献率的大小分别为85.7%,13.1%,0.6%和0.6%。
In this dissertation, P was replaced by W in Fe-based amorphous alloy powderaccording to the multi-component amorphous alloy design theory, then the powderswere deposited onto Q235substrate through atmospheric plasma spray (APS) andhigh velocity oxgen-fuel spray (HVOF), and the feasibility of replacing P by W inFe-based a morphous a lloy c oatings w as di scussed. A imed a t p orous s tructurecharacteristics of the coating and lower bond strength of the coating and substrate, theFe-based a morphous a lloy c oatings w ere h eat t reated an d l aser su rface r emelted(LSM), and the crystallization and evolution rules of microhardness and propertiesduring processing were studied, and the corrosion resistance of Fe-based amorphousalloy coatings in acid, alkali and salt corrodents was investigated by electrochemicalwork station.
     First, the feasibility of replacing P by W in Fe-based amorphous alloy coatings(designated as Fe-P and Fe-W, respectively) was demonstrated by investigating theproperties of Fe-based amorphous alloy coatings containing W and P, respectively.Research sh owed t hat t he f racture toughness o f F e-W coatings was s ignificantlyhigher than that of Fe-P coatings, the nano indentor hardness of the two was similar,the in itial crystallization te mperature of F e-W coatings was595.4℃which wa s33.4℃higher t han t hat of F e-P coatings, t he c orrosion current de nsity of Fe-Wcoatings in H2SO4, NaOH and NaCl corrodents were lowered by4.9%,28.6%and21%c omparing w ith t hose of F e-P coatings, respectively. Fe-W coatings couldestablish a stable passivation membrane in NaCl solution and its corrosion potentialwas9times higher than that of Fe-P coatings.
     Secondly, mechanics of microdefects in L SM al loy ar ea w ere clarified a ndtechnical proposal of alloy height prediction was proposed through research of LSMFe-based amorphous alloy coatings which could provides a theoretical guidance forestablishment of optimized LSM processing scheme. Research showed that when thealloy height was less than the thickness of as s prayed coatings, since the flow ofliquid metal was blocked by t he rough contact surface of bottom LSM bath andunmelted c oatings, internal ga s w as r emained i n t he ba th dur ing r apid c ooling process and circular holes defects were formed, since the stress concentration andtensile stress formed by s olidification of the bath, microcracks were generated inalloy area and unmelted coatings. When alloy height was slightly greater than thethickness of as-sprayed coatings, the LSM coatings had the minimum quantity ofmicrodefects an d p ossessed t he b est co mprehensive p roperties. The alloy he ightcould be p redicted c omparatively exactly through r evising t he one-dimensionalinfinite plate heat conduction formula by self-defined porosity correction factor αand energy efficient utilization rate ξ.
     Finally, the contributing ratio concept was proposed through affecting factorsinvestigation of corrosion resistance of Fe-based amorphous alloy coatings in NaOHsolution which provided an evaluation method for corrosion resistance of amorphousalloy coatings. Research showed that contributing ratios of amorphous phase content,porosity, alloy e lement a nd surface r oughness to c orrosion pot ential of F e-basedamorphous alloy c oating w ere57.1%,28.7%,14.2%and0%, respectively, a ndcontributing ratios to corrosion current density were85.7%,13.1%,0.6%and0.6%,respectively.
引文
[1]李慕勤,李俊刚,吕迎等,材料表面工程技术,北京:化学工业出版社,2010
    [2]何圣静,高莉如,非晶材料及其应用,北京:机械工业出版社,1987
    [3]徐滨士,马世宁,刘世参等,21世纪的再制造工程,中国机械工程,2000,11(1-2):36~39
    [4]梁志芳,李午申,王迎娜,热喷涂制备非晶合金涂层的研究状况,焊接技术,2006,35(6):5~7
    [5]Cherigui M, Feraoun H I, Feninehe N E, et al., Structure of amorphous iron-basedcoatings processed by HVOF and APS thermally spray, Materials Chemistry andPhysics,2004,85(1):113~119
    [6] K Kishitake, H Era, F Otsubo, Thermal sprayed Fe-10Cr-13P-7C amorphouscoatings possessing excellent corrosion resistance, Journal of Thermal SprayTechnology,1996,5(4):476~482
    [7]Otsubo F, Era H, Kishitake, K, Properties of iron-based amorphous coatings,Thermal Spray-Current Status and Future Trends, Japan,1995:585~589
    [8]F Otsubo, HEra, K. Kishitake, Formation of amorphous Fe-Cr-Mo-8P-2C coatingsby the high velocity oxy-fuel process, Journal of Thermal Spray Technology,2000,9(4):494~498
    [9]F otsubo, A Shimoda, H Era,.et al., Corrosion resistance of Fe-Cr-Mo-(C,B,P)amorphous coatings thermal sprayed by HVOF and APS process, Proceedings ofIntenational Thermal Spray Conference, Osaka, Japan,2004:10~12
    [10] A. Brenner, D.E. Couch and E.K. Williams, Electrodeposition of alloys, Journalof research of the National Bureau of Standards,1950(44):109
    [11]Chen H S, Thermodynamic considerations on the formation and stability ofmetallic glasses, Acta Metallurgica,1974,22(12):1505~1511
    [12]马国峰,非晶合金及表面润湿性,沈阳:东北大学出版社,2010
    [13]王一禾,杨膺善,非晶合金,北京:冶金工业出版社,1989:133~138
    [14]Sheng H W, Luo W K, Alamgir F M, et al., Atomic packing andshort-to-medium-range order in metallic glasses, Nature,2006,439(7075):419~425
    [15]Inoue A, Stabilization of metallic supercooled liquid and bulk amorphous alloys,Acta Materialia,2000,48(1):279~306
    [16]Cargill Iii G S, Spaepen F, Description of chemical ordering in amorphous alloys,Journal of Non-Crystalline Solids,1981,43(1):91~97
    [17]Marcus M A, Mechanical properties of mostly-crystalline, rapid-quenchedPd-Si-Sb, Acta Metallurgica,1979,27(5):893~902
    [18]Taub A I, Spaepen F, The kinetics of structural relaxation of a metallic glass, ActaMetallurgica,1980,28(12):1781~1788
    [19]Sietsma J, Thijsse B J, Characterization of free volume in atomic models ofmetallic glasses, Physical Review B,1995,52(5):3248~3255
    [20]Flores K M, Sherer E, Bharathula A, et al., Sub-nanometer open volume regionsin a bulk metallic glass investigated by positron annihilation, Acta Materialia,2007,55(10):3403~3411
    [21] D Turnbull, H S Chen, Formation,stability and structure of palladium-siliconbased alloy glasses, Acta Materialia,1969,17(8):1021~1031
    [22]Klenent W, Willens R H, Duwez P, Non-crystalline structure in solidifiedGold-Silicon alloys, Nature,1960,187(4740):869~870
    [23]吴志方,柳林,新型块状非晶合金的形成、结构、性能和应用,金属功能材料,2002,9(3):14~18
    [24]Turnbull D, Cohen M H, Concerning reconstructive transformation and formationof glass, Journal of Chemical Physics,1958,29(5):1049~1054
    [25]Argon A S, Salama M. The mechanism of fracture in glassy materials capable ofsome inelastic deformation, Materials Science and Engineering A,1976,23(23):219~230
    [26]Turnbull D, Fisher J C. D., Turnbull, et al., Rate of nucleation in condensedsystems, Journal of Chemical Physics,1949,17(1):71~73
    [27]Johnson W L, Bulk glass-forming metallic alloys, Science and technology, MRSBulletin,1999,24:42~56
    [28]Lu Z P, Li Y, Ng S C, Reduced glass transition temperature and glass formingability of bulk glass forming alloys, Journal of Non-Crystalline Solids,2000,270(1–3):103~114
    [29]Donald I W, Davies H A, Prediction of glass-forming ability for metallic systems,Journal of Non-Crystalline Solids,1978,30(1):77~85
    [30]Lu Z P, Liu C T, A new glass-forming ability criterion for bulk metallic glasses,Acta Materialia,2002,50(13):3501~3512
    [31]Egami T, The atomic structure of aluminum based metallic glasses and universalcriterion for glass formation, Journal of Non-Crystalline Solids,1996,205~207(2):575~582
    [32]Inoue A, High-strength bulk amorphous-alloys with low critical cooling rates,Materials Transactions, JIM,1995,36(7):866~875
    [33] J. Kramer, Produced the first amorphous metals through vapor deposition,Annual Review of Physical Chemistry,1934,19:37~64
    [34]Chen H S, Thermodynamic considerations on the formation and stability ofmetallic glasses, Acta Materialia,1974,22(12):1505~1511
    [35]F E Luborsky,非晶金属合金,(柯成,唐与湛,罗阳译),北京:冶金工业出版社,1999
    [36]J Steinberg, A E Lord, Production of bulk amorphous Pd77.5Si16.5Cu6in acontainerless low gravity environment, Applied Physics Letters,1981,38(2):135~137
    [37]M C Lee, J M Kendall, W L Johnson, Spheres of the meta1lic glassAu55Pb22Sb22.5and their surface characteristics, Applied Physics Letters,1982,40(5):382~384
    [38]Haruyama O, Tando M, Kimura H M, et al., Structural relaxation process in abulk Pd40Cu30Ni10P20metallic glass with a high Kauzmann temperature, Journal ofNon-Crystalline Solids,2002,312-314(0):603~607
    [39]Masumoto T, Recent progress in amorphous metallic materials in Japan,Materials Science and Engineering: A,1994,179~180, Part1(0):8~16
    [40]惠希东,陈国良,块体非晶合金,北京:化学工业出版社,2007
    [41]Inoue A, Wang X M, Bulk amorphous FC20(Fe-C-Si) alloys with small amountsof B and their crystallized structure and mechanical properties, Acta Materialia,2000,48(6):1383~1395
    [42]Lu Z P, Liu C T, Thomp son J R, et al., Structural amorphous steels. PhysicalReview Letters,2004;92(24):321~324
    [43]Shen J, Chen Q, Sun J, et al., Exceptionally high glass forming ability of anFeCoCrMoCBY alloy. App lied Physics Letters,2005,86:1519071~1519073
    [44]肖华兴,陈光,喇培清等,Fe基大块非晶的摩擦磨损性能研究,摩擦学学报,2006,26(2):140~144
    [45]Lu I R, G rler G P, Fecht H J, et al., Investigation of specific heat and thermalexpansion in the glass-transition regime of Pd-based metallic glasses, Journal ofNon-Crystalline Solids,2000,274(1-3):294~300
    [46]Lee H J, Akiyama E, Habazaki H, et al., The effect of phosphorus addition on thecorrosion behavior of amorphous Ni-30Ta-P alloys in12M HCl, Corrosion Science,1995,37(2):321~330
    [47]Im B M, Akiyama E, Habazaki H, et al., The effect of phosphorus addition on thecorrosion behavior of amorphous Fe-8Cr-P alloys in9M H2SO4, Corrosion Science,1995,37(5):709~722
    [48]Kawashima A, Asami K, Hashimoto K, Change in corrosion behavior ofamorphous Ni-P alloys by alloying with chromium, molybdenum or tungsten, Journalof Non-Crystalline Solids,1985,70(1):69~83
    [49]Im B-M, Akiyama E, Habazaki H, et al., Electrochemical and XPS studies of theeffects of alloying elements on the corrosion behavior of amorphous Fe-Cr Metalloidalloys in9M H2SO4, Corrosion Science,1993,34(11):1829~1839
    [50]Walter J L, Luborsky F E, The ductile-brittle transition of some amorphous alloys,Materials Science and Engineering,1978,33(1):91~94
    [51]Ou Z, Kuo K H, Observation of phosphorus segregation onto the free surface ofan amorphous Fe44Ni36P14B6alloy, Journal of Materials Science,1985,20(6):2023~2028
    [52] Gerling R, Schimansky F P, Wagner R, Small-angle neutron scattering analysesof phase separation processes in amorphous alloys, Nuclear Science and Engineering,1992,110(4):374~385
    [53]Iqbal M, Sun W S, Zhang H F, et al., Effect of additional elements on mechanicalproperties of a specially constituted Zr-based alloy, Materials Science andEngineering: A,2007,447(1-2):167~173
    [54]Naka M, Hashimoto K, Masumoto T, High corrosion resistance of amorphousFe-Mo and Fe-W alloys in HCl, Journal of Non-Crystalline Solids,1978,29(1):61~65
    [55]Naka M, Miyake M, Okamoto I, Effect of tungsten on corrosion behavior ofamorphous FeCrZr alloys, Journal of Non-Crystalline Solids,1990,117-118, Part2(0):658~661
    [56]Wang R, Merz M D, Corrosion resistance of amorhphous FeNiCrW alloys,Corrosion,1984,40(6):272~280
    [57]王元良,陈辉,周友龙等,热喷涂技术及其设备应用,电焊机,2005,35(11):1~5
    [58]刘洛夫,铁基非晶合金涂层的等离子喷涂工艺及组织性能研究:[硕士学位论文],天津;天津大学,2008
    [59]谭毅,李敬峰,新材料概论,北京:冶金工业出版社,2004
    [60]S J Pang, T Zhang, K Asami, et al., Synthesis of Fe-Cr-Mo-C-B-P bulk metallicglasses with high corrosion resistance, Acta Materialia,2002,50(3):489~497
    [61]Kobayashi A, Yano S, Kimura H, et al., Fe-based metallic glass coatingsproduced by smart plasma spray process, Materials Science and Engineering: B,2008,148(1-3):110~113
    [62]Kobayashi A, Yano S, Kimura H, et al., Mechanical property of Fe-base metallicglass coating formed by gas tunnel type plasma spray, Surface and CoatingsTechnology,2008,202(12):2513~2518
    [63]N E Fenineche, M. Cherigui, H. Aourag, et al., Structure and magnetic propertiesstudyof iron-based thermally sprayed alloys, Materials Letters,2004,58:1797~1801
    [64]Cherigui M, Fenineche N E, Coddet C, Structural study of iron-basedmicrostructured and nanostructured powders sprayed by HVOF thermal spray,Surface and Coatings Technology,2005,192(1):19~26
    [65]D Branagan, W Swank, D Haggard, et al., Wear resistant amorphous andnanocomposite steel coatings, Metallurgical and Materials Transaction,2001,32(10):2615~2621
    [66]Zois D, Lekatou A, Vardavoulias M, Preparation and characterization of highlyamorphous HVOF stainless steel coatings, Journal of Alloys and Compounds,2010,504, Supplement1(0): S283~S287
    [67]Chokethawai K, McCartney D G, Shipway P H, Microstructure evolution andthermal stability of an Fe-based amorphous alloy powder and thermally sprayedcoatings, Journal of Alloys and Compounds,2009,480(2):351~359
    [68]Liu X Q, Zheng Y G, Chang X C, et al., Microstructure and properties ofFe-based amorphous metallic coating produced by high velocity axial plasma spray,Journal of Alloys and Compounds,2009,484(1-2):300~307
    [69]Slurry erosion–corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayedFe-based amorphous metallic coatings for marine pump in sand-containing NaClsolutions, Corrosion Science,2011,53(10):3177~3185
    [70]Wang Y, Jiang S L, Zheng Y G, et al., Effect of porosity sealing treatments on thecorrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphousmetallic coatings, Surface and Coatings Technology,2011,206(6):1307~1318
    [71]Yang Y, Zhang C, Peng Y, et al., Effects of crystallization on the corrosionresistance of Fe-based amorphous coatings, Corrosion Science,2012,59(0):10~19
    [72]Zhang C, Guo R Q, Yang Y, et al., Influence of the size of spray powders on themicrostructure and corrosion resistance of Fe-based amorphous coating,Electrochimica Acta,2011,56(18):6380~6388
    [73]Ni H S, Liu X H, Chang X C, et al., High performance amorphous steel coatingprepared by HVOF thermal spray, Journal of Alloys and Compounds,2009,467(1~2):163~167
    [74]Zhou Z, Wang L, Wang F-c, et al., Formation and corrosion behavior of Fe-basedamorphous metallic coatings prepared by detonation gun spray, Transactions ofNonferrous Metals Society of China,2009,19, Supplement3(0): s634~s638
    [75]樊自拴,潘继岗,孙东柏等,热处理对铁基非晶合金涂层相组成及磨损性能的影响,材料热处理学报,2008,29(1):120~123
    [76]潘继岗,樊自拴,孙冬拍等,采用两种喷涂技术制备铁基合金涂层的摩擦磨损特性研究,摩擦学学报,2005,25(5):412~416
    [77]Fu B-y, He D-y, Zhao L-d, Effect of heat treatment on the microstructure andmechanical properties of Fe-based amorphous coatings, Journal of Alloys andCompounds,2009,480(2):422~427
    [78]付斌友,陈小磊,蒋建敏等,电弧喷涂工艺参数对Fe基涂层组织及耐磨性的影响,材料保护,2008,41(9):34~36
    [79]向兴华,穆晓冬,李建三,Fe基非晶合金涂层的磨损与电化学腐蚀特征,材料热处理学报,2003,24(4):59~62
    [80]向兴华,穆晓冬,刘正义,Fe基非晶合金涂层的等离子喷涂成形特征,焊接学报,2003,24(1):50~53
    [81]Guo R Q, Zhang C, Chen Q, et al., Study of structure and corrosion resistance ofFe-based amorphous coatings prepared by HVAF and HVOF, Corrosion Science,2011,53(7):2351~2356
    [82]徐滨士,张伟,梁秀兵,热喷涂材料的应用与发展,新材料产业,2002,7:53~57
    [83]王海军,热喷涂材料及应用,北京:国防工业出版社,2008
    [84]邱星武,李刚,邱玲,激光熔覆技术的发展现状,热处理技术与装备,2009,30(6):6~8
    [85]林文松,张光钧,王慧萍,激光熔覆技术的研究进展,热处理技术与装备,2008,29(4):1~3
    [86]Zhang kai, Liu Weijun, Shang Xiaofeng, Process research on the laser rapidmanufacturing technology, Manufacturing Science and Engineering,2010,4042~4045
    [87]Wang H.M., Duan G., Microstructure and wear resistance of a laser cladreinforced Cr3Si metal silicide composite coating, Materials Science and Engineering,2002, A336:117~123
    [88]Molian P A, Hualun L, Laser cladding of Ti-6A1-4V with BN for improved wearperformance, Wear,1989,130:337~352
    [89]Abbas G, West D R F, Laser surface cladding of stellite and satellite-SiCcomposite deposits for enhanced hardness and wear, Wear,1991,143:353~363
    [90]孙荣禄,杨贤金,激光熔覆原位合成TiC-TiB/Ni基金属陶瓷涂层的组织和摩擦磨损性能,硅酸盐学报,2003,31(12):1221~1224
    [91]Wang A.H.,Yue T.M,YAG laser cladding of an Al-Si alloy onto an Mg/SiC,Composites Science and Technology,2001,61:1549~1554
    [92]Asami K, Sato T, Hashimoto K, Surface vitrification of Fe-based alloys by lasertreatment, Journal of Non-Crystalline Solids,1984,68(2-3):261~269
    [93]Wu Xiaolei, Hong Youshi, Fe-based thick amorphous-alloy coating by lasercladding, Surface and Coatings Technology,2001,141(2-3):141~144
    [94]Basu A, Samant A N, Harimkar S P, et al., Laser surface coating ofFe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI4140steel, Surface andCoatings Technology,2008,202(12):2623~2631
    [95]赵海云,刘琳,于利根等,激光熔覆合成Cr-Mo-Si系列金属硅化物高温抗氧化涂层,材料腐蚀与表面工程,2002(3):1052~1055
    [96]耿亚维,王东生,田宗军等,TiAl基合金表面激光重熔陶瓷涂层研究,热处理技术与装备,2008,29(5):29~36
    [97]Dyshlovenko S, Pierlot C, Pawlowski L, et al., Experimental design of plasmaspray and laser treatment of hydroxyapatite coatings, Surface and CoatingsTechnology,2006,201(5):2054~2060
    [98]陆益军,张京贤,王萍等,激光重熔等离子喷涂NiCr-Cr3C2涂层的工艺优化,应用激光,2006,6(5):329~332
    [99]刘荣祥,雷廷权,郭立新,激光熔覆Ni基涂层的稀释区与熔覆区界面形态及组织,黑龙江科技学院学报,2005,15(2):68~71
    [100]Peligrad A A, Zhou E, Morton D, et al., A melt depth prediction model forquality control of laser surface glazing of inhomogeneous materials, Optics&Laser Technology,2001,33(1):7~13
    [101]Hu C, Baker T N, A semi-empirical model to predict the melt depth developedin overlapping laser tracks on a Ti-6Al-4V alloy, Journal of Materials ProcessingTechnology,1999,94(2-3):116~122
    [102]Kishore N, Lankalapalli, Jay F Tu, Mark Gartner, A model for estimatingpenetration depth of laser welding processes, Journal of Applied Physics,1996,29:1831~1841
    [103]田宗军,王东生,黄因慧等,45钢表面激光重熔温度场数值模拟,材料热处理学报,2008,29(6):173~178
    [104]伏云昌,激光材料表面处理过程的数值模拟:[硕士学位论文],昆明;昆明理工大学,2004
    [105]王东生,田宗军,沈理达等,TiAl合金表面多道搭接激光重熔温度场数值模拟,应用激光,2008,28(6):441~446
    [106]Vasantgadkar N A, Bhandarkar U V, Joshi S S, A finite element model topredict the ablation depth in pulsed laser ablation, Thin Solid Films,2010,519(4):1421~1430
    [107]向兴华,刘正义,朱晖朝,Fe基非晶合金涂层的等离子喷涂制备工艺研究,材料工程,2002,2:10~12
    [108]Le Bourhis E, Rouxel T, Indentation response of glass with temperature, Journalof Non-Crystalline Solids,2003,316(1):153~159
    [109]Vans A G, Charles E A, Fracture toughness determibations by indentation,American Ceramic Society,1976,59:371~372
    [110]李余增,热分析,北京:清华大学出版社,1987
    [111]史道济,张玉环,应用数理统计,天津:天津大学出版社,2008
    [112]叶雄林,李占明,朱有利,基于CCD图像处理技术的等离子喷涂粒子温度研究,新技术新工艺,2005,9:59~60
    [113]冯拉俊,曹凯博,雷阿利,等离子喷涂陶瓷粒子加热加速行为的数值模拟,热加工工艺,2006,35(11):46~51
    [114]韩绍昌,彭平,郑采星等,DSC法和XRD法测定Ni74Si10B6非晶合金退火样结晶度的比较(II),湖南大学学报(自然科学版),2003,30(6):41~44
    [115]黄胜涛,固体X-射线学,北京:高等教育出版社,1990
    [116]彭平,郑采星,胡艳军等,非晶合金晶化过程中结晶度的DSC法测定与控制(I),湖南大学学报(自然科学版),2003,30(3):40~43
    [117]Conner R D, Dandliker R B, Johnson W L, Mechanical properties of tungstenand steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5metallic glass matrixcomposites, Acta Materialia,1998,46(17):6089~6102
    [118]Terajima T, Takeuchi F, Nakata K, et al., Composite coating containingWC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuelspray, Journal of Alloys and Compounds,2010,504, Supplement1(0): S288~S291
    [119]汪德宁,徐东,刘国庆,Fe-40Al合金与Al2O3的界面润湿现象,中国科学技术协会首届青年学术年会论文集(工科分册·上册):40~44
    [120]杨全,张真,金属凝固与铸造过程数值模拟,杭州:浙江大学出版社,1996
    [121]刘庄,吴肇基,吴景之等,热处理过程的数值模拟,北京:科学出版社,1996
    [122]Duley W W, Laser processing and analysis of mayerials, New York: PleumPress,1983
    [123]Bass M, Laser materials processing, Amsterdam: North Holland,1983
    [124]吴民达,赵源,机械工程材料测试手册,沈阳:辽宁科学技术出版社,2002
    [125]D. R. Lide, CRC Handbook of Chemistry and Physics, Maryland: CRC Press,Inc.,1990~1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700