用户名: 密码: 验证码:
WC-Co类硬质合金的疲劳性能及应力分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金被称为工业的牙齿,是现代工业部门和新技术领域不可缺少的工具材料和结构材料。近些年合成人造金刚石行业、线材轧制、精密模具制造业的高速发展拉动了硬质合金制品的研究开发,硬质合金的应用领域不断扩展,需求也越来越高,对新材质的研究与开发的愿望也越来越明显。疲劳和断裂是硬质合金失效的最主要原因,目前国内外有关硬质合金硬度和强度的报道较多而作为最能反映使用状态特性的疲劳方面的研究较少,本文在疲劳机和自行设计的温度冷热循环系统组成的疲劳试验装置上实现了室温疲劳、热疲劳、热-机械疲劳和热-腐蚀疲劳的条件,对硬质合金在单一或耦合疲劳机制下的疲劳寿命和裂纹扩展行为进行了较为系统的研究。
     在室温疲劳中,硬质合金材料表现出明显的疲劳效应,即应力水平的降低伴随着疲劳寿命的上升。在高应力区域,材料的疲劳寿命较短,此时合金的疲劳寿命与合金的强度有关,合金的强度越高,其疲劳寿命越长。随着应力幅值的降低,这种强度与疲劳寿命的联系越来越不明显,特别是进入高周疲劳区域(>105)后,高粘结剂含量的合金反而表现出更高的疲劳抗性。疲劳裂纹主要沿晶界和在粘结相中扩展,材料在承受疲劳载荷后,粘结相与WC硬质颗粒之间发生了剥离,这种脱粘造成WC颗粒之间相互错动形成孔隙和微裂纹,这些孔隙和微裂纹相互连接加速了裂纹的扩展并最终导致材料的断裂。粘结相在疲劳过程中产生了大量堆垛层错并发生了相变,同时有析出物产生,Ni-Cr添加剂能有效的升高堆垛层错能,阻碍层错的扩展,使层错宽度变窄,并抑制Co相变的发生
     与室温疲劳相比,在热-机械疲劳中,在相同应力幅下,合金的寿命会降低,其原因主要有:(一)在高温作用下试样表面形成一层疏松的氧化层,氧化层的脱落导致试样受力面积减小;(二)合金在高温下的力学性能会下降。这种降低在低应力水平下愈发明显,因为此时疲劳寿命较长,试样承受热循环的次数增多,造成的热损伤也越大。而添加Ni、Cr添加剂能有效提高合金的耐高温疲劳性能,其中YGR60合金在相同应力水平下其疲劳寿命与室温疲劳基本相当,只是在低应力水平下略有降低。
     热疲劳裂纹的萌生及扩展包含如下过程:裂纹是经热循环一定次数后才形成,即裂纹的形成有孕育期,裂纹形成后扩展,达到一定尺寸时便停止扩展或者直至断裂。整体上讲硬质合金热裂纹扩展都呈现出先快后慢的趋势,这种热疲劳裂纹的扩展有别于一般的常温疲劳。合金在500。CH20℃均表现出良好的抗裂纹萌生和扩展能力,在700℃-20℃热疲劳条件下,添加Ni、Cr添加剂有利于提高热裂纹萌生的孕育期,而高粘结剂含量的合金则具有好的抗裂纹扩展能力。
     在热-腐蚀疲劳中,裂纹扩展机理比较复杂。从本文给出的裂纹扩展速率表达式中可以看到,在热与腐蚀共同作用下,裂纹扩展速率不仅与单纯热疲劳和腐蚀疲劳的控制参数有关,还有两者强烈交互作用对裂纹扩展的贡献。酸性环境中热裂纹萌生和扩展规律与单纯的热疲劳裂纹萌生与扩展的规律类似,即含Ni-Cr添加剂的YGR系列合金的裂纹孕育期的明显大于纯Co粘结剂的YGH系列合金,而从裂纹扩展速率来看,高粘结相含量的合金明显低于低粘结相含量的合金。而碱性环境中孕育期的长短取决于粘结相的含量,即粘结相含量越多,孕育期越长;裂纹扩展速率受粘结相成分的影响较大,两种含Ni-Cr粘结剂的YGR硬质合金的裂纹扩展速率明显慢于纯Co粘结剂的两种YGH合金。
     采用深冷处理工艺对硬质合金进行改性,研究了该工艺对包括疲劳性能在内的各种性能的影响并探讨了作用机理。深冷处理通过提高硬质合金表面残余压应力和引起Co的相变达到改性目的。选用适当的深冷处理工艺有效的提高了硬质合金的疲劳性能并改善了其综合力学性能。保温时间是深冷处理最主要的工艺参数,2h是最佳深冷处理时间。
     由于硬质合金生产过程中不可避免的产生各种缺陷和残余应力的存在,所以硬质合金制品各部分在承载状态下的应力响应与理论值存在偏差。基于此通过有限元计算和实验应力法对硬质合金制品进行了应力分析,并在此基础上提出了一种硬质合金顶锤的无损在线检测方法。
Cemented carbides, which are called industral tools, are indispensable tool and structural materials in modern industral and new technology field. With the rapid development of the synthetic man-made diamond industry, wire rolling, precision mould manufacturing, the demand for improved performance cemented tungsten carbides is requires. Fatigue and fracture are the major failure mechanisms for cemented carbides. So far, the mechanical behavior is mainly characterized by hardness and bending strength. In practical applications, hard metal components may be subjected to repeated impact or cyclic loading. So dynamic strength propertied are important for hard metal. Therefore knowledge about the behavior of this material under cyclic loads is also required. Although compound mechanical, thermal and environmental condition applies in real service, no much has been reported on the effect of compound testing condition on hard metal life. The aim of the present work is to investigate the fatigue life and the microstructure properties of WC-Co hard metals under compound fatigue conditions.
     In mechanical fatigue conditions, the fatigue effect is strongly dependent on the stress amplitude. At high stress level, material's fatigue life is more corresponding to its hardness, however, at low stress level, the fatigue life increases with increasing binder content. Fatigue cracks grow alone grain boundaries and in binding phases. After cyclic loading, WC particles and binders separate, this debonding causes pore and micro.cracks formed. The pore and crackle connected to accelerate the crack growth and eventually lead to material fracture. In Co binders, stacking fault and phase transformation occurred during fatigue process, precipitated phases are also found. Ni-Cr additive in Co binder can effectively increase the stacking fault, hinder the expansion, and suppress the occurrence of Co phase transformation.
     Compared with mechanical fatigue, in thermal-mechanical fatigue conditions, fatigue life reduces in the same stress amplitude. The main reasons are:(1) a loose oxide layer forms on the sample surface, which reduce applied force area of samples;(2) in high temperature, mechanical properties of alloy will decline. This reduction is more obvious at low stress level. This is because sample suffers more temperature damage when its fatigue life is longer. YGR alloys show almost the same fatigue life in thermal-mechanical fatigue conditions as well as just mechanical fatigue conditions. Only in the case of low stress level fatigue life reduces slightly. Which cofirms that Ni and Cr additions can increase the high temperature fatigue resistance.
     Typical thermal fatigue crack incluse three stages:crack initiation, crack propagation and fracture. And the crack appears first quick back slow trend, which is different with crack in mechanical fatigue condition. High binder content alloys express lower crack propagation rate, compared with corresponding low binder content alloys. Cemented carbides show better fatigue resistance in500℃(?)20℃ranges compared with700℃(?)20℃. Add Ni and Cr in the Co binder is helpful way to improve the crack initiation life.
     During thermo-corrosion fatigue, mechanisms account for the influence of the corrosive environment on the fatigue response of the cemented carbides is complex. It can be seen from the given formula that many factors interactions contribute simultaneously to crack propagation. High binder content alloys exhibit lower crack propagation rate, compared with corresponding low binder content alloys. Low binder content alloys conduct better crack propagation resistance in acid environment than in neuter and alkali solution. Co-Ni-Cr binder alloys show better crack propagation resistance in corrosion environment.
     The effect of cryogenic treatment on the fatigue and mechanical properties of cemented carbides has been investigated in this paper. The results show that after cryogenic treatment, the samples are characteristics of the enhanced mechanical properties, wear resistance and fatigue resistance. The change of the properties is highly dependent on the soaking time, and2h is the best process parameter, which could be ascribed to the change of residual stressed and martensitic phase transformation of Co binder during the cryogenic treatment.
     This paper introduced a method of detecting the quality of anvils made of cemented tungsten carbide used in cubic high-press apparatus. The qualitative standard of anvils was established by means of the finite element method, and subsequent it was being used in batches.
引文
[1]Gopal S. Upadhyaya. Cemented tungsten carbides:production, properties and testing. Noyes publications, Westwood, Ney Jersey, U.S.A,1998,1-6
    [2]Mingard K P, Roebuck B, Marshall J, et al. Some aspects of the structure of cobalt and nickel binder phases in hardmetals. Acta Materialia,2011,59: 2277-2290
    [3]Petersson A, Agren J. Constitutive behaviour of WC-Co materials with different grain size sintered under load. Acta Materialia,2004,52:1847-1858
    [4]Liu Xuemei, Song Xiaoyan, Zhao Shixian, et al. Spark plasma sintering densification mechanism for cemented carbides with different WC particles sizes. Journal of the American Ceramic Society,2010,93(10):3153-3158
    [5]Ferreira J A M, Pina Amaral M A, Antunes F V, et al. A study on themechanical behaviour of WC/Co hardmetals. International Journal of Refractory Metals & Hard Materials,2009,27:1-8
    [6]Baik S I, Choi E G, Jun J H, et al. Defect structure induced by iron injection in WC-Co. Scripta Materialia,2008,58:614-617
    [7]Abdel-Aal H A, Nouari M, Mansori M El. The effect of thermal property degradation on wear of WC-Co inserts in dry cutting. Wear,2008,265: 1670-1679
    [8]Chang-Soo Kim, Ted R.Massa, Gregory S.Rohrer. Modeling the influence of orientation texture on the strength of WC-Co. composites. Journal of the American Ceramic Society,2007,90(1):199-204
    [9]Yilbas B S, Arif A F M, Karatas C, et al. Cemented carbide cutting tool:Laster processing and thermal stress analysis. Applied Surface Science,2007,253: 5544-5552
    [10]Schleinkofer U, Sockel H G, Schlund P, et al. Behaviour of hard metals and cermets under cyclic mechanical loads. Materials Science and Engineering A, 1995,104:1-8
    [11]Schleinkofer U, Sockel H G, Gorting K, et al. Fatigue of hard metals and cermets. Materials Science and Engineering A,1996,209:313-317
    [12]Schleinkofer U, Sockel H G, Schlund P, et al. Fatigue of hard metals and cermets-new results and a better understanding. International Journal of Refractory Metals & Hard Materials,1997,15:103-112
    [13]Schleinkofer U, Sockel H G, Gorting K, et al. Microstructural processes during subcritical crack growth in hard metals and cermets under cyclic loads. Materials Science and Engineering A,1996,209:103-110
    [14]Torres Y, Anglada M, Llanes L. Fatigue mechanics of WC-Co cemented carbides. International Journal of Refractory Metals & Hard Materials,2001,19:341-348
    [15]Torres Y, Sarin V K, Anglada M, et al. Loading mode effects on the fracture toughness and fatigue crack growth resistance of WC-Co cemented carbides. Scripta Materialia,2005,25:1087-1091
    [16]Llanes L, Torres Y, Anglada M. On the fatigue crack growth behavior of WC-Co cemented carbides:kinetics description, microstructural effects and fatigue sensitivity. Acta Materialia,2002,50:2381-2393
    [17]Casas B, Torres Y, Llanes L. Fracture and fatigue behavior of electrical-discharge machined cemented carbides. International Journal of Refractory Metals & Hard Materials,2006,24:162-167
    [18]Tarres E, Ramirez G, Gaillard Y, et al. Contact fatigue behavior of PVD-coated hardmetals. International Journal of Refractory Metals & Hard Materials,2009, 27:323-331
    [19]Sotomi Ishihara, Takahito Goshima, Koji Nomura, et al. Crack propagation behavior of cermets and cemented carbides under repeated thermal shocks by the improved quench test. Journal of Materials Science,1999,34:629-636
    [20]Dary F C, Roebuck B, Gee M G. Effect of microstructure on the thermo-mechanical fatigue response of hardmetals using a new miniaturized testing rig. International Journal of Refractory Metals & Hard Materials,2009, 17:45-53
    [21]Kindermann P, Schlund P, Sockel H G, et al. High-temperature fatigue of cemented carbides under cyclic loads. International Journal of Refractory Metals & Hard Materials,1999,17:55-68
    [22]Roebuck B, Maderud C J, Morrell R. Elevated temperature fatigue testing of hardmetals using notched testpieces. International Journal of Refractory Metals & Hard Materials,2008,26:19-27
    [23]Sailer T, Herr M, Sockel H G, et al. Microstructure and mechanical properties of ultrafine-grained hardmetals. International Journal of Refractory Metals & Hard Materials,2001,19:553-559.
    [24]Lisovsky A F. Some speculations on an increase of WC-Co cemented carbide service life under dynamic loads. International Journal of Refractory Metals & Hard Materials,2003,21:63-67
    [25]Wentzel E J, Allen C. Erosion-corrosion resistance of tungsten carbide hard metals with different binder compositions. Wear,1995,181-183:63-69.
    [26]Pugsley V A, Korn G, Luyckx S, et al. The influence of a corrosive wood-cutting environment on the mechanical properties of hardmetal tools. International Journal of Refractory Metals & Hard Materials,2001,19:311-318
    [27]Pugsley V A, Sockel H G. Corrosion fatigue of cemented carbide cutting tool matrials. Materials Science and Engineering A,2004,366:87-95
    [28]韩风麟,马福康,曹勇家主编.粉末冶金技术手册.北京:化学工业出版社2009,147-151
    [29]王国栋.硬质合金生产原料.北京:冶金工业出版社,1988,68-72
    [30]Prakash L J. Application of fine grained tungsten carbide based cemented carbides. International Journal of Refractory Metals & Hard Materials,1995, 13:257-264
    [31](苏)洛沙克MT著.黄鹤翥译.硬质合金的强度和寿命.北京:冶金工业出版社,1990,125-131
    [32]林信平,曹顺华,李炯义.纳米硬质合金烧结技术进展.稀有金属与硬质合金,2004,32(1):40-45
    [33]Xueming M A, Gang J I. Structure and properties of bulk nano-structure WC-Co alloys by mechanical alloying. Journal of Alloys and Compound,1998, 264:267-270
    [34]Hans-Olof Andren. Microstructure development during sintering and heat-treatment of cemented carbides and cermets. Materials Chemistry and Physics,2001,67:209-213
    [35]张文毓.硬质合金涂层刀具研究进展.稀有金属与硬质合金,2008,36(1):59-63
    [36]Voitovich V B, Sverdel V V, et al. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature 500-800℃. International Journal of Refractory Metals & Hard Materials,1996,14(4):289-295
    [37]张立,黄伯云,吴恩熙.双相结构梯度硬质合金的研究现状.材料导报,2000,12:17-19
    [38]Kok Y N, Wen J G, Petrov I, et al. Influence of iron bombardment on structure and tribological performance of nanoscale C/Cr PVD coating. Surface Engineering,2006,22(2):92-98
    [39]小林正树.板状强化硬质合金的特征及其应用.国外难熔金属和硬质材料,1998,14(1):26-31
    [40]Satoshi Kinoshita, Masaki Konayashi, Koji Hayashi. High temperature strength of WC-Co base cemented carbide having highly oriented plate-like triangular prismatic WC grains. Journal of the Japan Society of Powder and Powder Metallurgy.2002,49(4):299-305
    [41]阎开印,孟廷会,于军慧.添加稀土元素对硬质合金物理机械性能和切削性能的影响.西南交通大学学报,1995,30(1):46-51.
    [42]谭国龙,吴希俊,王彦起等.纳米WC硬质合金制备、结构和力学性能.材料科学与工程,1998,6(1):8-12
    [43]Koc R, Kodambake S K. Tungsten carbide (WC) synthesis from novel precursors. Journal of the European Ceramic Society,2000,20:1859-1869
    [44]柳林,董远达.机械合金化法制备超高熔点金属碳化物纳米材料.材料通报,1994,39(5):47 1-474
    [45]Kear B H, McCandlish L E. Chemical processing and properties of nanostructured tungsten carbide cobalt materials. Nanostructure Materialia, 1993,3:19-25
    [46]Sigl L S, Schmauder S. A finite element study of crack growth in WC-Co. International Journal of Fracture,1988,36:305-317
    [47]张忠健,邱志海.中国硬质合金大制品现状与趋势.新材料产业,2006,1:1-5.
    [48]Kusa ba Y, Azuma S, Izawa M. Effect of roll cooling water properties on corrosive wear of tungsten carbide rolls. Tetsu to hagane-Journal of the iron and steel institute of Japan,1996,82(11):929-934
    [49]Paekes A M, Gige S. Cemented carbide rolls for cold rolling. Wire industry, 1975,503(42):835-839
    [50](美)R.科曼多瑞.硬质合金工具技术进展.北京:冶金工业出版社,1982,56-61
    [51]Frost D J, Poe B T, Tronnes R G, et al. A new large-volume multianvil system. Physics of the Earth and Planetary Interiors,2004, (143-144):507-514
    [52]Keiji Shinoda, Naoki Noguchi. An induction heating diamond anvil cell for high pressure and temperature micro-Roman spectroscopic measurements. Review of Scientific Instruments,2008,79:101-105
    [53]Osakabe T, Kakurai K, Kawana D,et al. Development of a hybrid-anvil type high-pressure device and its application to magnetic neutron scattering studies. Journal of Magnetism and Magnetic Materials,2007,310:2725-2727
    [54]万隆,陈石林,刘小磐.超硬材料与工具.北京:化学工业出版社,2006,46
    [55]张安哥,朱成九,陈梦成.疲劳、断裂与损伤.成都:西南交通大学出版社,2006,25
    [56]Roebuck B, Almond E A. Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals. International Materialia Review,1988,33: 90-110
    [57]Liu B, Zhang Y, Quyang S. Study on the relation between structure and fracture strength of WC-Co cemented carbides. Materialia Chemistry and Physics,2000, 62:35-43
    [58]Sigl L S, Fischmeister H F. On the fracture toughness of cemented carbides. Acta Materialia,1988,36(4):887-897
    [59]Cha S I, Hong S H, Ha G H, et al. Microstructure and mechanical properties of nanocrystalline WC-10Co cemented carbides. Scripta Materialia,2001,44: 1535-1539
    [60]Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostruct Materialia, 1998,10(5):875-891
    [61]Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering and mechanical properties of nanocrystalline cemented tungsten carbide-A review. International Journal of Refractory Metals & Hard Materials,2009,27:288-299
    [62]Quinto D T. Technology perspective on CVD and PCD coated metal-cutting tools. International Journal of Refractory Metals & Hard Materials,1996,14: 7-20
    [63]Schlund P, Kindermann P, Sockel H G, et al. Mechanical behaviour of PVD-and CVD-coated hard metals under cyclic loads. International Journal of Refractory Metals & Hard Materials,1999,17:193-199
    [64]Davies A R, Field J E, Takahashi K, et al. Tensile and fatigue strength of free-standing CVD diamond. Diamond and Related Materialias,2005,14:6-10
    [65]Giovanni Di Girolamo, Luciano Pilloni, Giovanni Pulci, et al. Tribological characterization of WC-Co plasma sprayed coatings. Journal of the American Ceramic Society,2009,92(5):1118-1124
    [66]Li T, Lou Q, Dong J, et al. Escape of carbon element in surface ablation of cobalt cemented tungsten carbide with pulsed UV laser. Applied Surface Science, 2001,172:51-60
    [67]Braiden P M, Dugdale D S. Proc. Conf. Materials for Metal Cutting, Scarborough, UK, The Iron and Steel Institute,1970,30
    [68]Konig W, Berktold A, Koch K F. Turing cersus griding-A comparison of surface integrity aspects and attainable accuracies. CIRP Annals-Manufacturing Technology,1993,42(1):39-43
    [69]Zu chowshi R. Analysis of the thermal fatigue process. Journal of Materialia Processing Techonoly,2002,50:2381
    [70]Beste U, Coronel E. Wear induced material modifications of cemented carbide rock drill buttons. International Journal of Refractory Metals & Hard Materials, 2006,24(1-2):168
    [71]DanBelnap, Anthony Griffo. Homogeneous and structured PCD/WC-Co materials for drilling. Diamond and Related Materialias,2004,13:1914-1922
    [72]Liu Wu, Lu Manshan, Goto Shoji, et al. Effect of thermomechanical circulation in short-time on cobalt binder phase in WC-20wt%Co. International Journal of Refractory Metals & Hard Materials,1998,16:99-106
    [73]Lu Rudy, Minarro Lluis, Su Yea-Yang, et al. Failure mechanism of cemented tungsten carbide dies in wet drawing process of steel cord filament. International Journal of Refractory Metals & Hard Materials,2008,26:589-600
    [74]Pocl Brondsted, Peder Skov-Hansen. Fatigue properties of high-strength materials used in cold-forging tools, International Journal of Fatigue,1998, 20(5):373-381
    [75]Fjodor Sergejev, Irina Preis, Jakob kubarsepp, et al. Correlation between surface fatigue and microstructural sefects of cemented carbides. Wear,2008,264: 770-774.
    [76]Thomas Klunsner, Stefan Marsoner, Reinhold Ebner, et al. Effect of microstructure on fatigue properties of WC-Co hard metals. Procedia Engineering,2010,2:2001-2010
    [77]Thomas P S. Deep cryogenics. Heat Treating,1986(2):35-48
    [78]黎文献,龚浩然,柏振海,陈鼎.金属材料的深冷处理.材料导报,2000,14(3):16-18
    [79]Jiang Yong, Chen Ding, Chen Zhenhua, et al. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy. Materials and Manufacturing Processes,2010,25:837-841
    [80]Keveh Meshinchi Asl, Alireza Tari, Farzad Khomamizadeh. Effect of seep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Materials Science and Engineering A,2009,523:27-31
    [81]陈伟,王宝祥,齐永刚,孙雅平.铸件残余应力的产生、测试与消除.河北理工大学学报(自然科学版),2007,29(3):38-40
    [82]Bayankin V Ya, Volkova I V, Vasilev. Low-temperature of a Co-based amorpous soft magnetic alloy. Russian Metallurgy,1997,1:12
    [83]Yong A Y L, Seah K H W, Rahman M. Performance evaluation of cryogenically treated tungsten caebide tools in turning. International Journal of Machine and Tool Manufacturing,2006,46:2051-6
    [84]SreeramaReddy T V, Sornakumar T, VenkataramaReddy M, et al. Machinability of C45 steel with deep cryogenic treated tungsten carnbide cutting tool inserts. International Journal of Refractory Metals & Hard Materials,2009,27:181-185
    [85]Dinesh Thakur, B.Ramamoorthy, L.Vijayaraghavan. Influence of different post teatments on tungsten carbide-cobalt inserts. Materials Letters,2008,62: 4403-4406
    [86]Hoque M E, Ford R M, Roth J T. Automated image analysis of microstructure changes in metal alloys. http://www.cryoking.co.in/site/tc_cryo.htm,2009-12-28
    [87]Abdel-Aal H A, Nouari M, Mansori M E1. The effect of thermal property degradation on wear of WC-Co inserts in dry cutting. Wear,2008,265: 1670-1679
    [88]Seah K H W, Rahman M, Yong K H. Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts. Proceedings of the Institution of Mechanical Engineers- Part B:Journal of Engineering Manufacture,2003, 217(1):29-43
    [89]刘亚俊,李勇,曾志新,李西兵.深冷处理提高YW1硬质合金刀片耐磨损性能的机理研究.工具技术,2001,35(3):19-20
    [90]单世瑾.硬质合金锪刀的深冷处理机理.硬质合金,1997,14(1):32-36
    [91]王荣滨.硬质合金冷拔模强化处理研究.模具制造,2001,4:51-53
    [92]刘寿荣.WC-Co硬质合金的Y相成分.有色金属,1997,49(3):77-81
    [93]刘寿荣,刘方.WC-Co硬质合金深冷处理强化机理.金属热处理学报,1997,18(4):57-60.
    [94]Liu Shourong, Liu Yi. Effect of cryogenic treatment on WC-Co. Journal of Materials Science and Technology,1996,12(5):398
    [95]刘寿荣.WC-Co硬质合金中钻相的磁性研究.中国有色金属学报,1992,2(3):66-68
    [96]Collin M, Rowcliffe D. Analysis and prediction of thermal shock in brittle materials. Acta Materialia,2000,48:1655-1665
    [97]Sotomi Ishihara, Takahito Goshima, Koji Nomura, et al. Crack propagation behavior of cermets and cemented carbides under repeated thermal shocks by the improved quench test. Journal of Materials Science,1999,34:629-636
    [98]Spiegler R, Fischmeister H F. Prediction of crack paths in WC-Co alloys. Acta Matallmater,1992,40(7):1653
    [99]Kindermann P. Asymptotic Comparisons of Functionals of Brownian Motion and Random Walk. International Journal of Refractory Metal & Hard Materials, 1999,17,55-68
    [100]Ramkumar J, Aravindan S, Malhotra S K, et al. Enhancing the metallurgical properties of WC insert (K-20) cutting tool through microwave treatment. Materials Letters,2002,53:200-204
    [101]Paris P C, Erdogan F. Stress analysis of cracks. Journal of Basic Engineering, 1963:528-534
    [102]Suresh S. Crack deflection:Implication for the growth of long and short fatigue cracks. Metallurgical Transaction A,1983,14A(11):2375-2385
    [103]束德林.金属力学性能.北京:机械工业出版社,1999,152-153
    [104]邹东利,路学成.陶瓷材料增韧技术及韧化机理.陶瓷,2007,6:5-11
    [105]Krstic V V, Nicholson P S, Hoagland R G. Toughening of glasses by metallic particles. Journal of the American Ceramic Society,1981:64
    [106]Sigl L S, Exner H E. Experimental study of the mechanics of fracture in WC-Co alloys. Merallurgical and Materials Transactions A,1987,18(7):1229-1308
    [107]Sigl L S, Mataga P A, Dalgleish B J, et al. On the toughness of brittle materials reinforced with a ductile phase. Acta Materialia,1988,36(4):945-953
    [108]Acchar W, Gomes U U. Strength degradation of tungsten carbide-cobalt composite at elevated temperatures. Materials Characterization,1999,43(1): 27-32
    [109]Casas B, Ramis X. Oxidation-induced strength degradation of WC-Co hardmetals. International Journal of Refractory Metal & Hard Materials,2001, 19:303-309
    [110]Basu S, Sarin V. Oxidation behavior of WC-Co. Materialias Science and Engineering A,1996,209:206-212
    [111]S.hmatko O A, Larikov L N. Investigation of oxidation kinetics of W-Co and WC-Co alloys. Metall,1989,25:659-664
    [112]Voitovich V B, Sverdel V V. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500℃800℃. International Journal of Refractory Metal & Hard Materials,1996,14:289-295
    [113]Bhaumik S K, Balasubramaniam R. Oxidation behavior of hard and binder phase modified WC-lOCo cemented carbides. Journal of Materialias Science Letter, 1992,11:1457-1459
    [114]Mori G. Cr3C2,TiC和TaC添加剂对硬质合金耐腐蚀性的影响.国外难熔金属与硬质材料,2003,19(2):10-15
    [115]Parkins R N. Localized corrosion and crack initiation. Materialias Science and Engineering A,1988,103(1):143-156
    [116]Kondo Y. Prediction of fatigue crack initiation life based on pit growth. Corrosion,1989,45(1):7-11
    [117]蒋祖国主编.飞机结构腐蚀疲劳.北京:航空工业出版社,1991,214-219
    [118]山特维克公司(中国). 耐腐蚀硬质合金牌号及选用http://www.hardmaterials.sandvik.com/cn,2010-9-1
    [119]张伟,蒋勇.耐腐蚀硬质合金的性能与选用.粉末冶金技术,1994,12(3):235-237
    [120]Bamerje E D, Lal G K.调整粘结相和加Cr3C2对WC-Co硬质合金性能的影响.国外难熔金属与硬质材料,1996,12(2):48-57
    [121]Shuichi.耐腐蚀硬质合金的腐蚀特性.国外难熔金属与硬质材料,2000,16(2):25-29
    [122]Vasel C H, Krawitz A D. Binder deformation in WC-(Co,Ni) cemented carbide composites. Metallurgical and Materials Transactions A,1985,16:2309-2327
    [123]Ekemar S, Lindholm L. Nickel as a binder in WC-based cemented carbides. International Journal of Refractory Metal & Hard Materials,1982,1:37-40
    [124]Brabyn S M, Cooper R, Peters C T. The Effect of Substitution of Nickel for Cobalt in WC-Based Hardmetal. International Journal of Refractory Metal & Hard Materials,1981,2:675-692
    [125]Guilemany J M, Sanchiz I, Mellor B G. Mechanical property relationships of Co/WC and Co-Ni-Fe/WC hard metal alloys. International Journal of Refractory Metal & Hard Materials,1994,12:199-206
    [126]吕满珊,刘武,周定良.WC-Co硬质合金热处理强化机理作用的研究.矿冶工程,1993,13(8):60-64
    [127]黄钧声,吴惕言,李健纯.测定硬质合金中钴相相组成的x射线衍射法.硬质合金,2003,2(20):109-112
    [128]Exner H E. Qualitative and quantitative interpretation of microstructures in cemented carbides. In:Science of Hard Materials, Viswanadham R K, Rowcliffe D J., eds, New York:plenum press,1983,239
    [129]石环英.硬质合金中少含量相钴的X射线衍射一一电解选择性腐蚀WC法.理化检测-物理分册,1994,30(4):35-36
    [130]Bertil A, Henri P. Supervisory control of timed discrete-event systems. Metal Powder Report,1986,41(7):449
    [131]颜杰,黄新,孙亚丽,刘清才.热处理对硬质合金结构参数的改变.超硬材料工程,2006,18(6):26-30
    [132]Seung I Cha, Soon H Hong, Gook H Ha, et al. Microstructure and mechanical properties of nanocrystalline WC-lOCo cemented carbides. Scripta Materialia, 2001,44:1535-1539
    [133]张定铨.残余应力对金属疲劳强度的影响.理化检测-物理分册,2002,38(6):231-235
    [134]Thakur Dinesh, Ramamoorthy B, Vijayaraghavan L. Influence of different post treatments on tungsten carbide-cobalt inserts. Materials Letters,2008,62: 4403-4406
    [135]Abdel-Aal H A, Nouari M, Mansori M El. The effect of the thermal property degradation on wear of WC-Co inserts in dry cutting. Wear,2008,265: 1670-1679
    [136]美国金属学会.硬质合金工具的破损及其断裂韧性.北京:冶金工业出版社,1989,205-208
    [137]Lisovsky A F, Tkachenko N V. On the use of the MMI-phonomenon for the formation of nanostructures in WC-Co cemented carbides. International Journal of Refractory Metal & Hard Materials,1997,15:227-235
    [138]李勇,谢淑华.WC粗晶硬质合金的研究进展.材料研究与应用,2009,3(2):77-80
    [139]Katharina Buss. High temperature deformation mechanisms of cemented carbides and cermets. Lausannem EPFL,2004
    [140]Walter Lengauer, Klaus Dreyer. Functionally graded hardmetals. Journal of Alloys and Compounds,2002,338(1-2):194
    [141]张世远.磁性材料基础.北京:科学出版社,1988,55-58
    [142]魏维新.硬质合金饱和磁化强度测量的应用.工业金刚石通讯,1995,2:12-13
    [143]张兴华.磁性能在顶锤生产质量控制中的应用.超硬材料工程,2006,2(18):19-24
    [144]梁巨烈.磁饱和仪在硬质合金生产中的应用.硬质合金,2001,3(18):175-178
    [145]邹丹,李泳侠,陈东劲.硬质合金顶锤内部缺陷的无损定量检测.硬质合金,2000,(17)4:246-249
    [146]王民,王松顺.硬质合金顶锤和压缸的破裂特征、破坏原因的分析和提高使用寿命的途径.硬质合金,1994(4):231-240
    [147]文红伟,黄阳勇,周新华.顶锤组织结构和性能与使用寿命的关系.硬质合金,2006,3(23):183-187
    [148]Han Qigang, Ma Hongan, Li Rui, et al, Zhongzhu Liang, Xiaopeng Jia. Finite element analysis of high-pressure anvils according to the principle of lateral support. Journal of Applied Physics,2007,102:484-504
    [149]王强,蔡冬梅,何芳.六面顶硬质合金顶锤强度分析及结构优化.中国机械工程,2006,10(17):347-350
    [150]韩奇钢,马红安,李瑞,周林,田宇,贾晓鹏.有限元法计算碳化钨顶砧屈服强度.超硬材料工程,2007,5(19):13-16
    [151]孙训方,方孝根,关来泰.材料力学.北京:高等教育出版社,1994,78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700