用户名: 密码: 验证码:
刚—柔耦合支护防治冲击地压机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内浅部资源正日益枯竭,深部资源开采迫在眉睫。然而,随着深井采矿、深埋隧道和硐室等人类活动的不断深入地下,地应力呈非线性增加,地温升高,地质环境更加复杂多变,冲击地压发生频次和破坏程度也愈加强烈,释放大量冲击能造成支护围岩体破坏,给人民生命、财产和生产安全带来极大危害,亟待在防冲支护材料和方法方面做出重大突破。因此,建立刚-柔耦合支护模型,对多孔金属材料动态力学特性和吸能性能进行实验研究,分析不同支护巷道冲击破坏规律,揭示刚-柔耦合吸能机理,提出刚-柔-刚耦合支护方法,为防治巷道冲击破坏提供一种防冲支护材料和方法,具有重要的理论研究意义和实用价值。采用理论分析、材料实验、相似模拟试验和数值计算相结合的研究方法,对刚-柔耦合吸能机理及防冲支护进行研究。实验研究准静态和冲击载荷条件下多孔金属材料的力学行为、吸能特性和防冲支护的吸能效果;理论分析冲击地压巷道围岩破坏发生的应力判据和能量条件,建立刚-柔耦合吸能模型(刚-柔-刚耦合支护体系:R-F-R)并进行防冲理论研究;相似材料试验研究冲击地压发生和破坏过程及不同支护巷道变形规律,分析不同支护效果;数值模拟研究高速冲击载荷作用下冲击地压巷道变形破坏规律,分析不同支护条件下巷道破坏程度,检验刚-柔耦合防冲支护的合理和有效性;基于防冲机理,进行防冲支护装置研制,对防冲装置提供初撑力大小和缓冲吸能作用进行理论分析和实验研究,将柔性体+强力支护手段应用到跃进煤矿25110工作面下巷,对比分析传统支护和防冲支护冲击破坏结果,初步验证刚-柔耦合防冲支护的可靠性。
     1.多孔金属材料及防冲支护吸能机理研究:利用准静态压缩实验、高速冲击实验和SHPB实验方法,结合细观结构和宏观力学两方面对不同多孔金属材料动态力学特性和防冲支护吸能性能进行实验分析,研究材料参数、细观结构变化对材料动态力学特性和防冲吸能性能的影响,揭示刚-柔耦合防冲支护吸能机理。
     (1)不同基体材料对泡沫金属动态力学特性的影响研究
     采用高速冲击实验方法,借助电镜扫描(SEM)技术手段,从细观结构和宏观力学两方面出发,对闭孔Al基、Al-Si12基、Al-Si6基、泡沫镁及泡沫铝-纤维合金和泡沫铝-稀土合金等泡沫金属系列材料进行冲击实验,得到不同材料应力-应变曲线和吸能曲线,研究材料基体对其动态力学特性的影响,进而优选冲击吸能性能良好的多孔金属材料。
     (2)材料参数影响的泡沫金属动态力学特性分析
     材料参数对其冲击吸能性能影响较大,选择材料尺寸相同,不同材料密度、不同孔隙度以及材料孔径的闭孔Al-Si6基泡沫材料,利用高速冲击实验和SHPB实验研究方法,考虑材料参数对吸能性能的影响,研究材料密度、孔隙度和孔径与材料动态力学特性的关系,从而确定合适的材料参数。
     (3)考虑试件尺寸效应影响的多孔金属材料动态力学特性分析
     考虑尺寸效应对材料吸能性能的影响,利用冲击载荷实验系统,选择实验材料均为闭孔Al-Si6基泡沫材料,研究试样形状和尺寸效应对其动态力学特性的影响,进而选择合理的吸能材料尺寸高宽比。
     (4)多孔金属材料及防冲支护吸能机理研究
     根据落锤冲击实验和SHPB实验结果,利用电镜扫描(SEM)技术,对基体材料(Al基、Al-Si12基、Al-Si6基、泡沫镁及泡沫铝-纤维合金和泡沫铝-稀土合金)破裂细观形貌特征进行分析,研究细观结构变化对材料吸能影响;利用冲击实验系统,对钢支架、底脚式支架和顶端式支架吸能性能进行分析,揭示刚-柔耦合支护防冲机理。
     2.刚-柔耦合模型及防冲理论解析:从能量吸收的角度出发,研究冲击地压巷道围岩破坏发生的应力判据和能量条件,建立刚-柔耦合吸能模型并进行防冲理论解析,提出刚-柔-刚耦合支护方法。
     (1)从能量角度出发,对冲击地压巷道围岩破坏机理进行研究,研究支护巷道围岩冲击破坏发生的应力判据和能量条件。
     (2)基于应力波的冲击破坏理论,建立围岩-吸能材料-钢支架刚-柔耦合吸能支护力学模型,揭示刚-柔耦合吸能支护的耦合关系,进而研究吸能支护冲击波耗散机理和支护耗能机理,得出防冲支护能量耗散标准。
     (3)对R-F-R支护结构进行简化,根据材料力学和冲击波理论相关知识,进行冲击波作用下R-F-R支护结构衰减冲击波性能理论解析,得到多孔金属材料厚度和材料性能对其衰减冲击波的影响,对比分析设置多孔金属材料前后支护结构的缓冲和吸能效果。
     (4)提出刚-柔-刚耦合支护方式,并对不同支护进行防冲实验分析,研究防冲支护方法,进而提出建立柔性支护体+强力支护耦合支护手段,提高巷道安全程度,降低冲击型动力灾害。
     3.冲击巷道支护模拟试验研究:利用爆炸加载方式模拟高速冲击载荷作用,借助数字散斑光测技术手段,研究巷道围岩破坏过程及不同支护条件下巷道变形规律;同时,在实验室研究冲击地压发生过程及锚杆、U型钢、棚索协同支护以及刚-柔耦合支护(巷道衬砌吸能材料+强力支护)条件下巷道冲击破坏规律。
     (1)利用低能爆炸加载方式,借助高速采集数字散斑光测装置,对高速冲击载荷作用下巷道动态破裂规律进行相似试验研究,并研究锚杆支护和刚-柔耦合支护巷道冲击破坏规律。
     (2)利用相似理论,按照一定的配比制作脆性材料,采用单轴加载的方法,借助数字散斑光测方法,对制作标准试件进行压缩冲击破坏试验研究,确定合适作为冲击地压相似模拟的材料配比和强度。
     (3)考虑尺寸效应的影响,模拟不同巷道尺寸条件下冲击破坏规律,确定模拟巷道冲击破坏的合理巷道形状及尺寸,对不同支护条件下巷道冲击破坏过程进行试验研究,对比分析不同支护巷道冲击破坏规律,检验刚-柔耦合支护的合理和有效性。
     4.支护巷道冲击破坏非线性动力学分析:将冲击波作为离散的动态冲击载荷施加在模型内部节点上,利用FLAC3D进行煤岩巷道冲击变形破坏过程的三维数值计算,实现先加载后开挖及合理动力加载方式,分别研究裸巷、锚网锚杆、U型钢支护和防冲支护等条件下的巷道冲击破坏规律,并从能量角度出发,对不同支护方式的支护效果进行分析,进一步说明防冲支护的有效性。
     5.根据防冲结构设计的基本依据,研究了可实现提供较大初撑力,又起到良好缓冲吸能作用的防冲结构,并进行了防冲装置的研制。利用理论分析和试验研究相结合的研究方法,对防冲装置提供初撑力大小和缓冲吸能作用进行了研究,得到了消除装置自锁发生的合理角度,弹簧压缩量与装置提供初撑力之间的关系,也说明刚-柔耦合防冲支护的可靠性,为防冲支护设计和应用提供了科学依据。
     6.基于刚-柔耦合支护防冲机理,跃进煤矿25110工作面下巷采用锚网索+36U椭圆型棚封闭柔性支护加刚性支护耦合防冲支护手段,对比了传统支护与防冲支护冲击破坏结果,初步验证了刚-柔耦合防冲支护在防治冲击地压灾害方面的可行性,为优化和改进防冲支护材料和结构提供指导,可望进一步改善防冲支护性能,降低冲击地压灾害危害。
Deep resource mining is imminent because the shallow resources are increasinglyexhausted worldwide. However, with the increase of deep mining, buried tunnel andother underground human activities, the geostress increases nonlinearly, the temperaturerises quickly, and geological environment is more complicated. At the same time, rockbroken and supporting overall instability and failure caused by impact energy bringgreat harm to people’s lives, properties and industrial safety. It is necessary to make asignificant breakthrough in the new materials and methods of rockburst preventionsupport. Therefore, it has the important theoretical significance and practical value toestablish rigid-flexible coupling support model, reveal energy absorption mechanism,put forward rigid-flexible-rigid coupling support method and provide a new material andmethod for rockburst prevention support. The rigid-flexible coupling energy absorptionmechanism and rockburst prevention support method are studied by using theoreticalanalysis, impact test, similar simulation experiment and numerical calculation method.Experiments study the mechanical behavior, energy-absorption ability of porous metalmaterials and rockburst prevention support effect under the condition of quasi-static andimpact load. Theoretical analyses show the stress criterion and energy conditions ofsurrounding rock in rockburst roadway, establish rigid-flexible coupling mode(rigid-flexible-rigid coupling support system: R-F-R), and study the theory of rockburstprevention support. Similar material simulation experiments research the process ofrockburst, the roadway deformation law and the supporting effect of different supporttypes. Numerical simulation studies the deformation law of roadway under high-speedimpact load, and the roadway damage degree under different supporting conditions. Atlast, it proves the reasonableness and effectiveness in roadway support. Based on themechanism of rockburst prevention, the rockburst prevention support device isdeveloped. By theoretical analysis and experimental research, the setting force and thebuffer absorption effect of the device are studied. The coupling support of flexible bodyand strong support is used for roadway of25110working face in Yuejin coal mine. Theimpact failure of traditional and rockburst prevention support is analyzed comparatively. The results primarily validate the reliability of rigid-flexible coupling rockburstprevention support.
     1. Absorbing mechanism study on porous metal materials and rockburst preventionsupport. With quasi-static compression experiment, high-speed impact experiment andSHPB experiment methods, the performance on dynamic mechanical properties andenergy absorption influenced by material parameters and microscopic structure changeis studied combined with two aspects of microscopic structure and macroscopicmechanical, and the energy absorption mechanism is revealed.
     (1) Study on the influence of dynamic mechanical properties of different foammetals
     Based on impact test and scanning electron microscope(SEM) technology,combined with two aspects of microscopic structure and macroscopic mechanical, thestress-strain and absorbing energy curves of closed-cell foam metals with matrix Al,matrix Al-Si6, matrix Al-Si12, Mg matrix, aluminum-fiber and RE-Al alloys arediscussed, and then optimize the good performance of porous metal materials of energyabsorption.
     (2) Analysis on the dynamic mechanical properties of porous metal materialsinfluenced by material properties.
     With high-speed impact experiment and SHPB experiment research methods,considering material parameters on the influence of absorbing energy performance, therelationship between dynamic mechanical characteristics and density, porosity and poresize are studied. Accordingly, the suitable material parameters are determined.
     (3) Analysis on dynamic mechanical properties of porous metal materials with theconsideration of the size effect
     Sample shape and size effect on its dynamic mechanical characteristics arediscussed with impact load experiment system, choosing closed-cell foam metals withmatrix Al-Si6. Then the rational height-width ratio is confirmed.
     (4) Absorbing mechanism research on porous metal materials and rockburstprevention support
     By scanning electron microscope(SEM) technology, mesoscopic fracturemorphology of closed-cell foam metals with matrix Al, matrix Al-Si6, matrix Al-Si12, Mg matrix, aluminum-fiber and RE-Al alloys are studied. Using impact load experimentsystem, energy absorption performance of rockburst prevention support is analyzed.Accordingly, energy absorption mechanism is revealed.
     2. Analysis on rigid-flexible coupling model and rockburst prevention theory. Fromthe angle of energy absorption, the stress criterion and energy conditions of surroundingrock in rockburst roadway are theoretically analyzed, and rigid-flexible coupling modeis established; the theory of rockburst prevention support is studied; and thenrigid-flexible-rigid coupling support method is put forward.
     (1) From the angle of energy absorption, the failure mechanism of surrounding rockis studied; the stress criterion and energy conditions of surrounding rock in rockburstroadway are theoretically analyzed.
     (2) Based on the impact destruction theory of stress wave, rigid-flexible couplingenergy absorption supporting mechanics model of rock-energy absorption material-steelis established, the coupling relationship of rigid-flexible coupling energy absorptionsupporting is revealed, and shock wave dissipation mechanism and energy dissipationmechanism are studied, too. The energy dissipation standards for rockburst preventionsupport are revealed.
     (3) According to the material mechanics and relevant knowledge to shockwavetheory, attenuation shockwave performance of R-F-R supporting structure undershockwave effect is theoretically analyzed. The influence of porous metal materialthickness and material properties on the attenuation shock wave is received. At last,energy absorption effect of rockburst prevention support is studied.
     (4) In order to reduce the impact type hydraulic disaster effectively, rigid-flexiblecoupling support patterns are put forward, the coupling support of flexible body+strongsupport is established.
     3. Experimental research on impact roadway. Under explosive loading and thedigital speckle correlation method(DSCM), the dynamic failure process of roadwayunder high velocity impact loading is simulated by using similarity simulationexperiment. Then the impact damage process of coal roadway under anchor bolt, U typesteel and rigid-flexible coupling support is studied. The impact failure mechanism ofroadway under the interaction between coal rock and support is revealed.
     (1) Adopting similarity simulation experiment under explosive loading and thedigital speckle correlation method(DSCM), the dynamic failure process of roadway ofanchor bolt and rigid-flexible coupling support under high velocity impact loading issimulated.
     (2) Utilizing similarity theory, adopting uniaxial loading method and digitalspeckle measuring methods, material blending ratio and strength for rockburst is definedby compression test.
     (3) Considering the influence of size effect, experimental research on deformationlaw of roadway under high-speed impact load, and the roadway damage degree underdifferent supporting conditions, the reasonable and effective in roadway support isverified.
     4. Using nonlinear dynamic analysis method,the law of deep roadway deformation underhigh-speed impact loading is analyzed by FLAC3Dcalculation software. The impact damageprocess of coal roadway under anchor bolt, U type steel and rockburst prevention support arestudied. The supporting effect of different support types is analyzed from the angle of energy.All the above shows the effectiveness of the rockburst prevention support further.
     5. According to the design basis of rockburst prevention structure, the rockburst preventionsupport device is developed. By the combination methods of theoretical analysis andexperimental research, the setting force and the buffer absorption effect of rockburst preventionsupport device are studied. The reasonable angle of eliminate self-locking and the relationshipbetween the spring compression value and the setting force are obtained. The results furthershow the reliability of rigid-flexible coupling rockburst prevention support. And then theresearch results can offer scientific basis for the supporting design and it’s application.
     6. Based on the rigid-flexible coupling rockburst prevention mechanism, the couplingsupport of flexible body+strong support is used for roadway of25110working face in Yuejincoal mine. The impact failure of traditional and rockburst prevention support is comparativelyanalyzed. The results primarily validate the reliability of rigid-flexible coupling rockburstprevention support.
引文
[1] Linkov A M. Rockbursts and the instability of rock masses[J]. Int J Rock Mech Min Sci&Geomech Abstr,1996,33(7):727-732.
    [2] Vardoulakis I. Rock bursting as a surface instability phenomenon[J]. Int J Rock Mech Min Sci&Geomech Abstr,1984,21(3):137-144.
    [3] Burgert W, Lippman M. Models of translatory rock bursting in coal[J]. Int J Rock Mech Sci&Geomech. Abstr,1981,18:285-294.
    [4]宋振骐等著.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [5]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [6]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [7]姜福兴,王同旭,潘立友,等.矿山压力与岩层控制[M].北京:煤炭工业出版社,2004.
    [8]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [9]潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999:14-48.
    [10]宋振骐,蒋金泉.煤矿岩层控制的研究重点与方向[J].岩石力学与工程学报,1996,15(2):128-134.
    [11]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [12]何满潮,齐干,程骋,等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报,2007,26(5):987-993.
    [13]齐庆新,陈尚本,王怀新,等.冲击地压、岩爆、矿震的关系及其数值模拟研究[J].岩石力学与工程学报,2003,22(11):1852-1858.
    [14]左孝青,杨晓源,李成华.多孔泡沫金属研究进展[J].昆明理工大学学报,1997,22(1):91-95.
    [15]卢子兴,王仁,黄筑平,等.泡沫塑料力学性能研究综述[J].力学进展,1996,26(3):306-323.
    [16]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J].爆炸与冲击,2001,21(2):81-88.
    [17]卢天健,何德坪,陈常青,等.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-534.
    [18]刘培生,李铁藩,傅超,等.多孔金属材料的应用[J].功能材料,2001,32(1):12-15.
    [19]杨雪娟,刘颖,李梦,等.多孔金属材料的制备及应用[J].材料导报,2007,21Ⅷ:380-383.
    [20]卢天健,刘涛,邓子辰.多孔金属材料多功能化设计的若干进展[J].力学与实践,2008,30(1):1-9.
    [21]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33(1):5-11.
    [22]田庆华,李钧,郭学益.金属泡沫材料的制备及应用[J].电源技术,2008,132(6):417-420.
    [23]卢子兴,郭宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报,2003,29(11):978-983.
    [24]朱震刚.金属泡沫材料研究[J].物理,1999,28(2):84-88.
    [25]陈永涛,楼志华,郑钢铁.开孔和闭孔泡沫铝的力学与吸能特性研究[J].高能量密度物理,2006,(2):47-49.
    [26]顾红军.爆炸及冲击载荷下多排圆柱壳的结构响应[D].南京:南京理工大学博士学位论文,2003.
    [27]胡孔刚.合金化与孔结构及填充物对泡沫铝压缩行为的影响[D].合肥:合肥工业大学硕士学位论文,2005.
    [28]谢素超.耐冲击地铁车辆吸能结构研究[D].长沙:中南大学硕士学位论文,2007.
    [29]王朝营.薄壁管堆积轻质结构的力学性能研究[D].大连:大连理工大学硕士学位论文,2008.
    [30]周晓军,鲜学福.煤矿冲击地压理论与工程应用研究进展[J].重庆大学学报(自然科学版),1998,21(1):126-132.
    [31]佩图霍夫и M.突出和冲击地压危险煤层的开采[J].煤炭工程师,1984,(5):41-44.
    [32]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [33]潘一山,章梦涛,王来贵,等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49-56.
    [34]张晓春,杨挺青,缪协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999,29(1):97-104.
    [35]郭文奇,张拥军,安里千,等.红外辐射探测预测煤矿冲击地压的试验研究[J].煤炭科学技术,2007,35(1):73-77.
    [36]李长洪,蔡美峰,乔兰,等.岩石全应力-应变曲线及其与岩爆关系[J].北京科技大学学报,1999,21(6):513-515.
    [37]梁冰,章梦涛.采区冲击地压的预测[J].矿山压力与顶板管理,1992(2):12-15.
    [38]潘一山,张永利,徐颖,等.矿井冲击地压模拟试验研究及应用[J].煤炭学报,1998,23(6):590-595.
    [39]王述红,刘建新,唐春安,等.煤岩开采过程冲击地压发生机理及数值模拟研究[J].岩石力学与工程学报,2002,21(增2):2480-2483.
    [40]唐巨鹏,李英杰,潘一山.阜新五龙矿深部冲击地压ANSYS有限元数值模拟[J].防灾减灾工程学报,2004,25(3):271-274.
    [41]贺虎,窦林名,巩思园,等.巷道防冲机理及支护控制研究[J].采矿与安全工程学报,2010,27(1):40-44.
    [42]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(6):690-694.
    [43]高明仕,窦林名,张农,等.冲击矿压巷道围岩控制的强弱强力学模型及其应用分析[J].岩土力学,2008,29(2):359-364.
    [44]冯学武,张忠温,曹荣平,等.深部煤巷刚柔二次耦合支护围岩控制技术[J].矿山压力与顶板管理,2001(4):18-21.
    [45]鞠文君,魏东,李前.急倾斜特厚煤层水平分层综放开采煤巷支护技术[J].煤炭科学技术,2006,34(5):46-48.
    [46]康红普,王金华,林健.煤矿巷道支护技术的研究与应用[J].煤炭学报,2010,35(11):1809-1814.
    [47] Santosa S, Wierzbicki T. On the modeling of crush behavior of a closed cell aluminum foamstructure[J]. J Mech Phys Solids,1998,46(4):645-669.
    [48] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge: CambridgeUniversity Press,1997.
    [49] Andrews E, Sanders W, Gibson L J. Compressive and tensile behaviour of aluminum foams[J].Mater Sci Eng,1999,A270(2):113-124.
    [50] Gibson L J. Mechanic behavior of metallic foam[J]. Annual review of material science,2000,30:191-227.
    [51] Simone A E, Gibson L J. Aluminum foams produced by liquid state processes[J]. ActaMater,1998,46(9):3109-3123.
    [52] Simone A E, Gibson L J. Effects of solid distribution on the stiffness and strength of metallicfoams[J]. Acta Mater,1999,46(6):2139-2150.
    [53] Grenestedt J L, Bassinet F. Influence of cell wall thickness variations on elastic stiffness ofclosed-cell cellular solids[J]. Int J Mech Sci,2000,42:1327-1338.
    [54] Beals J T, Thompson M S. Density gradient effects on aluminium foam compressionbehaviour[J]. J Mater Sci,1997,32(13):3595-3600.
    [55] Chen C, Lu T J, Fleck N A. Effects of cell face curvature and corrugations on the stiffness andstrength of metallic foams[J]. Acta Mater,1998,46(I1):3929-3935
    [56] Miyoshi T, Itoh M, Mukai T, Kanahashi H et al. Enhancement of energy absorption in aclosed-cell aluminum by the modification of cellular structures[J]. ScriptaMaterialia,1999,41(10):1055-1060.
    [57] Markaki A E, Clyne T W. The effect of cell wall microstructure on the deformation andfracture of aluminum-based foam[J]. ACTA Materialia,2001,49:1677-1686.
    [58] Andrews E W, Gioux G, Onck P, Gibson L J. Size effects in ductile cellular solids-Part II:Experimental results, International Journal of Mechanical Sciences,2000,43:3583-3592.
    [59] Andrews E W, Huang J S, Gibson L J. Creep behavior of a closed-cell aluminum foam[J]. ActaMater,1999,47(10):2927-2935.
    [60] Andrews E W, Gibson L J, Ashby M F. The creep of cellular solids[J]. ActaMater,1999,47(10):2853-2863.
    [61] Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids Part I: modeling[J].International Journal of Mechanical Sciences,2001,43:681-699.
    [62] Chen C, Fleck N A. Size effects in the constrained deformation of metallic foams[J]. Journal ofthe Mechanics and Physics of Solids,2002,50:955-977.
    [63] Nieh T G, Higashi K, Wadsworth J. Effect of cell morphology on the compressive properties ofopen-cell aluminum foams[J]. Mater Sci Eng,2000,A283(122):105-110.
    [64] Nieh T G, Kinney J H, Wadsworth J, et al. Morphology and elastic properties of aluminumfoams produced by a casting technique[J].Scripta Mater,1998,38(10):1487-1494.
    [65] Andrews E W, Gioux G, Onck P R, Gibson L J. Size effects in ductile cellular solids[J]. PartII:experimental results. International Journal of Mechanical Sciences.2001,43:701-713.
    [66] Andrews E W, Gibson L J. The influence of crack like defects on the tensile strength of anopen cell Aluminum foam[J]. Scripta Mater,2001,44(7):1005-1010.
    [67] Mukai T, Kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in aclose-celled aluminum foam under dynamic loading[J]. Scripta Mater,1999,40(8):921-927.
    [68] Banhart J, Baumeister J. Deformation characteristics of metal foams[J]. J MaterSci,1998,33(6):1431-1440.
    [69]刘培生.泡沫金属力学性能的若干问题[J].稀有金属材料与工程,2004,33(5):473-477.
    [70]郝刚领,韩福生,李卫东,等.多孔金属材料的制备工艺及性能分析[J].延安大学学报(自然科学版),2008,27(2):24-27.
    [71]王曦,虞吉林.泡沫铝单向力学行为研究[J].实验力学,2001,16(4):438-443.
    [72]王曦.泡沫铝的动态力学行为及泡沫铝夹芯梁的弹塑性行为研究[D].合肥:中国科学技术大学硕士论文.2001.
    [73]郑明军,何德坪,陈锋.多孔铝合金的压缩应力一应变特征及能量吸收性能[J].中国有色金属学报,2001,Vol.(11S2):81-85.
    [74]王斌,何德坪,舒广冀.泡沫Al合金的压缩性能及其能量吸收[J].金属学报,2000,Vo136,10:1037-1039.
    [75] Reid S R, Reddy T Y. Experimental investigation of inertia effects in one-dimensionalmetal ring systems subjected to impact I: Fixed-ended systems. Int. J. Impact Engng.1983,1,85-106.
    [76] Shim V P W, Tay B Y, Stronge W J. Dynamic crushing of strain-softening cellular structures-aone-dimensional analysis[J]. Trans. ASME. J. Engng. Mater. Technol.,1990,112,398-405.
    [77] Stronge W J, Shim V P W. Dynamic crushing of cellular arrays[J]. Int. J. Mech.Sci.,1987,29,381-406.
    [78] Zhao H, Gary G. Crushing behavior of aluminum honeycombs under impact loading[J]. Int JImpact Engng,1998,21(10):827.
    [79] Mukai T, Kanahashi H, Yamada Y, et al. Dynamic compressive behavior of anultra-lightweight magnesium foam[J]. Scripta Mater,1999,41(4):365-371.
    [80] Kenny L D. Mechanical properties of particle stabilized aluminum foam[J]. Material ScienceForum.,1996,217-222.
    [81] Lankford J J, Dannemann K A. Strain rate effects in porous materials[J]. Materials ResearchSociety Symposium Proceedings, Materials Research Society, Warrendale, Pennsylvania,1998,521,103-108.
    [82] Hal l I W, Guden M, Yu C J. Crushing of aluminum closed cell foams: density and strain rateeffects[J]. Scrinta Materialia,2000,43:515-521.
    [83] Ruan D, Lu G, Chen F L, et al. Compressive behaviour of aluminium foams at low and mediumstrain rates[J]. Composite Structures,2002,57(4):331-336.
    [84] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloyfoams[J]. Int J Impact Eng,2000,24(3):277-298.
    [85] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. J Mech PhysSolids,2000,48(627):1253-1283.
    [86] Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam[J]. Mater Sci Eng,2000,A281(122):1-7.
    [87] Dannemann K A, Lankford J J. High strain rate compression of closed-cell aluminiumfoams[J].Material Science and Engineering,2000,A293(122):157-164.
    [88] H kanahashi, T Mukai, Y Yamada et al. Dynamic compression of an ultra-low densityaluminium foam[J]. Material Science and Engineering.2000,A280,349-353.
    [89] Y Yamada, Shimojima K, Sakaguchi Y, et al. Compressive properties of open-cellularSG91A Al and AZ91Mg[J]. Material Science and Engineering.1999, A272,455-458.
    [90] Feng Y, Zhu Z G, Zu F Q et al. Strain rate effects on the compressive property andenergy-absorbing capacity of aluminum alloy foams, Materials Characterization,2001,417-422.
    [91]王永刚,胡时胜,王礼立.爆炸载荷下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J].爆炸与冲击,2003,23(6):516-522.
    [92]胡时胜,王悟,潘艺,等.泡沫材料的应变率效应[J].爆炸与冲击,2003,23(1):13-18.
    [93] Hilyard N C, Djiauw L K.1971, J. Cell. Plast.,7,33.
    [94] Gordon J E, Jeronimides G.1974,Nature,232,116.
    [95] Rush K C.1971, J. Cell. Plast.,7,78.
    [96] Miltz J, Gruenbaum G. Evaluation of Cushion Properties of Plastic Foams CompressiveMeasurements[J]. Polymer Engineering and Science,1981,(21):1010-1014.
    [97] Gradinger R, Rammerstorfer F G. On the influence of meso-inho-mogeneities on the crushworthness of metal foams[J]. Acta Mater,1999,47(1):143-148.
    [98] Sugimura Y, Meyer J, He M Y, Bart-Smith H, et al. On the mechanical performance of closedcell A1alloy foams[J]. Acta Mater,1997,45:5245-5259
    [99] Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J].Progress in Material Science,2001,46(6):559-632.
    [100]郑明军,何德坪,新型高比强泡沫铝合金的压缩及能量吸收性能[J].材料研究学报,2002,16(5):27-32.
    [101]吴照金,何德坪.泡沫铝的压缩及能量吸收性能研究[J].应用科学学报,2001,19(4):357-361.
    [102]王二恒,虞吉林,王飞,等.泡沫铝材料准静态本构关系的理论和实验研究[J].力学学报,2004,36:673-679.
    [103]孙悦,王小琴,张清福.泡沫铝材料的吸能特性研究[J].四川大学学报,2002,34(1):124-126.
    [104]陈祥,李言祥.金属泡沫材料研究进展[J].材料导报,2003,17(5):5-8.
    [105]赵万祥,赵乃勤.郭新权.新型功能材料泡沫铝的研究进展[J].金属热处理,2004,29(6):7-10.
    [106] McCullough K Y G, Fleck N A, Ashby M A. Uniaxial stress-strain behaviour of aluminumalloy foams[J]. Acta Materialia,1999,47(8):2323-2330.
    [107] Lopatnikov S L, Gama B A, Haque M J, Krauthauser C, Gillespie J W. High-velocity plateimpact of metal foams[J]. Int J Impact Eng,2004,30:421-445.
    [108] Lopatnikov S L, Gama B A, Haque M J, Krauthauser C, Gillespie J W, Guden M, Hall I W.Dynamics of metal foam deformation during Yaylor cylinder-Hopkinson bar impactexperiment[J]. Compos Struct,2003,61:61-71.
    [109] Kanahashi H, Mukai T, Yamada Y, Shimojima K, Mabuchi M, Aizawa T, Higashi K.Experimental study for the improvement of crashworthiness in AZ91magnesium foamcontrolling its microstructure[J]. Mater Sci Eng A,2001,A308:283-287.
    [110] Kanahashi H, Mukai T, Yamada Y, Shimojima K. Dynamic compression of an ultra-lowdensity aluminum foam[J]. Materials Science and Engineering,2000,A280:349-353.
    [111] Feng Y, Tao N, Zhu Z G, Hu S S, Pan Y. Effect of aging treatment on the quasi-static anddynamic compressive properties of aluminum alloy foams[J]. Mater Lett,2003,57:40584063.
    [112]凤仪,朱震刚,潘艺,等.泡沫铝的动态力学性能研究[J].稀有金属材料与工程,2005,34(4):544-548.
    [113]曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J].爆炸与冲击,2002,22(4):358-362.
    [114]高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学博士学位论文,2006.
    [115]赵阳升,冯增朝,万志军.岩体破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.
    [116]康建功,石少卿,陈进.泡沫铝衰减冲击波压力的理论分析[J].振动与冲击,2010,29(12):128-131.
    [117]王宇新,顾元宪,孙明.冲击载荷作用下多孔材料复合结构防爆理论计算[J].兵工学报,2006,27(2):375-379.
    [118]李清,杨仁树,李均雷,等.爆炸荷载作用下动态裂纹扩展试验研究[J].岩石力学与工程学报,2005,24(16):2912-2916.
    [119]梁冰,孙维吉,杨冬鹏,等.抛掷爆破对内排土场边坡稳定性影响的试验研究[J].岩石力学与工程学报,2006,28(4):710-715.
    [120]王明洋,葛涛,戚承志,等.爆炸载荷作用下岩石的变形与破坏研究(Ⅰ)[J].防灾减灾工程学报,2003,23(2):43-52.
    [121]范天佑.断裂动力学引论[M].北京:北京理工大学出版社,1990.370-371.
    [122]赵以贤,王良国.爆炸载荷作用下地下圆形结构动态分析[J].应用力学学报,1997,14(1):94-98.
    [123]曲志明,周心权,巩伟平,等.大爆破爆炸冲击波在破碎岩体间传播的数值模拟研究[J].振动与冲击,2007,26(12):60-62.
    [124]李顺波,东兆星,齐燕军,等.爆炸冲击波在不同介质中传播衰减规律的数值模拟[J].振动与冲击,2009,28(7):115-117.
    [125]冯文凯,许强,黄润秋.斜坡震裂变形力学机制初探[J].岩石力学与工程学报,2009,28(增1):3124-3130.
    [126]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J].爆炸与冲击,2001,21(2):81-88.
    [127]颜峰,姜福兴.爆炸冲击载荷作用下岩石的损伤实验[J].爆炸与冲击,2009,29(3):275-280.
    [128]戴俊,钱七虎.高地应力条件下的巷道崩落爆破参数[J].爆炸与冲击,2007,27(3):273-277.
    [129]陈士海,乔卫国,孔徳森.大兴煤矿软岩巷道锚索带网支护技术应用研究[J].岩土力学,2006,27(增刊):902-904.
    [130]胡柳青,李夕兵,龚声武.冲击载荷作用下裂纹动态响应的数值模拟[J].爆炸与冲击,2006,26(3):214-221.
    [131]范新,王明洋,谭可可.爆炸荷载作用下深部块体变形运动规律研究[J].岩石力学与工程学报,2007,26(5):1019-1025.
    [132]高明仕,窦林名,严如令,等.冲击煤层巷道锚网支护防冲机理及抗冲震级初算[J].采矿与安全工程学报,2009,26(4):402-406.
    [133]孙晓明,何满潮.深部开采软岩巷道耦合支护数值模拟研究[J].中国矿业大学学报,2005,34(2):166-169.
    [134]徐学锋,窦林名,刘军,等.煤矿巷道底板冲击矿压发生的原因及控制研究[J].岩土力学,2010,31(6):1977-1981.
    [135]王洛锋,姜福兴,于正兴.深部强冲击厚煤层开采上、下解放层卸压效果相似模拟试验研究[J].岩土工程学报,2009,31(3):442-446.
    [136]牟宗龙,窦林名,李慧民,等.顶板岩层特性对煤体冲击影响的数值模拟[J].采矿与安全工程学报,2009,26(1):26-30.
    [137]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [138]姜福兴.采场支架冲击载荷的动力分析[J].煤炭学报,1994,19(6):649-657.
    [139]陈世其,李炳文,赵继云,等.冲击载荷作用下DWX型单体液压支柱内压分析[J].煤炭学报,2008,33(6):699-702.
    [140]王明洋,王立云,戚承志,等.爆炸载荷作用下岩石的变形与破坏研究(Ⅱ)[J].防灾减灾工程学报,2003,23(3):9-20.
    [141]彭苏萍,凌标灿.综采放顶煤工作面地震CT探测技术应用[J].岩石力学与工程学报,2002,21(12):1786-1790.
    [142]陆菜平,窦林名,郭晓强,等.顶板岩层破断诱发矿震的频谱特征[J].岩石力学与工程学报,2010,29(5):1017-1022.
    [143]任建喜,葛修润,蒲毅彬.节理岩石卸载损伤破坏过程CT实时检测[J].岩土力学,2002,23(5):575-578.
    [144]夏红兵,徐颖,宗琦等.爆炸荷载作用下裂隙岩体内损伤范围的观测研究[J].岩土力学,2007,28(4):795-798.
    [145]陈士海,乔卫国,孔徳森.大兴煤矿软岩巷道锚索带网支护技术应用研究[J].岩土力学,2006,27(增刊):902-904.
    [146]华心祝,赵少华,朱昊,等.沿空留巷综合支护技术研究[J].岩土力学,2006,27(12):2225-2228.
    [147]张亮亮,夏元友,顾金才.爆炸波作用下预应力锚索受力特征研究[J].岩土工程学报,2009,31(7):1099-1104.
    [148]顾金才,陈安敏,徐景茂,等.在爆炸载荷条件下锚固洞室破坏形态对比试验研究[J].岩石力学与工程学报,2008,27(7):1315-1320.
    [149]王光勇,顾金才,陈安敏,等.端部消波和加密锚杆支护洞室抗爆能力模型试验研究[J].岩石力学与工程学报,2010,29(1):51-58.
    [150]杨自友,顾金才,杨本水,等.锚杆对围岩的加固效果和动载响应的数值分析[J].岩土力学,2009,30(9):2805-2809.
    [151]徐学锋.煤层巷道底板冲击机理及其控制研究[D].徐州:中国矿业大学博士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700