用户名: 密码: 验证码:
松香衍生物/丙烯酸酯复合乳液的制备及其耐高温压敏胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯酸酯乳液由于具有优异的耐候性,环保安全,生产成本低,广泛应用于涂料、胶粘剂、油墨和纺织等领域。然而,在乳液聚合过程中,由于乳化剂、缓冲剂、引发剂和功能单体的加入,致使乳胶粒表面存在大量的亲水性基团和离子电荷,所以无论乳液还是乳胶膜对疏水性表面的润湿较差。与溶剂型相比,丙烯酸酯乳胶膜存在耐水性、耐高温性、抗蠕变性及力学性能差等缺点,尤其是其压敏胶对低极性或非极性表面的粘接难度较高,因此,如何使乳液型丙烯酸酯在保持较好的力学性能的同时,提高其润湿性、内聚强度和耐高温性能具有较大的挑战性。本论文采用反应性乳化剂和预乳化原位聚合工艺,通过高软化点松香衍生物增粘改性,制备了松香衍生物/丙烯酸酯复合乳液;然后经固化剂交联固化,制得了吸水率低、粘接性能优异、抗蠕变性和耐高温性能好的压敏胶。系统研究了影响乳液聚合及乳胶膜性能的因素,并对其乳液和乳胶膜的结构与性能进行了测试和表征,同时对乳液聚合中的有关机理进行了探讨。主要研究内容和结果包括如下四点:
     第一,以丙烯酸丁酯(BA)、丙烯酸2-乙基己酯(2-EHA)、甲基丙烯酸甲酯(MMA)、丙烯酸(AA)和丙烯酸2-羟乙酯(2-HEA)为聚合单体,以烯丙氧基壬基酚聚氧乙烯(10)醚(ANPEO10)及其硫酸铵盐(DNS-86)作为反应性乳化剂,聚合松香为增粘树脂,采用预乳化半连续种子乳液聚合工艺,制备了聚合松香/丙烯酸酯复合乳液。研究了聚合反应条件、乳化剂用量及配比、聚合松香用量等对乳液聚合及乳胶膜性能的影响,并采用动态光散射纳米激光粒度仪(DLS)、傅里叶红外光谱(FT-IR)、差示扫描量热(DSC)、透射电镜(TEM)和凝胶渗透色谱(GPC)等对其进行了表征。乳液的最佳聚合条件为:反应温度为80℃,KPS用量为0.5wt%,ANPEO10/DNS-86=1:1,乳化剂总量为0.6wt%,聚合松香用量为6wt%。FT-IR表明反应性乳化剂参与了聚合反应,并可有效地将乳胶膜吸水率降至6.7wt%;聚合松香与丙烯酸酯聚合物的相容性良好,但在聚合松香中,残余松香酸分子上的碳碳共轭双键对丙烯酸酯自由基起链转移和阻聚作用,并抑制了丙烯酸酯体系中支化和交联聚合物的形成。
     第二,采用三羟甲基丙烷-三[3-(2-甲基吖丙啶基)]丙酸酯XC-113与甲醚化三聚氰胺甲醛树脂HMMM为固化剂,研究了聚合松香/丙烯酸酯复合乳液的固化条件对压敏胶粘接性能的影响,及固化剂用量与配比对乳胶膜的凝胶率、溶胀度、吸水率和压敏胶粘接性能与耐高温性能的影响。XC-113与HMMM的最佳固化条件分别为110℃/3min和150℃/5min。随着固化剂用量的增加,乳胶膜的凝胶率增大,溶胀度和吸水率减小,压敏胶的初粘力与剥离强度下降,持粘力和耐高温性能提高。XC-113与HMMM协同固化效果更佳,并当XC-113/HMMM=1:2,总用量为1.8wt%时,压敏胶的初粘力为19#钢球,剥离强度为9.0N/25mm,持粘力大于1500min,耐高温性能达到180℃。
     第三,采用氢化丙烯酸松香为增粘树脂,BA、MMA、AA与2-HEA为聚合单体,DNS-86作为乳化剂,通过预乳化半连续原位乳液聚合工艺,制备了稳定的氢化丙烯酸松香/丙烯酸酯复合乳液。研究了聚合反应条件、氢化丙烯酸松香用量与单体配比对乳液聚合和乳胶膜性能的影响,并采用DLS、FT-IR、DSC、GPC、热重分析(TGA)对其进行测试表征。制备乳液的最佳聚合条件是MMA用量为5wt%,DNS-86用量为2wt%,氢化丙烯酸松香用量为5wt%,聚合温度为80℃,乳化液的滴加时间为3h及保温时间为1.5h。氢化丙烯酸松香对单体的最终转化率影响不大,且体系的聚合稳定性较好,当其用量为10wt%时,单体转化率可达98.0wt%,凝聚率仅为0.26wt%;DSC表明氢化丙烯酸松香与丙烯酸酯聚合物的相容性良好,氢化丙烯酸松香的加入使复合乳胶膜的玻璃化转变温度提高。
     第四,以环氧有机硅化合物9301及异氰酸酯HDI的三聚体2102为固化剂,考察了氢化丙烯酸松香/丙烯酸酯复合乳液的固化条件对压敏胶粘接性能的影响,研究了不同固化剂对乳液储存稳定性和压敏胶剥离强度的影响及其用量对乳胶膜微结构与性能的影响。与氮丙啶固化剂SC-100对比发现:2102、9301和SC-100配制的复合乳液使用时间分别控制在6h、12h和48h以内较佳;相同用量下,SC-100对乳胶膜的固化效率最高,固化后乳胶膜的交联密度大,凝胶率高及溶胀度小,9301固化效率最低,但是由于其分子结构中Si-O键的存在,使其固化后乳胶膜的吸水率明显低于2102及SC-100固化的乳胶膜,并使乳胶膜的热分解温度提高。尽管氢化丙烯酸松香可以提高固化后压敏胶的粘接强度,但用量过多可导致聚合物内聚强度降低、本体粘度下降,进而致使压敏胶的耐高温及老化性能差。当氢化丙烯酸松香用量为5wt%,2102用量为2.5wt%时,制备压敏胶的综合性能较佳,剥离强度为9.2N/25mm,耐高温性能达200℃。
Due to its excellent weatherability, environment-friendly, low cost and safety in theprocess of manufacture and use, acrylate emulsion has been widely used in many fields, suchas coatings, adhesives, inks and textile. However, latexes are hydrophilic due to functionalgroups and ionic charges derived from surfactant, initiator, buffer, and functionalcomonomers, and do not easily wet the hydrophobic substrate surfaces. Compared tosolvent-based products, acrylate emulsion has poor water, heat and creep resistance andadhesive properties, especially, it’s hard to adhere to low polar and no polar surfaces whenused as pressure sensitive adhesive (PSA). Therefore, a great challenge is faced to keep thebalance of good adhesive properties, wettability and high temperature resistance, so thatacrylate emulsion can reach the properties of solvent-based products for high-performanceapplication. In this dissertation, rosin derivatives/acrylate composite emulsions were preparedby using reactive surfactant, and rosin derivatives with high softening point as tackifying resin.Then latex films with excellent adhesive properties, creep resistance, high temperatureresistance and water resistance were obtained via curing. Effects of a series of conditions onemulsion polymerization and latex film properties were systematically investigated, andstructures of emulsion and latex film were characterized and analysized. Meanwhile, relevantmechanisms in emulsion polymerization were explored. Main research contents and resultsare listed as following:
     Firstly, stable polymerized rosin/acrylate composite emulsion was successfully preparedby semicontinuous pre-emulsification polymerization using butyl acrylate (BA),2-ethylhexylacrylate (2-EHA) and methyl methacrylate (MMA) as main monomers, acrylic acid (AA) and2-hydroxyethyl acrylate (2-HEA) as functional monomers, allyloxy nonylphenolpolyoxyethylene (10) ether (ANPEO10) and its ammonium sulfate (DNS-86) as reactivesurfactants, and polymerized rosin as tackifying resin. Effects of the polymerizationtechnology, reaction conditions, reactive surfactants content and ratio, polymerized rosincontent on the emulsion polymerization process and latex film properties were studied. Thecomposite emulsion was characterized by dynamic light scattering (DLS), Fourier transforminfrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), gel permeationchromatography (GPC) and transmission electron microscopy (TEM). The results showedthat the optimal polymerization conditions were0.5wt%initiator KPS,0.6wt%surfactantsand ANPEO10/DNS-86=1,6wt%polymerized rosin and reaction temperature80℃. It couldalso be found that the reactive surfactants incorporated in the polymer chain via polymerization reaction, and could effectively reduce water absorption ratio of the latex film;polymerized rosin had good compatibility with acrylate copolymer. However, carbon-carbonconjugated double bonds of the residual rosin acid in polymerized rosin could play the role ofchain transfer and inhibitor, and hence inhibited the formation of branched and crosslinkedpolymer.
     Secondly, polymerized rosin/acrylate composite emulsion was cured by curing agentaziridine (XC-113) and hexahydroxy-methyl melamine resin (HMMM). Effect of curingcondition on adhesive properties of PSAs, and effects of curing agent content and ratio on gelfraction, swelling degree, water absorption ratio, adhesive properties and high temperatureresistance of PSAs were studied. It was found that the optimal curing condition was110℃/3min for XC-113and150℃/5min for HMMM.With the increasing of curing agentcontent, the crosslinking density of PSAs increased, swelling degree, tack and peel strengthdecreased, cohesion strength and high temperature resistance of increased. It was found thatXC-113and HMMM had synergistic effects on curing acrylate composite emulsion. When themass ratio of XC-113/HMMM was1/2and the total content of curing agent was1.8wt%, theball tack, peel strength and shear resistance of PSAs were19#steel ball,9.0N/25mm and morethan1500min, respectively, and high temperature resistance of reached180℃.
     Third, hydrogenated acrylic rosin/acrylate composite emulsion was prepared bysemi-continuous pre-emulsification polymerization using BA and MMA as main monomers,AA and2-HEA as functional monomers, DNS-86as surfactant, and hydrogenated acrylicrosin as tackifying resin. The effects of polymerization conditions, hydrogenated acrylic rosincontent and monomers composition on polymerization process and latex film properties wereinvestigated. The composite emulsion and its latex film were characterized by FT-IR, DLS,DSC, TGA and GPC. The optimal polymerization conditions were5wt%MMA,2wt%DNS-86,3h of feeding time and1.5h of soaking time. Also, hydrogenated acrylic rosin couldobviously improve monomer conversion in the emulsion polymerization of acrylates andincreased the polymerization stability in comparison with polymerized rosin. Whenhydrogenated acrylic rosin content was10wt%, monomer conversion could reach98.0wt%and the coagulum ratio was only0.26wt%. DSC analysis showed that polymerized rosin andpolyacrylate exhibited good compatibility, and the adding of polymerized rosin into acrylatepolymer incrceased the glass transition temperature of composite latex film.
     Fourth, curing conditions of hydrogenated acrylic rosin/acrylate composite emulsion viaepoxy silicone curing agent (9301) and polyisocyanates curing agent (2012) were investigatedand the effects of curing agent content on composite latex film microstructure and properties were studied. Compared to aziridine SC-100, the working life of composite emulsion addedinto2102,9301and SC-100was6h,12h, and48h, respectively; the curing efficiency of thethree curing agent was9301<2102
引文
[1]曹同玉,刘庆普,胡金生.聚合物乳液合成原理、性能及应用[M].第二版.北京:化学工业出版社,2007
    [2] Thickett S. C., Gilbert R. G. Emulsion polymerization: State of the art in kinetics andmechanisms[J]. Polymer,2007,48(24):6965-6991.
    [3] Nomura M., Tobita H., Suzuki K. Emulsion polymerization: Kinetic and mechanisticaspects[J]. Advances in Polymer Science,2005,175:1-128.
    [4] Chern C. S. Emulsion polymerization mechanisms and kinetics[J]. Progress in PolymerScience,2006,31(5):443-486.
    [5] Asua J. M. Emulsion polymerization: From fundamental mechanisms to processdevelopments[J]. Journal of Polymer Science Part A-Polymer Chemistry,2004,42(5):1025-1041.
    [6] Foster A. B., Lovell P. A., Rabjohns M. A. Control of adhesive properties throughstructured particle design of water-borne pressure-sensitive adhesives[J]. Polymer,2009,50(7):1654-1670.
    [7] Wang W., Hutchinson R. A. Free-radical acrylic polymerization kinetics at elevatedtemperatures[J]. Chemical Engineering&Technology,2010,33(11):1745-1753.
    [8] Tauer K., Hernandez H. F. Molecular aspects of radical polymerizations-the propagationfrequency[J]. Macromolecular Rapid Communications,2010,31(5):419-442.
    [9] Hernandez H. F., Tauer K. Radical desorption kinetics in emulsion polymerization I.Theory and simulation[J]. Industrial&Engineering Chemistry Research,2008,47(24):9795-9811.
    [10] Goikoetxea M., Reyes Y., Alarcon C. M. D., et al. Transformation of waterborne hybridpolymer particles into films: Morphology development and modeling[J]. Polymer,2012,53(5):1098-1108.
    [11] Akhmatskaya E., Asua J. M. Dynamic modeling of the morphology of latex particleswith in situ formation of graft copolymer[J]. Journal of Polymer Science Part A-PolymerChemistry,2012,50(7):1383-1393.
    [12] Reyes Y., Lopez A., Asua J. M. Modeling the microstructure of acrylic-polyurethanehybrid polymers synthesized by miniemulsion polymerization[J]. MacromolecularReaction Engineering,2011,5(9-10):352-360.
    [13] Asua J. M., Beuermann S., Buback M., et al. Critically evaluated rate coefficients forfree-radical polymerization5-Propagation rate coefficient for butyl acrylate[J].Macromolecular Chemistry and Physics,2004,205(16):2151-2160.
    [14] Plessis C., Arzamendi G., Leiza J. R., et al. Kinetics and polymer microstructure of theseeded semibatch emulsion copolymerization of n-butyl acrylate and styrene[J].Macromolecules,2001,34(15):5147-5157.
    [15] Gonzalez I., Leiza J. R., Asua J. M. Exploring the limits of branching and gel content inthe emulsion polymerization of n-BA[J]. Macromolecules,2006,39(15):5015-5020.
    [16] Beuermann S. Solvent influence on propagation kinetics in radical polymerizationsstudied by pulsed laser initiated polymerizations[J]. Macromolecular RapidCommunications,2009,30(13):1066-1088.
    [17] Flory P. J. Principles of polymer chemistry[M].15th. New York: Cornell University Press,1992
    [18] Oh J. K. Recent advances in emulsion and in controlled/living radical polymerizationdispersion[J]. Journal of Polymer Science Part A-Polymer Chemistry,2008,46(21):6983-7001.
    [19] Ge J. F., Lu F. J., Ding W. Investigation on the inverse emulsion polymerization ofacrylic acid[J]. Chinese Chemical Letters,2002,13(10):993-996.
    [20] Ouyang L., Wang L. S., Schork F. J. Synthesis and nucleation mechanism of inverseemulsion polymerization of acrylamide by RAFT polymerization: A comparativestudy[J]. Polymer,2011,52(1):63-67.
    [21] Wang X. Y., Liu L., Bai L., et al. Preparation and characterization of carbon aerogelmicrospheres by an inverse emulsion polymerization[J]. Journal of Non-CrystallineSolids,2011,357(3):793-797.
    [22] Capek I. On inverse miniemulsion polymerization of conventional water-solublemonomers[J]. Advances in Colloid and Interface Science,2010,156(1-2):35-61.
    [23] Capek I. Inverse emulsion polymerization of acrylamide initiated by oil andwater-soluble initiators: Effect of emulsifier concentration[J]. Polymer Journal,2004,36(10):793-803.
    [24] Sun J., Yao L., Sun S., et al. Effect of storage condition and aging on AA inverseemulsion surface-grafting polymerization of PET films initiated by atmospheric pressureplasmas[J]. Surface&Coatings Technology,2011,205(8-9):2799-2805.
    [25] Wang J. X., Zhang F., Yu S. P. Investigation on kinetic of inverse emulsionpolymerization of acrylic salt[J]. Abstracts of Papers of the American Chemical Society,2003,226:366
    [26] Armanet L., Hernandez-Barajas J., Hunkeler D. Effect of mixing on inverse-emulsionpolymerization of acrylamide[J]. Abstracts of Papers of the American Chemical Society,1998,216:885
    [27] HernandezBarajas J., Hunkeler D. J. Inverse-emulsion polymerization of acrylamideusing block copolymeric surfactants: Mechanism, kinetics and modelling[J]. Polymer,1997,38(2):437-447.
    [28] Blom H. P., Gauthier M., Li K., et al. Soap-free emulsion polymerization of n-butylacrylate: copolymerization with1,1-(dimethyl)-1-(3-methacryloxyethyl)-1-(sulfo-propyl)ammonium betaine[J]. Journal of Applied Polymer Science,1998,70(2):227-236.
    [29] Ni H. M., Du Y. Z., Ma G. H., et al. Mechanism of soap-free emulsion polymerization ofstyrene and4-vinylpyridine: Characteristics of reaction in the monomer phase, aqueousphase, and their interface[J]. Macromolecules,2001,34(19):6577-6585.
    [30] Yamamoto T., Nakayama M., Kanda Y., et al. Growth mechanism of soap-freepolymerization of styrene investigated by AFM[J]. Journal of Colloid and InterfaceScience,2006,297(1):112-121.
    [31] Wi Y., Lee K., Lee B. H., et al. Soap-free emulsion polymerization of styrene usingpoly(methacrylic acid) macro-RAFT agent[J]. Polymer,2008,49(26):5626-5635.
    [32] Wang H., Pan Q. M., Rempel G. L. Micellar nucleation differential microemulsionpolymerization[J]. European Polymer Journal,2011,47(5):973-980.
    [33] Teo B. M., Ashokkumar M., Grieser F. Microemulsion polymerizations viahigh-frequency ultrasound irradiation[J]. Journal of Physical Chemistry B,2008,112(17):5265-5267.
    [34] Reddy G. V. R., Devi N. G., Panda J. Microemulsion and conventional emulsioncopolymerizations of styrene with methyl methacrylate[J]. Journal of Applied PolymerScience,2007,105(6):3391-3401.
    [35] O'Donnell J., Kaler E. W. Microstructure, kinetics, and transport in oil-in-watermicroemulsion polymerizations[J]. Macromolecular Rapid Communications,2007,28(14):1445-1454.
    [36] Ovando-Medina V. M., Mendizabal E., Peralta R. D. Kinetics modeling ofmicroemulsion copolymerization[J]. Polymer Bulletin,2005,54(1-2):129-140.
    [37] Chow P. Y., Gan L. M. Microemulsion polymerizations and reactions[J]. Advances inPolymer Science,2005,175:257-298.
    [38] Pavel F. M. Microemulsion polymerization[J]. Journal of Dispersion Science andTechnology,2004,25(1):1-16.
    [39] Qiu J., Charleux B., Matyjaszewski K. Controlled/living radical polymerization inaqueous media: Homogeneous and heterogeneous systems[J]. Progress in PolymerScience,2001,26(10):2083-2134.
    [40] Min K., Gao H. F., Matyjaszewski K. Preparation of homopolymers and blockcopolymers in miniemulsion by ATRP using activators generated by electron transfer(AGET)[J]. Journal of the American Chemical Society,2005,127(11):3825-3830.
    [41] Oh J. K., Tang C. B., Gao H. F., et al. Inverse miniemulsion ATRP: A new method forsynthesis and functionalization of well-defined water-soluble/cross-linked polymericparticles[J]. Journal of the American Chemical Society,2006,128(16):5578-5584.
    [42] Wang H. S., Dong X. C., Yang M. X. Development of separation materials usingcontrolled/living radical polymerization[J]. Trac-Trends in Analytical Chemistry,2012,31:96-108.
    [43] Tu Y. F., Cheng Z. P., Zhang Z. B., et al. Mechanism study and molecular design incontrolled/"living" radical polymerization[J]. Science China-Chemistry,2010,53(8):1605-1619.
    [44] Matyjaszewski K. Macromolecular engineering by controlled/living ionic and radicalpolymerizations[J]. Macromolecular Symposia,2001,174:51-67.
    [45] Zetterlund P. B. Controlled/living radical polymerization in nanoreactors:Compartmentalization effects[J]. Polymer Chemistry,2011,2(3):534-549.
    [46] Yoshida E. Nitroxide-mediated photo-controlled/living radical polymerization of ethylacrylate[J]. Colloid and Polymer Science,2011,289(10):1127-1132.
    [47] Kanazawa A., Satoh K., Kamigaito M. Iron oxides as heterogeneous catalysts forcontrolled/living radical polymerization of styrene and methyl methacrylate[J].Macromolecules,2011,44(7):1927-1933.
    [48] Tizzotti M., Charlot A., Fleury E., et al. Modification of polysaccharides throughcontrolled/living radical polymerization grafting-towards the generation of highperformance hybrids[J]. Macromolecular Rapid Communications,2010,31(20):1751-1772.
    [49] Tobita H. Modeling controlled/living radical polymerization kinetics: Bulk andminiemulsion[J]. Macromolecular Reaction Engineering,2010,4(11-12):643-662.
    [50] Rieger J., Osterwinter G., Bui C. O., et al. Surfactant-free controlled/living radicalemulsion (co)polymerization of n-butyl acrylate and methyl methacrylate via RAFTusing amphiphilic poly(ethylene oxide)-based trithiocarbonate chain transfer agents[J].Macromolecules,2009,42(15):5518-5525.
    [51] Dire C., Magnet S., Couvreur L., et al. Nitroxide-mediated controlled/living free-radicalsurfactant-free emulsion polymerization of methyl methacrylate using a poly(methacrylicacid)-based macroalkoxyamine initiator[J]. Macromolecules,2009,42(1):95-103.
    [52] Bar-Nes G., Hall R., Sharma V., et al. Controlled/living radical polymerization ofisoprene and butadiene in emulsion[J]. European Polymer Journal,2009,45(11):3149-3163.
    [53] Ferguson C. J., Hughes R. J., Nguyen D., et al. Ab initio emulsion polymerization byRAFT-controlled self-assembly[J]. Macromolecules,2005,38(6):2191-2204.
    [54] Bouvier-Fontes L., Pirri R., Asua J. A., et al. Seeded semicontinuous emulsioncopolymerization of butyl acrylate with cross-linkers[J]. Macromolecules,2005,38(4):1164-1171.
    [55] Konwer S., Barthakur L. J., Dolui S. K. Synthesis of graphite incorporated core-shellcomposite of styrene-methylacrylate/polyaniline by surfactant free mini-emulsionpolymerization and evaluation of their electrical property[J]. Journal of MaterialsScience-Materials in Electronics,2012,23(4):837-845.
    [56] Fei G. Q., Wang H. H., Li X. R., et al. Rheology, mechanical, and thermal properties ofcore-shell silicon-acrylic copolymer emulsion films and its application on surface sizing:Role of silane coupling agent[J]. Polymer Bulletin,2011,67(6):1017-1028.
    [57] Kowalczyk A., Kowalczyk K., Czech Z. Synthesis and properties of solid structuraladhesives modified in-situ using1D and2D-type microfillers[J]. International Journal ofAdhesion and Adhesives,2012,32:76-81.
    [58] Xie L., Shao Z. Q., Wang H. Q., et al. Polymerization of acrylamide inversemicroemulsion initiated directly by UV radiation[J]. E-Polymers,2011.
    [59] Cheng X. L., Chen Z. X., Shi T. S., et al. Synthesis and characterization of core-shellLIPN-fluorine-containing polyacrylate latex[J]. Colloids and Surfaces A-Physico-chemical and Engineering Aspects,2007,292(2-3):119-124.
    [60]任天瑞,李永红.松香化学及其应用[M].北京:化学工业出版社,2007.
    [61]宋湛谦.松香的精细化工利用(II)松香的组成与性质[J].林产化工通讯,2002,36(4):29-33.
    [62] Sadhra S., Gray C. N., Foulds I. S. High-performance liquid chromatography ofunmodified rosin and its applications in contact dermatology[J]. Journal ofChromatography B,1997,700(1-2):101-110.
    [63] Lin Q. L., Su W., Xie Y. Effect of rosin to coal-tar pitch on carbonization behavior andoptical texture of resultant semi-cokes[J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):8-13.
    [64] Sadhra S., Foulds I. S., Gray C. N. Oxidation of resin acids in colophony (rosin) and itsimplications for patch testing[J]. Contact Dermatitis,1998,39(2):58-63.
    [65] Gaillard Y., Mija A., Burr A., et al. Green material composites from renewable resources:Polymorphic transitions and phase diagram of beeswax/rosin resin[J]. ThermochimicaActa,2011,521(1-2):90-97.
    [66] Atta A. M., Elsaeed A. M. Use of rosin-based nonionic surfactants as petroleum crude oilsludge dispersants[J]. Journal of Applied Polymer Science,2011,122(1):183-192.
    [67] Li L., Yu S. T., Liu F. S., et al. Bo33-/ZrO2/Mo-MCM-41mesoporous molecular sieve ascatalyst for dimerization of rosin in supercritical CO2[J]. Catalysis Communications,2007,8(4):719-724.
    [68] Liu S. W., Xie C. X., Yu S. T., et al. Dimerization of rosin using bronsted-lewis acidicionic liquid as catalyst[J]. Catalysis Communications,2008,9(10):2030-2034.
    [69] Liu X. Q., Li C. C., Zhang D., et al. Melting behaviors, crystallization kinetics, andspherulitic morphologies of poly(butylene succinate) and its copolyester modified withrosin maleopimaric acid anhydride[J]. Journal of Polymer Science Part B-PolymerPhysics,2006,44(6):900-913.
    [70] Bei M. P., Baranovskii A. V., Yuvchenko A. P. Structure of a rosin-itaconic acid adductfrom2D NMR spectroscopy data[J]. Journal of Applied Spectroscopy,2009,76(4):603-606.
    [71] Bicu A., Mustata F. Polymers from a levopimaric acid-acrylonitrile diels-alder adduct:Synthesis and characterization[J]. Journal of Polymer Science Part A-Polymer Chemistry,2005,43(24):6308-6322.
    [72] Takigawa T. Manufacture of resin varnish for printing ink, involves thermally reactingrosin modified phenol resin and resol type phenol resin and/or low molecular weightpolyfunctional acrylate in presence of printing ink solvent[P]. JP2005154704-A,2005
    [73] Nie Y. M., Yao X. D., Lei F. H. Sonochemical synthesis of maleated rosin[J]. ChineseJournal of Chemical Engineering,2008,16(3):365-368.
    [74] Bicu I., Mustata F. Polymers from a levopimaric acid-acrylic acid diels-alder adduct:Synthesis and characterization[J]. Journal of Polymer Science Part A-Polymer Chemistry,2007,45(24):5979-5990.
    [75] Bicu I., Mustata F. Ketone derivatives of diels-alder adducts of levopimaric acid withacrylic acid and maleic anhydride: Synthesis, characterization, and polymerization[J].Journal of Applied Polymer Science,2004,92(4):2240-2252.
    [76] Souto J. C., Yustos P., Ladero M., et al. Disproportionation of rosin on an industrial Pd/Ccatalyst: Reaction pathway and kinetic model discrimination[J]. Bioresource Technology,2011,102(3):3504-3511.
    [77] Wang L. L., Chen X. P., Liang J. Z., et al. Kinetics of the catalytic isomerization anddisproportionation of rosin over carbon-supported palladium[J]. Chemical EngineeringJournal,2009,152(1):242-250.
    [78] Mustata F., Bicu I. Hydroxyesters of resin acids modified witho-cresol/p-nonylphenol/formaldehyde resins[J]. Polimery,2009,54(9):627-634.
    [79] Atta Ayman M., Mansour R., Abdou Mahmoud I., et al. Epoxy resins from rosin acids:Synthesis and characterization[J]. Polymers for Advanced Technologies,2004,15(9):514-522.
    [80] Atta A. M., Abdel-Rauf M. E., Maysour N. E., et al. Water-based oil spill dispersantsbased on rosin formaldehyde resins[J]. Journal of Dispersion Science and Technology,2010,31(5):583-595.
    [81] Zheng Y. J., Yao K. J., Lee J., et al. Well-defined renewable polymers derived from gumrosin[J]. Macromolecules,2010,43(14):5922-5924.
    [82] Ladero M., de Gracia M., Tamayo J. J., et al. Kinetic modelling of the esterificatiion ofrosin and glycerol: Application to industrial operation[J]. Chemical Engineering Journal,2011,169(1-3):319-328.
    [83] Nande V. S., Barabde U. V., Morkhade D. M., et al. Synthesis and characterization ofpegylated derivatives of rosin for sustained drug delivery[J]. Reactive&FunctionalPolymers,2006,66(11):1373-1383.
    [84] Atta A. M., El-Saeed S. M., Farag R. K. New vinyl ester resins based on rosin forcoating applications[J]. Reactive&Functional Polymers,2006,66(12):1596-1608.
    [85] Barabde U. V., Fulzele S. V., Satturwar P. M., et al. Film coating and biodegradationstudies of new rosin derivative[J]. Reactive&Functional Polymers,2005,62(3):241-248.
    [86] Chen S. P., Weng J. Z., Liu H. G., et al. Effects of structures of the polymeric surfactantson the properties of cationc rosin emulsions[A].3rdInternational Symposium onEmerging Technologies of Pulping and Papermaking[C].Guangzhou:2006,440-443.
    [87] Tian P. F., Liu W. X. Formation and stability of rosin pickering emulsions[A].2ndInternational Papermaking and Environment Conference[C]. Tianjin:2008,739-742.
    [88] Kim B. J., Kim S. E., Do H. S., et al. Probe tack of tackified acrylic emulsion PSAs[J].International Journal of Adhesion and Adhesives,2007,27(2):102-107.
    [89] Kim B. J., Kim S., Kim S. E., et al. Viscoelastic properties and peel strength ofwater-borne acrylic PSAs for labels[J]. Journal of Adhesion Science and Technology,2007,21(2):109-123.
    [90] Mallegol J., Bennett G., McDonald P. J., et al. Skin development during the filmformation of waterborne acrylic pressure-sensitive adhesives containing tackifyingresin[J]. Journal of Adhesion,2006,82(3):217-238.
    [91] Jeusette M., Peeterbroeck S., Simal F., et al. Microscopic morphology of blends betweena new "all-acrylate" radial block copolymer and a rosin ester resin for pressure sensitiveadhesives[J]. European Polymer Journal,2008,44(12):3931-3940.
    [92] Tobing S. D., Klein A. Mechanistic studies in tackified acrylic emulsion pressuresensitive adhesives[J]. Journal of Applied Polymer Science,2000,76(13):1965-1976.
    [93] Tobing S., Klein A., Sperling L. H., et al. Effect of network morphology on adhesiveperformance in emulsion blends of acrylic pressure sensitive adhesives[J]. Journal ofApplied Polymer Science,2001,81(9):2109-2117.
    [94] Tobing S. D., Klein A. Molecular parameters and their relation to the adhesiveperformance of acrylic pressure-sensitive adhesives[J]. Journal of Applied PolymerScience,2001,79(12):2230-2244.
    [95] Tobing S. D., Klein A. Molecular parameters and their relation to the adhesiveperformance of emulsion acrylic pressure-sensitive adhesives II. Effect of crosslinking[J].Journal of Applied Polymer Science,2001,79(14):2558-2564.
    [96] Xu J. F., Hu H. R. Preparation and characterization of styrene acrylate emulsion surfacesizing agent modified with rosin[J]. Journal of Applied Polymer Science,2012,123(1):611-616.
    [97] Canetta E., Marchal J., Lei C. H., et al. A comparison of tackified, miniemulsioncore-shell acrylic latex films with corresponding particle-blend films: Structure-propertyrelationships[J]. Langmuir,2009,25(18):11021-11031.
    [98]林明涛,蒋煜,储富祥.松香/丙烯酸系复合高分子乳液的制备及性能研究[J].林产化学与工业,2002,22(2):17-20.
    [99] Lin M. T., Wang J. F., Chu F, X., et al. Study on preparation of disproportionated-rosin/acrylate hybrid latex by miniemulsion polymerization[J]. Linchan Huaxue YuGongye/Chemistry and Industry of Forest Products,2005,25(SUPPL.):47-50.
    [100]林明涛,储富祥,马丽.基于松香基的交联单体及甲基丙烯酸甲酯共聚物的制备与性能研究[J].林产化学与工业,2007,27(5):25-30.
    [101]林明涛,王基夫,储富祥,等.细乳液聚合制备松香/丙烯酸酯复合高分子新材料的研究[J].林业科学,2006,42(10):95-100.
    [102]林明涛.松香/丙烯酸酯复合高分子乳液的制备、结构与性能的研究[D].南京:中国林业科学研究院,2007.
    [103]王春鹏,林明涛,王基夫,等.含松香衍生物的乳液压敏胶的制备及性能分析[J].高分子材料科学与工程,2009,25(9):24-28.
    [104]王基夫,林明涛,刘美虹,等.可聚合松香增黏树脂的合成及其对压敏胶性能的影响[J].中国胶粘剂,2011,20(8):21-22.
    [105]刘丹丹.聚合松香改性丙烯酸酯微乳液的制备与表征[D].广州:华南理工大学,2011.
    [106]刘晓丹,曾幸荣,林晓丹,等.松香衍生物-丙烯酸酯共聚乳液的制备与性能研究[J].中国胶粘剂,2011,20(9):33-37.
    [107]李小兰,曾幸荣,李红强,等.氢化丙烯酸松香/丙烯酸酯复合乳液的制备及压敏胶性能[J].化学与黏合,2012,34(2):23-25.
    [108]杨玉昆,吕凤亭.压敏胶制品技术手册[M].北京:化学工业出版社,2004.
    [109] Fonseca G. E., McKenna T. F., Dube M. A. Miniemulsion vs. conventional emulsionpolymerization for pressure-sensitive adhesives production[J]. Chemical EngineeringScience,2010,65(9):2797-2810.
    [110]张爱清.压敏胶粘剂[M].北京:化学工业出版社,2002.
    [111]李子广,李广宇,于敏.现代胶粘技术手册[M].北京:新时代出版社,2002.
    [112] Khan I., Poh B. T. Natural rubber-based pressure-sensitive adhesives: A review[J].Journal of Polymers and the Environment,2011,19(3):793-811.
    [113] Sakayanagi M., Konda Y., Watanabe K., et al. Identification of pressure-sensitiveadhesive polypropylene tape[J]. Journal of Forensic Sciences,2003,48(1):68-76.
    [114] Kumooka Y. Classification of OPP adhesive tapes according to MALDI mass spectra ofadhesives[J]. Forensic Science International,2010,197(1-3):75-79.
    [115] David G., Negrell-Guirao C., Iftene F., et al. Recent progress on phosphonate vinylmonomers and polymers therefore obtained by radical (co)polymerization[J]. PolymerChemistry,2012,3(2):265-274.
    [116] Kakwere H., Perrier S. Design of complex polymeric architectures and nanostructuredmaterials/hybrids by living radical polymerization of hydroxylated monomers[J].Polymer Chemistry,2011,2(2):270-288.
    [117] Ikemura K., Endo T. A review of our development of dental adhesives-effects of radicalpolymerization initiators and adhesive monomers on adhesion[J]. Dental MaterialsJournal,2010,29(2):109-121.
    [118] Rodriguez R., Alarcon C. D., Ekanayake P., et al. Correlation of silicone incorporationinto hybrid acrylic coatings with the resulting hydrophobic and thermal properties[J].Macromolecules,2008,41(22):8537-8546.
    [119] Feng X. P., Zhong A. Y., Chen D. B. Preparation and properties ofpoly(silicone-co-acrylate)/montmorillonite nanocomposite emulsion[J]. Journal ofApplied Polymer Science,2006,101(6):3963-3970.
    [120] Yuan J. J., Gu G. X., Zhou S. X., et al. Preparation and characterization ofsilicone-grafted styrene-butyl acrylate latex copolymer[J]. High Performance Polymers,2004,16(1):69-80.
    [121]毛胜华,王海侨,邓康清,等.保护膜用有机硅改性丙烯酸酯乳液压敏胶的研究[J].粘接,2009,(7):46-48.
    [122]刘亚楠,魏铭.硅烷偶联剂改性丙烯酸酯乳液的合成及表征[J].涂料工业,2012,42(1):1-4.
    [123]宁伟,高建宾,屈小红,等.玻璃窗膜用丙烯酸酯/ATO隔热压敏胶的性能研究[J].中国胶粘剂,2010,19(12):31-34.
    [124] Zhou J. H., Zhang L., Ma J. Z. Synthesis and properties of nano-SiO2/polysiloxanemodified polyacrylate emulsifier-free emulsion[J]. Polymer-Plastics Technology andEngineering,2011,50(1):15-19.
    [125] Capek I., Kocsisova T. On the preparation of composite poly(butyl acrylate)/carbonnanotube nanoparticles by miniemulsion polymerization of butyl acrylate[J]. PolymerJournal,2011,43(8):700-707.
    [126] Bourgeat-Lami E., Lansalot M. Organic/inorganic composite latexes: The marriage ofemulsion polymerization and inorganic chemistry[J].Advances in Polymer Science2010,233:53-123.
    [127] Zhang F. A., Chen L., Ma J. Q. Effects of hydrophilic monomer types onpoly(styrene-acrylate)/montmorillonite nanocomposites made by in-site emulsionpolymerization[J]. Polymers for Advanced Technologies,2009,20(6):589-594.
    [128] Wang T., Colver P. J., Bon S. A. F., et al. Soft polymer and nano-clay supracolloidalparticles in adhesives: Synergistic effects on mechanical properties[J]. Soft Matter,2009,5(20):3842-3849.
    [129] Kajtna J., Sebenik U. Microsphere pressure sensitive adhesives-acrylicpolymer/montmorillonite clay nanocomposite materials[J]. International Journal ofAdhesion and Adhesives,2009,29(5):543-550.
    [130] Wang T., Lei C. H., Liu D., et al. A molecular mechanism for toughening andstrengthening waterborne nanocomposites[J]. Advanced Materials,2008,20(1):90-94.
    [131] Wang T., Lei C. H., Dalton A. B., et al. Waterborne nanocomposite pressure-sensitiveadhesives: Achieving enhanced adhesion combined with electrical conductivity[J].Abstracts of Papers of the American Chemical Society,2007,233.
    [132] Capek I., Kocsisova T. On the preparation of composite poly(butyl acrylate)/carbonnanotube nanoparticles by miniemulsion polymerization of butyl acrylate[J]. PolymerJournal,2011,43(8):700-707.
    [133] Quan Y., Yang M. S., Liang T. X., et al. Effects of the reinforcement and toughening ofacrylate resin/CaCO3nanoparticles on rigid poly(vinyl chloride)[J]. Journal of AppliedPolymer Science,2007,103(6):3940-3949.
    [134] Wang T., Lei C. H., Dalton A. B., et al. Waterborne, nanocomposite pressure-sensitiveadhesives with high tack energy, optical transparency, and electrical conductivity[J].Advanced Materials,2006,18(20):2730-2734.
    [135] Donescu D., Corobea M. C., Capek I., et al. Synthesis and characterization ofpolystyrene, poly(butyl acrylate)-layered silicates nanocomposites by polymerization inanionic microemulsions[J]. Journal of Dispersion Science and Technology,2009,30(2):166-173.
    [136] Ramos-Fernandez J. M., Guillem C., Lopez-Buendia A., et al. Synthesis ofpoly-(BA-co-MMA) latexes filled with SiO2for coating in construction applications[J].Progress in Organic Coatings,2011,72(3):438-442.
    [137] Vandervorst P., Lei C. H., Lin Y., et al. The fine dispersion of functionalized carbonnanotubes in acrylic latex coatings[J]. Progress in Organic Coatings,2006,57(2):91-97.
    [138] Liu Y. Y., Lo M. Y., Chen H. Characterization of monodisperse copolymersubmicrospheres with branched structures and different glass-transition temperaturesprepared by soap-free emulsion polymerization[J]. Journal of Applied Polymer Science,2011,120(5):2945-2953.
    [139]Yan R., Zhang Y. Y., Wang X. H., et al. Synthesis of porous poly(styrene-co-acrylic acid)microspheres through one-step soap-free emulsion polymerization: Whys andwherefores[J]. Journal of Colloid and Interface Science,2012,(368):220-225.
    [140] Nagao D., Ueno T., Oda D., et al. Size control of polystyrene nodules formed on silicaparticles in soap-free emulsion polymerization with amphoteric initiator[J]. Colloid andPolymer Science,2009,287(9):1051-1056.
    [141] Nagao D., Hashimoto M., Hayasaka K., et al. Synthesis of anisotropic polymer particleswith soap-free emulsion polymerization in the presence of a reactive silane couplingagent[J]. Macromolecular Rapid Communications,2008,29(17):1484-1488.
    [142] Asua J. M., Schoonbrood H. A. S. Reactive surfactants in heterophasepolymerization[J]. Acta Polymerica,1998,49(12):671-686.
    [143] Czech Z. Synthesis of removable and repositionable water-borne pressure-sensitiveadhesive acrylics[J]. Journal of Applied Polymer Science,2005,97(3):886-892.
    [144] Aramendia E., Mallegol J., Jeynes C., et al. Distribution of surfactants near acrylic latexfilm surfaces: A comparison of conventional and reactive surfactants (surfmers)[J].Langmuir,2003,19(8):3212-3221.
    [145] Lopez A., Degrandi-Contraires E., Canetta E., et al. Waterborne polyurethane-acrylichybrid nanoparticles by miniemulsion polymerization: Applications inpressure-sensitive adhesives[J]. Langmuir,2011,27(7):3878-3888.
    [146] Daniloska V., Tomovska R., Asua J. M. Hybrid miniemulsion photopolymerization in acontinuous tubular reactor-a way to expand the characteristics ofpolyurethane/acrylics[J]. Chemical Engineering Journal,2012,(184):308-314.
    [147] Lopez A., Degrandi E., Canetta E., et al. Simultaneous free radical and additionminiemulsion polymerization: Effect of the diol on the microstructure ofpolyurethane-acrylic PSAs[J]. Polymer,2011,52(14):3021-3030.
    [148] Athawale V. D., Kulkarni M. A. Preparation and properties of urethane/acrylatecomposite by emulsion polymerization technique[J]. Progress in Organic Coatings,2009,65(3):392-400.
    [149] Zhang H. T., Duan L. L., Chen L., et al. Stability and copolymerization of concentratedemulsion of styrene and butyl acrylate in the presence of polyurethanemacromonomer[J]. Journal of Applied Polymer Science,2007,103(3):1992-1999.
    [150] Zhang X. Y., Sun Z. J., Huang H., et al. Synthesis and properties of acrylate latexmodified by vinyl alkoxy siloxane[J]. Journal of Central South University ofTechnology,2007,14(5):666-672.
    [151] Udagama R., Degrandi-Contraires E., Creton C., et al. Synthesis ofacrylic-polyurethane hybrid latexes by miniemulsion polymerization and theirpressure-sensitive adhesive applications[J]. Macromolecules,2011,44(8):2632-2642.
    [152] Bouvier-Fontes L., Pirri R., Arzamendi G., et al. Branching and crosslinking inemulsion polymerization[J]. Macromolecular Symposia,2004,206:149-164.
    [153] Bouvier-Fontes L., Pirri R., Asua J. M., et al. Cross-linking emulsion copolymerizationof butyl acrylate with diallyl maleate[J]. Journal of Polymer Science Part A-PolymerChemistry,2005,43(20):4684-4694.
    [154] Bouvier-Fontes L., Pirri R., Magnet S., et al. Effect of the diacrylate ester size on thesemicontinuous cross-linking emulsion copolymerization of BA[J]. Macromolecules,2005,38(7):2722-2728.
    [155] Qie L., Dube M. A. Manipulation of chain transfer agent and cross-linker concentrationto modify latex micro-structure for pressure-sensitive adhesives[J]. European PolymerJournal,2010,46(6):1225-1236.
    [156] Kajtna J., Golob J., Krajnc M. The effect of polymer molecular weight and crosslinkingreactions on the adhesion properties of microsphere water-based acrylicpressure-sensitive adhesives[J]. International Journal of Adhesion and Adhesives,2009,29(2):186-194.
    [157] Kessel N., Illsley D. R., Keddie J. L. The diacetone acrylamide crosslinking reactionand its influence on the film formation of an acrylic latex[J]. Journal of CoatingsTechnology and Research,2008,5(3):285-297.
    [158] Czech Z. Crosslinking of pressure sensitive adhesive based on water-borne acrylate[J].Polymer International,2003,52(3):347-357.
    [159] Park Y. J., Lim D. H., Kim H. J., et al. UV and thermal-curing behaviors of dual-curableadhesives based on epoxy acrylate oligomers[J]. International Journal of Adhesion andAdhesives,2009,29(7):710-717.
    [160] Kim Y. B., Park S. C., Kim H. K., et al. Dual-curable acrylic pressure-sensitiveadhesives based on UV and thermal processes[J]. Macromolecular Research,2008,16(2):128-133.
    [161] Decker C., Masson F., Schwalm R. Dual-curing of waterborne urethane-acrylatecoatings by UV and thermal processing[J]. Macromolecular Materials and Engineering,2003,288(1):17-28.
    [162] Suzuki T., Issaris S, A, Thys E., et al. Pressure-sensitive adhesive tape useful in dicingsemiconductor wafer comprises base polymer of acrylic copolymer having carboxylgroup, and isocyanate type, glycidylamine type, and melamine type crosslinkingagents[P]. JP2005136298-A,2005
    [163]冯小平,李胜华,何伟,等.交联剂对保护膜用丙烯酸酯乳液压敏胶性能的影响[J].粘接,2010,(9):59-62.
    [164]毛胜华,姚小龙,冯小平,等.保护膜用高剥离力丙烯酸酯乳液压敏胶的研制[J].化学与黏合,2009,31(4):47-50.
    [165]何敏,张秋禹,国际英,等.表面保护胶带用聚丙烯酸酯乳液压敏胶的研究[J].中国胶粘剂,2007,16(5):31-35.
    [166]周波.保护膜用乳液压敏胶的研究和应用[D].南京:南京林业大学,2009.
    [167]李小花.水性丙烯酸酯压敏胶的制备及其应用研究[D].广州:华南理工大学,2010.
    [168] Zhu A. P., Chen R., Yuan L. H. Effect of colophony emulsion on the adhesive propertiesof vinyl acetate/n-butyl acrylate copolymeric latex[J]. Journal of Applied PolymerScience,2008,107(1):629-635.
    [169] Chaiyasat A., Yamada M., Kobayashi H., et al. Incorporation of nonionic emulsifiersinside styrene-methacrylic acid copolymer particles during emulsioncopolyrnerization[J]. Polymer,2008,49(13-14):3042-3047.
    [170] Xiao X. Y., Xu R. Preparation and surface properties of core-shell polyacrylate latexcontaining fluorine and silicon in the shell[J]. Journal of Applied Polymer Science,2011,119(3):1576-1585.
    [171] Enriquez-Medrano F. J., Guerrero-Santos R., Hernandez-Valdez M., et al. Synthesis ofdiblock and triblock copolymers from BA and St by reverse iodine transferpolymerization[J]. Journal of Applied Polymer Science,2011,119(4):2476-2484.
    [172] Fonseca G. E., McKenna T. F. L., Dube M. A. Preparation of stable miniemulsions ofpoly(2-EHA-co-VAc)[J]. Macromolecular Symposia,2010,289:72-85.
    [173] Nakamura Y., Sakai Y., Imamura K., et al. Effects of the compatibility of a polyacrylicblock copolymer/tackifier blend on the phase structure and tack of a pressure-sensitiveadhesive[J]. Journal of Applied Polymer Science,2012,123(5):2883-2893.
    [174] Mess A., Vietzke J. P., Rapp C., et al. Qualitative analysis of tackifier resins in pressuresensitive adhesives using direct analysis in real time time-of-flight massspectrometry[J]. Analytical Chemistry,2011,83(19):7323-7330.
    [175] Sasaki M., Fujita K., Adachi M., et al. The effect of tackifier on phase structure andpeel adhesion of a triblock copolymer pressure-sensitive adhesive[J]. InternationalJournal of Adhesion and Adhesives,2008,28(7):372-381.
    [176] Hayashi S., Kim H. J., Kajiyama M., et al. Miscibility and pressure-sensitive adhesiveperformances of acrylic copolymer and hydrogenated rosin systems[J]. Journal ofApplied Polymer Science,1999,71(4):651-663.
    [177] Lee J. S., Hong S. I. Synthesis of acrylic rosin derivatives and application as negativephotoresist[J]. European Polymer Journal,2002,38(2):387-392.
    [178]潘祖仁.高分子化学[M].增强版,北京:化学工业出版社,2007
    [179] Hua H., Dube M. A. Terpolymerization monitoring with ATR-FTIR spectroscopy[J].Journal of Polymer Science Part A-Polymer Chemistry,2001,39(11):1860-1876.
    [180]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.
    [181] Plessis C., Arzamendi G., Leiza J. R., et al. Seeded semibatch emulsion polymerizationof BA: Effect of the chain-transfer agent on the kinetics and structural properties[J].Journal of Polymer Science Part A-Polymer Chemistry,2001,39(7):1106-1119.
    [182] Czech Z., Kowalczyk A., Kabatc J., et al. Influence of selected photoinitiators type ontack, peel adhesion and shear strength of UV-crosslinked solvent-borne acrylicpressure-sensitive adhesives used for medical applications[J]. Polymer Bulletin,2012,68(2):441-452.
    [183] Zhang X. W., Ding Y. T., Zhang G. L., et al. Preparation and rheological studies on thesolvent based acrylic pressure sensitive adhesives with different crosslinking density[J].International Journal of Adhesion and Adhesives,2011,31(7):760-766.
    [184] Taghizadeh S. M., Ghasemi D. Rheological and adhesion properties of acrylic PSAs[J].Journal of Applied Polymer Science,2011,120(1):411-418.
    [185] Taghizadeh S. M., Mirzadeh H., Barikani M., et al. Miscibility and tack of blends ofpoly (vinylpyrrolidone)/acrylic pressure-sensitive adhesive[J]. International Journal ofAdhesion and Adhesives,2009,29(3):302-308.
    [186] Czech Z. Crosslinkable propyleneimine pressure-sensitive adhesive acrylates and theirpot life[J]. Polymers for Advanced Technologies,2004,15(9):539-543.
    [187] Kajtna J., Krajnc M. Solvent less UV crosslinkable acrylic pressure sensitiveadhesives[J]. International Journal of Adhesion and Adhesives,2011,31(8):822-831.
    [188] Czech Z., Butwin A., Gluch U., et al. Influence of selected photoinitiators on importantproperties of photoreactive acrylic pressure-sensitive adhesives[J]. Journal of AppliedPolymer Science,2012,123(1):118-123.
    [189] Park J. W., Lee S. W., Yoo Y. M., et al. Evaluation of UV-curability of photo-curablematerials for acid free pressure sensitive adhesive[J]. Journal of Photopolymer Scienceand Technology,2011,24(5):553-560.
    [190] Qie L. L., Dube M. A. Influence of polymer microstructure on the performance ofpost-treated latex-based pressure sensitive adhesives[J]. Journal of Applied PolymerScience,2012,124(1):349-364.
    [191] Fonseca G. E., McKenna T. F., Dube M. A. Influence of particle nucleation in pressuresensitive adhesive properties: Miniemulsion versus emulsion polymerization[J].Macromolecular Symposia,2008,271:83-93.
    [192] Qie L. L., Dube M. A. Manipulating latex polymer microstructure using chain transferagent and cross-linker to modify PSA performance and viscoelasticity[J].Macromolecular Reaction Engineering,2011,5(2):117-128.
    [193] Suzuki S., Kikuchi K., Suzuki A., et al. Effect of chain transfer agents on the kineticsand mechanism of particle nucleation in the emulsion polymerization of vinylpivalate[J]. Colloid and Polymer Science,2007,285(5):523-534.
    [194] Krishnan S., Klein A., El-Aasser M. S., et al. Influence of chain transfer agent on thecross-linking of poly(n-butyl methaerylate-co-n-methylol acrylamide) latex particlesand films[J]. Macromolecules,2003,36(10):3511-3518.
    [195]余樟清,李伯耿,潘祖仁.涂料用可交联聚丙烯酸酯乳液的研究进展[J].高分子通报,1999,(2):22-30.
    [196] Czech Z. Development of solvent-free pressure-sensitive adhesive acrylics[J].International Journal of Adhesion and Adhesives,2004,24(2):119-125.
    [197]何曼君,陈维孝,董西侠.高分子物理[M].修订版,上海:复旦大学出版社,2002.
    [198] Gonzalez I., Asua J. A., Leiza J. R. The role of methyl methacrylate on branching andgel formation in the emulsion copolymerization of BA/MMA[J]. Polymer,2007,48(9):2542-2547.
    [199] Gonzalez I., Paulis M., de la Cal J. C., et al. Kinetic and microstructural study of thecontinuous emulsion polymerization of an all-acrylics formulation in the loop reactor[J].Chemical Engineering Journal,2008,142(2):199-208.
    [200] Plessis C., Arzamendi G., Alberdi J. M., et al. Intramolecular chain transfer to polymerin the emulsion polymerization of2-ethylhexyl acrylate[J]. Macromolecules,2001,34(17):6138-6143.
    [201] Plessis C., Arzamendi G., Leiza J. R., et al. Seeded semibatch emulsion polymerizationof n-butyl acrylate. Kinetics and structural properties[J]. Macromolecules,2000,33(14):5041-5047.
    [202]沈涵孜.乳液型丙烯酸酯压敏胶粘剂的制备及性能研究[D].天津:河北工业大学,2007.
    [203] Drzal P. L., Shull K. R. Adhesive failure of model acrylic pressure sensitiveadhesives[J]. Journal of Adhesion,2005,81(3-4):397-415.
    [204] Sosson F., Chateauminois A., Creton C. Investigation of shear failure mechanisms ofpressure-sensitive adhesives[J]. Journal of Polymer Science Part B-Polymer Physics,2005,43(22):3316-3330.
    [205]赖婉婷,傅和青,蓝仁华.耐高温丙烯酸酯压敏胶的研制[J].中国胶粘剂,2010,19(8):23-26
    [206]何敏,张秋禹,程金奎,等.保护膜用耐高温溶剂型丙烯酸酯压敏胶的研究[J].中国胶粘剂,2006,15(12):35-38.
    [207] Liu Z. G., Han Y., Zhou C., et al. Seeded emulsion polymerization of butyl acrylateusing a redox initiator system: Kinetics and mechanism[J]. Industrial&EngineeringChemistry Research,2010,49(16):7152-7158.
    [208] Kohut-Svelko N., Pirri R., Asua J. M., et al. Redox initiator systems for emulsionpolymerization of acrylates[J]. Journal of Polymer Science Part A-Polymer Chemistry,2009,47(11):2917-2927.
    [209] Essawy H. A., Youssef A. M., Abd El-Hakim A. A., et al. Exfoliation of kaolinitenanolayers in PMMA using redox initiator system involving intercalating component[J].Polymer-Plastics Technology and Engineering,2009,48(2):177-184.
    [210] Qin R. X., Huang P. X., Liu X. M., et al. Studies on the kinetics of thermal oxidation ofrosin and abietic acid on the polyethylene film[J]. Chemical Journal of ChineseUniversities-Chinese,2009,30(5):954-958.
    [211] Liu X. M., Qin R. X., Huang P. X., et al. Oxidation reaction kinetics of abietic acid androsin under UV irradiation[J]. Acta Physico-Chimica Sinica,2010,26(8):2115-2120.
    [212] Do H. S., Park J. H., Kim H. J. Synthesis and characteristics ofphotoactive-hydrogenated rosin epoxy methacrylate for pressure sensitive adhesives[J].Journal of Applied Polymer Science,2009,111(3):1172-1176.
    [213] Do H. S., Park J. H., Kim H. J. UV-curing behavior and adhesion performance ofpolymeric photoinitiators blended with hydrogenated rosin epoxy methacrylate forUV-crosslinkable acrylic pressure sensitive adhesives[J]. European Polymer Journal,2008,44(11):3871-3882.
    [214] Hiemenz P. C., Rajagopalan R. Principles of Colloid and Surface Chemistry [M].3rdedition, New York: CRC press,1997.
    [215] Jassal M., Acharya B. N., Bajaj P. Synthesis, characterization, and rheological studies ofmethacrylic acid-ethyl acrylate-diallyl phthalate copolymers[J]. Journal of AppliedPolymer Science,2003,89(5):1430-1441.
    [216]李周,潘慧铭,李建宗.耐高温压敏胶粘带的研究进展[J].中国胶粘剂,2005,26(5):35-37.
    [217] Williams J. A., Kauzlarich J. J. Application of the bulk properties of a silicone PSA topeeling[J]. International Journal of Adhesion and Adhesives,2008,28(4):192-198.
    [218] Mecham S., Sentman A., Sambasivam M. Amphiphilic silicone copolymers for pressuresensitive adhesive applications[J]. Journal of Applied Polymer Science,2010,116(6):3265-3270.
    [219] Czech Z., Butwin A. New developments in the area of solvent-borne acrylicpressure-sensitive adhesives[J]. Journal of Adhesion Science and Technology,2009,23(12):1689-1707.
    [220] Czech Z. Solvent-based pressure-sensitive adhesives for removable products[J].International Journal of Adhesion and Adhesives,2006,26(6):414-418.
    [221] Warren P. D., McGrath D. V., Geest J. P. V. Effect of crosslinker length and compositionon the hydrophobicity and thermomechanical response of acrylate-based shape-memorypolymers[J]. Macromolecular Materials and Engineering,2010,295(4):386-396.
    [222]邓爱民,穆锐.可固化性环氧-丙烯酸酯聚合物压敏胶的研究[J].化学与黏合,2007,29(4):241-244.
    [223] Plessis C., Arzamendi G., Leiza J. R., et al. Modeling of seeded semibatch emulsionpolymerization of n-BA[J]. Industrial&Engineering Chemistry Research,2001,40(18):3883-3894.
    [224] Kohut-Svelko N., Pirri R., Asua J. M., et al. Effect of reaction temperature on the gelcontent of acrylic latexes[J]. Macromolecular Reaction Engineering,2009,3(1):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700