用户名: 密码: 验证码:
钢筋与活性粉末混凝土粘结性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:活性粉末混凝土是一种具有超高强度、高韧性、高耐久性、高环保性的新型水泥基复合材料,在土木工程领域具有广阔的应用前景。工程中活性粉末混凝土构件多以配筋的形式出现,为研究钢筋与活性粉末混凝土之间的协同作用机理,本文通过梁式试验、中心拔出试验、钢筋内贴片试验对变形钢筋与活性粉末混凝土之间的粘结性能进行了研究。分析了变形钢筋在活性粉末混凝土构件中的粘结锚固机理和粘结锚固强度变化规律,以解决活性粉末混凝土构件中钢筋的锚固设计问题,为活性粉末混凝土规范的编制提供依据。论文主要工作和结论如下:
     (1)进行了一批活性粉末混凝土梁式粘结试验,通过改变活性粉末混凝土内钢纤维体积掺量、保护层厚度、粘结长度等因素,分析了各因素对试件破坏形式、粘结应力-滑移曲线、粘结锚固特征值的影响。研究表明:锚固条件对钢筋与活性粉末混凝土之间的粘结性能具有很大影响并对试验结果进行统计回归,得出了变形钢筋与活性粉末混凝土之间的粘结锚固强度和滑移的计算公式;
     (2)通过梁式试验和中心拔出试验对钢纤维体积掺量为0.0%~2.0%的活性粉末混凝土与钢筋之间的粘结性能进行了研究,对比分析了不同试验方法下粘结强度随钢纤维体积掺量变化规律。同时进行了一组C40混凝土梁式试验,与钢纤维体积掺量为2.0%的活性粉末混凝土试件进行对比,研究变形钢筋在不同混凝土基体中粘结性能差异,并从微观结构方面分析了活性粉末混凝土的粘结锚固机理。研究表明:两种试验方法下得到的粘结强度都随钢纤维体积掺量的增加而增大,但梁式试验的粘结强度增长趋势大于中心拔出试验,钢纤维体积掺量为0.0%时,中心拔出试验的粘结强度大于梁式试验;钢纤维体积掺量为0.5%-2.0%时,中心拔出试验的粘结强度小于梁式试验;变形钢筋与活性粉末混凝土之间的粘结强度要远大于C40混凝土;活性粉末混凝土致密的结构及钢纤维的掺入是其具有超高粘结强度的原因;
     (3)进行了钢筋内贴片试验,根据实测钢筋应变,分析了不同位置处粘结应力变化规律,研究粘结长度内变形钢筋在活性粉末混凝土中的粘结应力分布规律,推导出了反映这种变化的位置函数;根据试验结果推导的粘结锚固特征值将粘结应力-滑移曲线分段,建立了考虑粘结位置的粘结应力-滑移本构模型;
     (4)在上述试验基础上,通过锚固可靠度分析及现有规范对钢纤维体积掺量为0.0%~2.0%的活性粉末混凝土中变形钢筋的粘结长度提出了实用设计建议,为制定相关规范提供了依据。
ABSTRACT: Reactive Powder Concrete (RPC) is a kind of new cement base composite material, which provides satisfactory strength, toughness and durability; and also has high environmental protection. Due to these characteristics, it presents broad application prospects in civil engineering field. The RPC members are mostly applied to reinforcement concrete in engineering projects, in order to study the synergistic effect mechanism of steel bar and RPC; the bonding performance between deformed steel bar and RPC is investigated in this paper through beam tests, pull-out tests and inner-embedded strain-gauge tests. In order to solve the anchorage design problem in RPC members, the bond anchorage mechanism and bond anchorage strength of deformed steel bar are analyzed, which also provide the basis for the standard enaction for RPC. The main work conclusions are as follows:
     (1) RPC beam bonding tests are carried out by changing steel fiber volume, the thickness of protection layer and bonding length, etc. The influence of anchorage conditions on the failure mode, bond stress-slip curve, and bond characteristic values of specimens are analyzed. The result shows that anchorage conditions have a great influence on the bond performance between reinforcement and Reactive Powder Concrete. The calculation formulas of bonding strength and slip value are established throughout statistical regression of the experimental results;
     (2) Bond performance between reinforcement and RPC with steel fiber volumes between0.0%~2.0%are studied through beam and pull-out bond tests. The regularity of bond strength changed with steel fiber volumes under the different test methods is discussed. C40concrete beam tests are correspondingly carried out compared with the RPC specimen with2.0%steel fiber, to study the bond performance between steel bar with different concrete. Bonding mechanism of RPC has been investigated through microscopic structure analysis. This result shows that the bond strength increases with the increasing of steel fiber under the two kinds of test method, but the bond strength growth trend of beam test is greater than pull-out test. Bond strength of beam test is greater than pull-out test except for the specimens without steel fiber; meanwhile bond strength between deformed steel bar and RPC is dramaticlly higher than C40concrete; Compact structure and steel fiber in RPC lead to its high bonding strength;
     (3) Inner-embedded strain-gauge tests are carried out, according to measured steel bar strain, the bond stress distribution of different location is analyzed, the position function which reflects this change is deduced; and bond stress-slip constitutive model which considered bond position is established.
     (4) Based on above tests, bond length of deformed steel bar in RPC members with steel fiber volumes between0.0%and2.0%is conformed through anchorage reliability analysis and current specifications are put forward, this suggest can provide a basis for relevant specification of RPC.
引文
[1]Pierre Richard, Marcel Cheyrezy.Composition of Reactive Powder Concret [J]. Cement and Concrete Research,1995,25(7):1501-1511.
    [2]Pierre Richard.Reactive Powder Concrete:A new Ultra high Strength Cementitious Material [A]. In:The 4th International Symposium On Utilization of High Strength High Performance Concrete[C]. Paris:1996,1343-1349.
    [3]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [4]闫志刚,季文玉,安明喆.活性粉末混凝土低高度梁设计及试验研究[J].土木工程学报,2007,42(5):96-102.
    [5]高淑平.活性粉末混凝土在铁路预应力桥梁中的应用[J].商品混凝土,2007(3):19-21.
    [6]柯开展,蔡文尧.活性粉末混凝士(RPC)在工程结构中的应用与前景[J].福建建材,2006(2):17-19.
    [7]杨志慧.不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D].北京:北京交通大学,2006.
    [8]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37.
    [9]徐有邻,邵卓民,沈文都.钢筋与混凝土的粘结锚固强度[J].建筑科学,1988(4):8-14.
    [10]Halit Yazici, Mert Yucel Yard M C,et al.Mechanical properties of reactive powder concrete containing mineral admixtures under differentcuring regimes[J].Construction and Building Materials,2009(23):1223-1231.
    [11]Yaz C H, Yigiter H, Karabulut AS, et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in Reactive powder concrete [J].Fuel,2008,87(3): 2401-2407.
    [12]曹峰.掺粉煤灰的活性粉末混凝土的配制研究[D].北京:清华大学硕士学位论文,1998.
    [13]谢友均,刘宝举,龙广成.掺超细粉煤灰活性粉末混凝土的研究[J].建筑材料学报,2001,4(3):280-284.
    [14]龙广成,谢友均,陈瑜.养护条件对活性粉末混凝土(RPC200)强度的影响[J].混凝土与水泥制品,2001,(3):15-16.
    [15]Abourzar Sadrekarimi. Development of a Light Weight Reactive Powder Concrete [J] Journal of Advanced Concrete Technology,2004,2(3):409-417.
    [16]Halit Yazici.The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures [J]. Building and Environment,2007(42): 2083-2089.
    [17]S.L. Yang,S.G. Millard,M.N. Soutsos,etc. Influence of aggregate and curing regime on the mechanicalproperties of ultra-high performance fibre reinforced concrete (UHPFRC) [J]. Construction and Building Materials,2009(23):2291-2298.
    [18]A.Feylessoufi, M.Crespin, P.Dion, F.Bergaya, etc.Controlled rate thermal treatment of Reactive Powder Conrete [J].Advanced Cement Based Materials,1997,6(1):21-27.
    [19]Metin Ipek, Kemalettin Yilmaz, Mansur Sumer, Mehmet Saribiyik. Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase [J]. Construction and Building Materials,2011, (25):61-68.
    [20]Metin Ipek, Kemalettin Yilmaz, Mucteba Uysal. The effect of pre-setting pressure applied flexural strength and fracture toughness of reactive powder concrete during the setting phase[J]. Construction and Building Materials,2012(26):459-465.
    [21]焦楚杰,孙伟,赖建中,蒋金洋.生态型活性粉末混凝土单轴压缩力学性能[J].工业建筑,2004,34(1):60-62.
    [22]Zhang Yunsheng, Sun Wei, Liu Sifeng etc. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors [J]. Cement & Concrete Composites,2008(30):831-838.
    [23]安明喆,宋子辉,李宇,张宇.不同钢纤维含量RPC材料受压力学性能研究[J].中国铁道科学,2009,30(5):34-38.
    [24]安明喆,杨志慧,余自若,翟延峰,高康.活性粉末混凝土抗拉性能研究[J].铁道学报,2010,32(1):54-58.
    [25]余自若,安明喆,王志建.双轴压下活性粉末混凝土的力学性能[J].建筑材料学报,2011,14(3):305-309.
    [26]余自若,秦鑫,安明喆.活性粉末混凝土的常规三轴压缩性能试验研究[J].中国铁道科学,2012,33(2):38-42.
    [27]AN Mingzhe, ZHAGN Lijun, YI Quanxin.Size effect on compressive strength of Reactive Powder Concrete [J].Journal of China University of Mining&Technology,2008,18(2):279-282.
    [28]安明喆,张立军.RPC材料的抗折强度尺寸效应研究[J].中国矿业大学学报,2007,36(1):38-41.
    [29]Allan C.L. Wong, Paul A. Childs, Richard Berndt, etc., Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensors[J]. Cement and Concrete Composites,2007,29(6):490-497.
    [30]A. Feylessoufi, F. Cohen Tenoudji, V. Morin, etc., Early ages shrinkage mechanisms of ultra-high-performance cement-based materials [J]. Cement and Concrete Research,2001, 31(11):1573-1579.
    [31]Victor Y.Garas, Lawrence F. Kahn, Kimberly E. Kurtis.Short-term tensile creep and shrinkage of ultra-high performance concrete [J]. Cement & Concrete Composites,2009(31):147-152.
    [32]Y.S. Tai. Uniaxial compression tests at various loading rates for reactive powder concrete [J]. Theoretical and Applied Fracture Mechanics,2009(52):14-21.
    [33]Yonghua Wang, Zhengdao Wang, Xiaoyan Liang, Minzhe An.Experimental and numerical studies on dynamic compressive behavore of Reactive Powder Concretes [J]. Acta Mechanica Solida Sinica,2008,21(5):420-429.
    [34]黄政宇,秦联伟,肖岩,陈柏生.级配钢纤维活性粉末混凝土的动态拉伸性能的试验研究[J].铁道科学与工程学报,2007,4(4):34-40.
    [35]王艳.应用SHPB试验对活性粉末混凝土动力性能的研究[D].长沙:湖南大学,2006.
    [36]葛涛,潘越峰,谭可可,王明洋.活性粉末混凝土抗冲击性能研究[J].岩石力学与工程学报,2007,26(S1):3553-3557.
    [37]Na-Hyun Yia, Jang-Ho Jay Kim,Tong-Seok Han, Yun-Gu Cho, Jang Hwa Lee. Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete [J]. Construction and Building Materials,2012(28):694-707.
    [38]安明喆,宋子辉,李宇,张宇.不同钢纤维含量RPC材料受压力学性能研究[J].中国铁道科学,2009,30(5):34-38.
    [39]原海燕.配筋活性粉末混凝土受拉性能试验研究及理论分析[D].北京:北京交通大学,2009.
    [40]安明喆,杨志慧,余自若,翟延峰,高康.活性粉末混凝土抗拉性能研究[J].铁道学报,2010,32(1):54-58.
    [41]陈健,孙晓颖.钢纤维掺量对活性粉末混凝土初裂性能影响研究[J].混凝土,2007(3):46-48.
    [42]张明波,阎贵平,闫光杰,安明喆.200 MPa级活性粉末混凝土抗弯性能试验研究[J].北京交通大学学报,2007,31(1):81-84.
    [43]Su-Tae Kang, Yun Lee b, Yon-Dong Park, Jin-Keun Kim. Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber[J] Composite Structures,2010,(92):61-71.
    [44]姚志雄,周健.纤维增强活性粉末混凝土(RPC)断裂能的研究[J].建筑材料学报,2005,8(4):356-360.
    [45]姚志雄,周健,周瑞忠.活性粉末混凝土断裂性能的试验研究[J].建筑材料学报,2006,9(6):654-659.
    [46]Su-Tae Kang, Yun Lee b, Yon-Dong Park, Jin-Keun Kim.Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber[J].Composite Structures,2010,(92):61-71.
    [47]李忠、黄利东.钢纤维活性粉末混凝土耐久性能的研究[J].混凝土与水泥制品,2005,(3):42-43.
    [48]季韬,陈宝春,庄一舟等.活性粉末混凝土抗裂性能试验研究[J].福州大学学报(自然科学版).201],39(3):434-437.
    [49]Tao Ji, Cai-Yi Chen, Yi-Zhou Zhuang. Evaluation method for cracking resistant behavior of reactive powder concrete [J]. Construction and Building Materials,2012(28):45-49.
    [50]张育宁,方秦,侯晓峰等.钢纤维增强“九度”原则及系列分散指数在活性粉末混凝土(RPC)配制中的应用[J].混凝土与水泥制品,2006,(5):41-44.
    [51]Bayard O,Ple O.Fracture mechanics of Reactive Powder Concrete material modeling and experimental investigations[J].Engineering Fracture Mechanics,2003,70(7-8):839-851.
    [52]刘娟红,宋少民.颗粒分布对活性粉末混凝土性能及微观结构影响[J].武汉理工大学学报,2007,29(1):26-29.
    [53]闫光杰,阎贵平,安明喆,陈毅卓.200 MPa级活性粉末混凝土试验研究[J].铁道学报,2004,26(2):116-119.
    [54]陈毅卓,阎贵平,安明喆.常规搅拌工艺条件下活性粉末混凝土抗压强度影响因素的研究[J].铁道建筑,2003,(3):44-48.
    [55]何峰,黄政宇.200-300MPa活性粉末混凝土(RPC)的配制技术研究[J].混凝土与水泥制品,2000,8(4):3-7.
    [56]黄育,王必宾,陈万祥,毕亚军.不同钢纤维对RPC性能影响的试验分析[J].解放军理工大学学报(自然科学版),2003,4(5):64-67.
    [57]Marcel Cbeyrezy, Vincent Maret, Laurent Frouin. Micro structural analysis of RPC [J]. Cement and Concrete Research.1995,25(7):1491-1500.
    [58]安明喆,杨新红,王军民,崔宁.活性粉末混凝土的微细观结构研究.低温建筑技术,2007,37(1):1-3.
    [59]A. Cwirzen. The effect of the heat-treatment regime on the properties of reactive powder concrete[J]. Advances in Cement Research,2007,19(1):25-33.
    [60]刘娟红,宋少民.颗粒分布对活性粉末混凝土性能及微观结构影响[J].武汉理工大学学报,2007,29(1):26-29.
    [61]Shaheen Ehab,Shrive Nigel G. Optimization of mechanical properties and durability of reactive powder concrete[J].ACI Materials Journal,2006,103(6):444-451.
    [62]安明喆,杨新红.RPC材料的耐久性研究[J].建筑技术,2007,38(5):367-368
    [63]刘斯凤,孙伟等.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080-1085.
    [64]叶青,朱劲松.活性粉末混凝土的耐久性研究[J].新型建筑材料,2006,(6):33-36.
    [65]Ming-Gin Lee, Yung-Chih Wang, Chui-Te Chiu. A preliminary study of reactive powder concrete as a new repair material [J]. Construction and Building Materials,2007(21):182-189.
    [66]A. Cwirzen, V. Penttala, C. Vornanen. Reactive powder based concretes:Mechanical properties, durability and hybrid use with OPC [J]. Cement and Concrete Research,2008(38):1217-1226.
    [67]Dirk WeiBe, Klaus Holschemacher. Some Aspects about the Bond of Reinforcement in Ultra High Strength Concrete[C] LACER No.8,2003:251-263.
    [68]安明喆,张盟.变形钢筋与活性粉末混凝土的粘结性能试验研究[J].中国铁道科学,2007,28(2):50-54.
    [69]安明喆,张盟,季文玉.光圆钢筋与活性粉末混凝土的粘结性能研究[J].铁道学报,2007,29(1):90-94.
    [70]Brian Fortner. FHWA gives superior marks to concrete bridge girder [J]. Civil Engineering Magazine.2001,71(10):12-13.
    [71]吴炎海,林震宇,孙士平.活性粉末混凝土基本力学性能试验研究[J].山东建筑工程学院学报,2004,24(3):7-11.
    [72]林震宇,吴炎海,沈祖炎.圆钢管活性粉末混凝土轴压力学性能研究[J].建筑结构学报,2005,26(4):52-57.
    [73]林震宇,张静,吴炎海等.钢管RPC短柱轴心受压试验研究[J].福建建筑,2003,(83):28-30.
    [74]闫志刚.活性粉末混凝土桥梁优化设计研究[D].北京:北京交通大学,2006.
    [75]袁娜.活性粉末混凝土预应力T梁的设计、试验及正截面承载力的研究[D].北京:北京交通大学,2004.
    [76]唐国栋.预应力活性粉末混凝土(RPC)箱梁抗弯性能试验研究[D].北京:北京交通大学,2004.
    [77]李真.预应力活性粉末混凝土槽型梁的设计、试验及承载力的研究[D].北京:北京交通大学,2004.
    [78]Ri Gao,Zhi-Min Liu,Li-Qian Zhang,etc.Static Properties of Plain Reactive Powder Conrete Beams[J].Key Engineering Materials,2006,302:521-527.
    [79]赵晶石.活性粉末混凝土(RPC)人行天桥槽形梁的结构优化设计及稳定性研究[D].北京:北京交通大学,2006.
    [80]季文玉,周超民.预应力RPC箱梁剪力滞效应分析[J].中国铁道科学,2007,28(1):19-22.
    [81]廖莎,马远荣.活性粉末混凝土(RPC)预应力叠合梁受弯性能研究[J].湖南大学学报(自然科学版),2005,32(1):57-62.
    [82]卢珊珊.配置GFRP筋活性粉末混凝土梁受力性能试验与分析[D].哈尔滨:哈尔滨工业大学,2010.
    [83]覃维祖,曹峰.一种超高性能混凝土-活性粉末混凝土[J].工业建筑,1999(4):16-18.
    [84]Dugat J., Roux N., Bernier GMechanical Properties of Reactive Powder Concretes [J]. Materials and Structures,1996,29(5):233-240.
    [85]周一桥,杜亚凡.世界上第一座预制预应力活性粉末混凝土结构-舍布鲁克人行桥[J].国外桥梁,2003,(3):18-23.
    [86]R.Adeline, M. Lachemi and P. Blais. Design and Behaviour of the Sherbrooke Footbridge [A]. Proceedings of International Symposium on High-performance andReactive Powder Concrete. Sherbrooke, Canada, Aug.16-20,1998.89-97.
    [87]http://www.ductal-lafarge.com/
    [88]Etienne D., Causse M., Behloul M. Design and building of Seoul Peace Footbridge, Third International Arch Bridge Conference, Paris,2001(9):865-876
    [89]Brian C, Gordan C. The Worlds First Ductal Road Bridge Shepherds Gully Creek Bridge. In: CIA 21st Biennial Conference, Brisbane,2003,1-11.
    [90]http://en.structurae.de/structures/data/index.cfm?id=s0010579
    [91]Bierwagen D, Hawash A A. Ultra High Performance Concrete Highway Bridge. In:Proceeding of the 2005 Mid-Continebt Transportation Symposium, Iowa,2005,1-1.
    [92]周文元.活性粉末混凝土在道路桥梁工程中的应用[J].水运工程,2004(12):103-105.
    [93]AN Mingzhe,JI Wenyu,ZHONG TieyiJIA Fangfang.Application of UHPC in Railway Construction[A].2011 International Workshop on Sustainable and Science-Driven Engingeering of Cement-based Materials [C],2011,Beijing,CHINA:141-148.
    [94]李晨光,安明喆,都清.超高性能结构混凝土材料工程化应用基础研究[J].混凝土世界,2010(3):28-33.
    [95]唐玉斌,朱立,李昊.活性粉末混凝土在地铁声屏障结构单元板中的应用[J].混凝土,2010(3):139-141.
    [96]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2006.
    [97]叶列平.混凝土结构[M].北京:清华大学出版社,2008.
    [98]蒋德稳,邱洪兴.混凝土结构粘结性能的系统试验方法研究[A].第七届全国土木工程研究生学术论坛论文集,2009.
    [99]王传志,滕智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985.
    [100]CECS13:89钢纤维混凝土试验方法[S].北京:中国工程建设标准化协会,1989.
    [101]Homayoun H. Abrisham, Denis Mitchell. Analysis of bond stress distributions in pullout specimens [J].Journal of structural engineering,1996(3):255-261.
    [102]Charles K.Kankam.Relationship of bond stress, steel stress and slip in reinforced concrete [J].Journal of structural engineering,1997(1):79-85.
    [103]高向玲.高性能混凝土与钢筋的粘结性能试验研究及数值模拟[D].上海:同济大学,2003.
    [104]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究[D].大连:大连理工大学,2004.
    [105]王海超,何世钦,贡金鑫.冻融循环后腐蚀钢筋与混凝土粘结性能试验研究[J].混凝 土,2007(8):1-3.
    [106]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响[J].同济大学学报,2002,30(7):792-796.
    [107]魏国亮.利用光纤光栅测量技术研究钢筋与混凝土的粘结滑移性能[D].大连:大连理工大学,2011.
    [108]T.P.Tassions, E.GKoroneos.Local bond-slip relationship by means of the Moire method [J].ACI Journal,1984(1):27-34.
    [109]蒋大骅.粘结力试件的一种新型式[J].同济大学学报,1984(2):53-65.
    [110]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].北京:清华大学,1990.
    [111]艾晓秋,高向玲,李杰.纤维混凝土与钢筋的粘结性能试验研究[J].建筑结构,2005,35(4):61-67.
    [112]Ghazi Faisal Kheder.Bond Behaviour for Normal and High Strength Concrete [J]. Journal of Engineering and Development,2005,9(4):99-119.
    [113]Azizinamini.A., Stark,M.,Rloller,J.,Ghosh,S.K. Bond Performance of Reinforcing Bars Embedded in High-Strength Concrete [J]. ACI Structural Journal,1993,90(5):554-561.
    [114]Darwin,D., Zuo,J.,Michael L.T.etc.Development length criteria for conventional and high relative rib area reinforcing bars[J].ACI Structural,1998,(2):96-106.
    [115]Zuo,J.,Darwin,D.,Bond Strength of High Rilative Rib Area Reinforcing Bars[J].Structual Engineering and Engineering Materials SM Report,1998,46,The University of Kansas Center for Research Inc.,Lawrence,Kansas.
    [116]王冰,李学章,计学闫.浮石混凝土与变形钢筋粘结锚固性能的研究[J].哈尔滨建筑大学学报,1998,31(6):30-37.
    [117]李杰,高向玲,艾晓秋.纤维增韧混凝土与钢筋的粘结性能研究[J].建筑结构学报,2004,25(2):99-103.
    [118]Harajli, M.H., Hout.M, Jalkh.W.Local Bond Stress-Slip Relationship of Reinforcing Bars Embedded in Fiber-Reinforced Concrete [J].ACI Materials Journal,1995,92(4):343-354.
    [119]Harajli, M.H. and Salloukh, K.A.Effect of fibers on development/splice strength of reinforcing bars in Tension [J].ACI Materials Journal,1997(4):317-324.
    [120]Bila S.Hamad,Mohamad H.Haraji,Ghaida Jumaa.Effect of fiber reinforcement on bond strength of tension lap splices in high-strength concrete[J].ACI Material Structual,2001 (5):317-324.
    [121]Rostasy F.S.,Hartwich K. Bond of deformed reinforcing bar embedded in steelfiber reinforced concrete [J]. The International Journal of Cement Composites and Lightweight Concrete,1988,10(3):151-158.
    [122]Nn Krstulovic-Opara, Kimberly A. Watson, James M. LaFave. Effect of Increased Tensile Strength and Toughness on Reinforcing-Bar Bond Behavior [J]. Cement & Concrete Composites,1994(16):129-141.
    [123]Cattaneo S.Ultra High-Performance Concrete:Constitutive Behavior and Structural Applications[D]Italy:Politecnico di Milano,2000.
    [124]Cattaneo S., Rosati G. Bond and splitting in High Performance Fiber Reinforced concrete [A]. Lyon:Proceedings of Fifth RILEM Symposium on Fiber-Reinforced Concretes (RC), 2000.
    [125]A.S. Ezeldin, P.N. Balaguru. Characterization of bond between fiber concrete and reinforcing bars using nonlinear finite element analysis [J]. Computers & Structures,1990,37(4):569-584.
    [126]K. Ahmed, Z. A. Siddiqi, M. Ashraf, A. Ghaffar. Effect of Rebar Cover and Development Length on Bond and Slip in High Strength Concrete [J]. Pak. J. Engg.& Appl. Sci,2008(2): 79-87.
    [127]李海涛,Andrew J Deeks,苏小卒,黄东升.保护层厚度对受拉与受压粘结强度的影响[J].华中科技大学学报(自然科学版),2012,40(5):80-83.
    [128]Hamad, B.S.Bond Strength Improvement of Reinforcing Bars with Specially Designed Rib Geometries [J].ACI Materials Journal,1995,92(6):579-590.
    [129]Zuo,J.,Darwin,D.,Bond Strength of High Rilative Rib Area Reinforcing Bars[J].Structual Engineering and Engineering Materials SM Report,1998,46,The University of Kansas Center for Research Inc.,Lawrence,Kansas.
    [130]B. S. Hamad, M. F. Machaka. Effect of transverse reinforcement on bond strength of reinforcing bars in silica fume concrete [J]. Materials and Structures,1999, (32):468-476.
    [131]Giuseppe CAMPIONE, Calogero CUCCHIARA, Lidia LA MENDOLA, Maurizio PAPIA. Experimental Investigation on local bond-slip behavior in Lightweight fiber reinforced concrete under cyclic actions [A]. Canada: 13th World Conference on Earthquake Engineering,2004.
    [132]JIN Weiliang, ZHAO Yuxi.Effect of corrosion on bond behavior and bending strength of reinforced concrete beams[J].Journal of Zhejiang University(Science),2001,2(3):47-50.
    [133]徐港,卫军,王青.锈蚀钢筋与混凝土粘结性能的梁式试验[J].应用基础与工程科学学报,2009,17(4):549-557.
    [134]David Roger Swanson. Bond strength of corrosion-resistant reinforcing bars[D].Queen's University, Canada,2003.
    [135]Rami H. Haddad, Karim S. Numayr. Effect of alkali-silica reaction and freezing and thawing actionon concrete - steel bond[J]. Construction and Building Materials,2007 (21):428-435.
    [136]P. Morely, R. Royles, Response of the bond in reinforcing concrete to high temperatures, Magization Concrete Research.,1983,35 (123):67-74.
    [137]周万良,周士琼,李益进,高英力.水胶比、超细粉煤灰掺量对高性能混凝土钢筋握裹力的影响[J].混凝土与水泥制品,2003(2):16-18.
    [138]彭华群,夏军武,蒋龙,丁平,孙冬明.矿渣微粉混凝土与钢筋粘结性能研究[J].混凝土与水泥制品,2006(5):9-11.
    [139]欧阳东.稻壳灰对高强超高强混凝土钢筋粘结强度的影响[J].工业建筑,2003,33(11):46-48.
    [140]C.O.Orangun,J.O.Jirsa, J.E.Breen.A Reevaluation of Test Data on Development Length and Splices [J].ACI Journal, Proceedings,1977,74(3):114-122.
    [141]David.Darwin, Steven L.McCabe, E mmanuel K, Idun, etc.Development Length Criteria: Bars Not Confined by Transverse Reinforcement [J].ACI Structural Journal,1992,89(6):709-720.
    [142]滕智明,张合贵.钢筋混凝土梁中劈裂粘结破坏及钢筋延伸长度的试验研究[J].土木工程学报,1989,22(2):33-43.
    [143]R.Tepfers.Cracking if concrete cover along anchored deformed reinforcing bars[J].Magazine of Concerte Research,1979,31(106):3-12.
    [144]高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟[D].上海:同济大学,2003.
    [145]卫纪德,麻建锁,岳金声.陶粒混凝土与变形钢筋粘结锚固性能的试验研究[J].哈尔滨建筑工程学院学报,1993(1):95-100.
    [146]李渝军,叶列平,程志军,王晓峰,丁建彤.高强陶粒混凝土与变形钢筋粘结粘结锚固强度的试验研究[J].建筑科学,2006(4):51-55.
    [147]山显彬.变形钢筋与自密实混凝土之间粘结锚固性能试验研究[D].哈尔滨工业大学硕士学位论文,2008.
    [148]Nilson,S.M.Bond stress-slip relationship in reinforced concrete [R]. Rep. No.345, Department of Structure Engineering, Cornell University, Ithaca, N.Y.
    [149]Saeed M.Mirza, Jules Houde.Study of bond stress-slip relationships in reinforced concrete [J].ACI Journal,1979(1):19-46.
    [150]狄生林.钢筋混凝土握裹力-滑移关系的试验研究[D].南京:东南大学,1981.
    [151]滕志明.钢筋与混凝土间的粘结力[D].北京:清华大学,1978.
    [152]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987(2):94-100.
    [153]陈艳华.拉-拉循环载荷作用下纤维增强复合材料界面疲劳特性的研究[D].北京:北京交通大学,2003.
    [154]龙广成.活性粉末混凝土的组成、结构与性能研究[D].上海:同济大学,2004.
    [155]Jeffrey Chen.Materials design of Ductal(?)[A].Sustainable and Science-Driven Engineering of Cement-based Materials[C].Beijing,China.2011.130-140.
    [156]高康.活性粉末混凝土宏观性能及微观试验研究[D].北京:北京交通大学,2010.
    [157]Odd E. Gjorv, Paulo J. M. Monteiro, and P. K. Mehta. Effect of Condensed Silica Fume on the Steel-Concrete Bond [J]. Materials Journal,1990,87(6):573-580.
    [158]Mor Avi. Steel-concrete bond in high-strength lightweight concrete [J].ACI Materials Journal, 1992,89(1):76-82.
    [159]Emre Sancak, Osman Simsek, Ahmet Celal Apay. A co MParative study on the bond performance between rebar and structural lightweight pumice concrete with/without admixture [J]. International Journal of the Physical Sciences,2011,6(14):3437-3454.
    [160]鞠杨,贾玉丹,刘红彬,陈健.活性粉末混凝土钢纤维增强增韧的细观机理[J].中国科学,2007,37(11):1403-1416.
    [161]薛雪云.粉煤灰混凝土粘结性能的试验研究[D].西安:西安建筑科技大学,2008.
    [162]洪小健,张誉.粘结滑移试验中的粘结应力的拟合方法[J].试验研究,2000(3):44-48.
    [163]卫军,王艺霖,罗晓辉.钢筋拉拔试验中粘结应力分布的曲线拟合[J].铁道科学与工程学报,2005,2(2):22-24.
    [164]Kemp EL. Bond in reinforced concrete: Behavior and design criteria [J].ACI Journal,1986,83 (1):50-57.
    [165]Chinn J,Ferguson PM,Thompson JN.Lapped splices in reinforced concrete beams[J].J A m Concrete Instit,1955,52(10):201-213.
    [166]Huanzi Wang.An analytical study of bond strength associated with splitting of concrete cover [J].Engineering Structures,2009,31:968-975.
    [167]Kankam CK.Bond strength of reinforcing steel bars milled from scrap metals [J].Materials Des, 2004(25):231-238.
    [168]邵卓民,沈文都,徐有邻.钢筋砼的锚固可靠度及锚固设计[J]建筑结构学报,1987(4):36-49.
    [169]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [170]GB50068-2001.建筑结构可靠度设计统一标准[S].
    [171]GB/T50283-1999.公路工程结构可靠度设计标准[S].
    [172]章文纲,程铁生.钢纤维混凝土与钢筋粘结锚固性能的研究[J].工业建筑,1989(10):9-14.
    [173]李海涛,苏小卒,Andrew J DEEKS中欧美拉伸锚固长度比较研究[J].结构工程师,2010,26(3):170-175.
    [174]ACI Committee 318. ACI 318 - 05 Building Code Requirements for Structural Concrete [S]. M ichigan: American Concrete Institute,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700