用户名: 密码: 验证码:
微纳米TiO_2和TiO_2-FPS疏水涂层上的池沸腾传热和结垢腐蚀行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应用微纳表面工程方法抑制换热表面上的污垢沉积,本文在AISI304不锈钢基底上制备和表征了微纳米TiO_2和TiO_2-FPS疏水涂层,并在自行研制的、带有污垢数据在线自动采集系统的、传热表面垂直放置的池沸腾装置中开展了CaCO_3和CaSO_4水溶液池沸腾传热和结垢研究,另外进行了TiO_2涂层的腐蚀实验研究,取得了如下研究结果:
     1.微纳米TiO_2和TiO_2-FPS疏水涂层去离子水饱和池沸腾研究表明,相比TiO_2涂层,TiO_2-FPS复合疏水涂层因具有较低的表面能,较大的汽化核心密度,较小的汽泡酝酿时间和较高的汽泡脱离频率而增强传热10%以上。
     2.不同涂层表面上饱和CaCO_3溶液池沸腾污垢沉积规律研究表明,与不锈钢相比,TiO_2涂层的渐近污垢热阻下降约30%,TiO_2-FPS复合疏水涂层的渐近污垢热阻下降约50%。应用渐近污垢热阻曲线方程可以较好地拟合饱和CaCO_3溶液在不同表面上的池沸腾污垢沉积数据。不同涂层表面上饱和CaSO_4溶液池沸腾污垢沉积规律研究表明,TiO_2涂层表面污垢热阻略低于不锈钢表面,而TiO_2-FPS复合涂层的污垢热阻约为不锈钢基底的0.5倍,说明TiO_2-FPS复合涂层可以显著抑制污垢沉积。不同表面上CaCO_3与CaSO_4的微观形貌研究表明,TiO_2涂层上为方解石型垢,TiO_2-FPS涂层上为霰石型垢,在TiO_2和TiO_2-FPS涂层上的CaCO_3污垢均较为蓬松,易于去除。表面上的CaSO_4垢致密,较难去除。
     3.基于XDLVO和DLVO理论的CaSO_4颗粒与换热表面间的胶体相互作用分析表明,应用XDLVO理论预测不同表面的结垢趋势更为准确;欲抑制换热表面结垢,可以在换热表面涂覆低表面能非极性F-C化学键材料,以减小污垢颗粒和换热表面间的Lewis酸碱作用分量。
     4.应用Tafel极化曲线、循环伏安法和电化学阻抗等电化学方法,在3.5%NaCl和0.05M NaOH混合溶液中研究了TiO_2涂层的耐腐蚀性能,结果表明,相比不锈钢,厚度为288.9±0.8nm的致密TiO_2涂层的腐蚀电势提高约0.12V,腐蚀电流约下降为0.1倍,极化电阻增大约17倍,耐腐蚀性能提高;TiO_2涂层在腐蚀介质中为多级腐蚀过程。
Both the micro-nanometer titania and hydrophobic titania-fluoroalkysilane coatingswere prepared and characterized on AISI304stainless steel with liquid phasedeposition technology. Fouling tests of CaCO_3and CaSO_4solutions were carried outon the vertical titania and titania-fluoroalkysilane coating surfaces in self-made poolboiling equipment with online acquisition system. In addition, anti-corrosion propertyof titania coating was also carried out in the mixed corrosion solution composed of3.5wt.%NaCl and0.05mol·L~(-1) NaOH. The main results obtained are as follows.
     1. Pool boiling heat transfer performance of titania and hydrophobictitania-fluoroalkysilane coating surfaces were evaluated with deionized water. Theresults show that the pool boiling heat transfer coefficient on the hydrophobictitania-fluoroalkysilane coating could increase by10%or more compared with titaniacoating, which is due to the titania-fluoroalkysilane coating has very low surfaceenergy, and can provide large core density, small bubble departure diameter as well ashigh bubble departure frequency for the pool boiling.
     2. CaCO_3fouling deposition performance of titania and titania-fluoroalkysilanecoatings were carried out in the pool boiling equipment. The results show that thefouling resistance curves belong to the asymptotic type. The asymptotic foulingresistance on titania and titania-fluoroalkysilane composite coating can be reducedabout30%and50%compared with polished AISI304stainless steel, respectively. Theasymptotic equation can satisfactorily predict the data of the fouling resistancesobtained on different heat transfer surfaces. The fouling tests results in saturatedCaSO_4solution indicate that the fouling resistance of titania coating is slightly lowerthan that of the polished AISI304stainless steel. The fouling resistances ontitania-fluoroalkysilane coating are approximately one-half of those on AISI304stainless steel which indicate that titania-fluoroalkysilane coating can significantlyinhibit the fouling depositions. Morphology of CaCO_3and CaSO_4crystallizationfouling was also investigated. The results show that the fouling type deposited ontitania coating is of calcite, while on titania-fluoroalkysilane coating is of aragonite.CaCO_3fouling is very fluffy, and easy to be removed both on titania andtitania-fluoroalkysilane coatings, while CaSO_4fouling is dense, and more difficult to remove than CaCO_3fouling from the heat transfer surfaces.
     3. The colloidal interactions between CaSO_4fouling particles and the heat transfersurfaces were calculated and analyzed with XDLVO and DLVO theories. The resultsshow that the XDLVO theory can predict more accurately the fouling trends ofdifferent heat transfer surfaces. The key approach to reduce the tendency of CaSO_4fouling deposition is trying to reduce the Lewis acid-base interaction energycomponent and coat the non-polar and low energy materials with F-C chemical bondson the heat transfer surface.
     4. The anti-corrosion performance of the titania coatings were also carried out withthe electrochemical methods, such as Tafel polarization curves, cyclic voltammetry,and electrochemical impedance techniques, in the mixed corrosion solution composedof3.5wt.%NaCl and0.05mol·L~(-1) NaOH. The results show that the anti-corrosionproperty of titania coating can be significantly improved compared with AISI304stainless steel. The titania coating with thickness of288.9±0.8nm can improve thecorrosion potential of about0.12V, decrease the corrosion current of about0.1times,and increase the polarization resistance by about17times compared with AISI304stainless steel substrate. The multistage corrosion process of titania coating mighthave happened in the corrosion solution.
引文
[1] Fazel SAA, Shafaee SB. Bubble dynamics for nucleate pool boiling of electrolytesolutions. Journal of Heat Transfer,2010,132(8):815021-815027.
    [2] Wang CH, Dhir VK. Effect of surface wettability on active nucleation site densityduring pool boiling of water on a vertical surface. Journal of Heat Transfer,1993,115(3):659-669.
    [3] Kotthoff S, Gorenflo D, Danger E, et al. Heat transfer and bubble formation inpool boiling: Effect of basic surface modifications for heat transfer enhancement.International Journal of Thermal Sciences,2006,45(3):217-236.
    [4] Dhir VK. Mechanistic prediction of nucleate boiling heat transfer-achievable or ahopeless task? Journal of Heat Transfer,2006,128(1):1-12.
    [5] Taborek J, Aoki T, Ritter RB, et al. Fouling: The major unresolved problem inheat transfer. Chemical Engineering Progress,1972,68(2):59-67.
    [6] Bansal B, Chen XD, Müller-Steinhagen H. Analysis of ‘classical’ depositionrate law for crystallisation fouling. Chemical Engineering and Processing:Process Intensification,2008,47(8):1201-1210.
    [7] Bott TR, Melo LF. Fouling of heat exchangers. Elsevier Amsterdam,1995.
    [8]杨善让,徐志明,孙灵芳.换热设备污垢与对策(第二版).北京:科学出版社,2004.
    [9] Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Mixed salt crystallisationfouling. Chemical Engineering and Processing,2000,39(1):29-43.
    [10]张仲彬.换热表面污垢特性的研究[博士学位论文].保定:华北电力大学(河北),2009.
    [11]曹生现.冷却水污垢对策评价与预测方法及装置研究[博士学位论文].保定:华北电力大学(河北),2009.
    [12] Steinhagen R, Müller-Steinhagen H, Maani K. Problems and costs due to heatexchanger fouling in New Zealand industries. Heat Transfer Engineering,1993,14(1):19-30.
    [13] http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm.
    [14] Malayeri MR, Müller-Steinhagen H. Initiation of CaSO4scale formation on heattransfer surfaces under pool boiling conditions. Heat Transfer Engineering,2007,28(3):240-247.
    [15] Jamialahmadi M, Müller-Steinhagen H. Scale formation during nucleate boiling-A review. Corrosion Reviews,1993,11(1-2):26-54.
    [16]刘明言,王红,王燕.表面工程技术应用于蒸发器的防垢及沸腾传热强化的研究进展.化工进展,2007,26(003):442-447.
    [17]徐滨士.表面工程的理论与技术.北京:国防工业出版社,1999.
    [18] Young RK, Hummel RL. Improved nucleate boiling heat transfer. ChemicalEngineering Progress,1964,60(7):53-58.
    [19] Liang HS, Yang WJ. Nucleate pool boiling heat transfer in a highly wettingliquid on micro-graphite-fiber composite surfaces. International Journal of Heatand Mass Transfer,1998,41(13):1993-2001.
    [20] Yang WJ, Zhang N, Vrable DL. Macro-to microscale boiling heat transfer frommetal-graphite composite surfaces. Journal of Heat Transfer,2009,131(9):910011-910018.
    [21] Yang WJ, Takizawa H, Vrable DL. Augmented boiling on copper-graphitecomposite surface. International Journal of Heat and Mass Transfer,1991,34(11):2751-2758.
    [22] Chao DF, Zhang N, Yang WJ. Nucleate pool boiling on copper-graphitecomposite surfaces and its enhancement mechanism. Journal of Thermophysicsand Heat Transfer,2004,18(2):236-242.
    [23] Chao DF, Sankovic JM, Motil BJ. Formation and growth of micro and macrobubbles on copper-graphite composite surfaces:45th AIAA Aerospace SciencesMeeting and Exhibit, Reno, Nevada,2007.
    [24] Chao D, Zhang N, Yang WJ. Growth of micro bubbles on micro-configuredmetal-graphite composite surfaces and boiling enhancement: ASME2008FirstInternational Conference on Micro/Nanoscale Heat Transfer (MNHT2008),Tainan, Taiwan,2008.
    [25] Ahn HS, Lee C, Kim H, et al. Pool boiling CHF enhancement bymicro/nanoscale modification of zircaloy-4surface. Nuclear Engineering andDesign,2010,240(10):3350-3360.
    [26] Hendricks TJ, Krishnan S, Choi C, et al. Enhancement of pool-boiling heattransfer using nanostructured surfaces on aluminum and copper. InternationalJournal of Heat and Mass Transfer,2010,53(15-16):3357-3365.
    [27] Bourdon B, Rioboo R, Marengo M, et al. Influence of the wettability on theboiling onset. Langmuir,2012,28(2):1618-1624.
    [28] Ellis RD, Glater J, McCutchan JW. Alkaline scale abatement by carbon dioxideinjection. Environmental Science&Technology,1971,5(4):350-356.
    [29] Sieder EN. Application of fouling factors in design of heat exchangers. HeatTransfer,1935:82-85.
    [30] Kern DQ, Seaton RE. A theoretical analysis of thermal surface fouling. BritishChemical Engineering,1959,4(5):258-262.
    [31] Kern DQ, Seaton RE. Surface fouling: How to calculate limits. ChemicalEngineering Progress,1959,55(6):71-73.
    [32] Marto PJ, Nunn RH, államok Egyesült NS, et al. Power condenser heat transfertechnology. Washington DC: Hemisphere Pub. Corp.,1981.
    [33] Hasson D, Avriel M, Resnick W, et al. Calcium carbonate scale deposition onheat transfer surfaces. Desalination,1968,5(1):107-119.
    [34] Epstein N. Fouling in heat exchangers: Sixth International Heat TransferConference, Salt Lake City, Utah,1978.
    [35] Epstein N. Thinking about heat transfer fouling: A5×5matrix. Heat TransferEngineering,1983,4(1):43-56.
    [36] Sheikholeslami R, Watkinson AP. Scaling of plain and externally finned heatexchanger tubes. Journal of Heat Transfer,1986,108(1):147-152.
    [37] Pinheiro MM, Melo LF, Pinheiro JD. A model for the interpretation ofbiofouling: Proceedings of the2nd U.K. National Heat Transfer Conference,Glasgow, UK,1988.
    [38] Melo LF, Bott TR, Bernardo CA. Fouling science and technology. Springer,1988.
    [39] Müller-Steinhagen H. Handbook [of] heat exchanger fouling: mitigation andcleaning technologies. Essen, Germany: PUBLICO Publications,2000.
    [40]杨善让,徐志明.换热设备的污垢与对策.北京:科学出版社,1995.
    [41] Müller-Steinhagen H, Zhao Q. Investigation of low fouling surface alloys madeby ion implantation technology. Chemical Engineering Science,1997,52(19):3321-3332.
    [42] F rster M, Bohnet M. Influence of the interfacial free energy crystal/heattransfer surface on the induction period during fouling. International Journal ofThermal Sciences,1999,38(11):944-954.
    [43] F rster M, Augustin W, Bohnet M. Influence of the adhesion force crystal/heatexchanger surface on fouling mitigation. Chemical Engineering and Processing,1999,38(4-6):449-461.
    [44] Santos O, Nylander T, Rosmaninho R, et al. Modified stainless steel surfacestargeted to reduce fouling-Surface characterization. Journal of Food Engineering,2004,64(1):63-79.
    [45] Müller-Steinhagen H. Heat transfer fouling:50years after the Kern and Seatonmodel. Heat Transfer Engineering,2011,32(1):1-13.
    [46] http://services.bepress.com/eci/heatexchanger/.
    [47] http://heatexchanger-fouling.com/.
    [48] Freeborn J, Lewis D. Initiation of boiler scale formation. Journal of MechanicalEngineering Science,1962,4(1):46-52.
    [49] Macbeth RV. Boiling on surface overlayed with a porous deposit: Heat transferrates obtainable by capillary action. Winfrith, England: Atomic EnergyEstablishment,1971.
    [50] Jamialahmadi M, Müller-Steinhagen H. A new model for the effect of calciumsulfate scale formation on pool boiling heat transfer. Journal of Heat Transfer,2004,126(4):507-517.
    [51] Andrianov AB, Malyshenko SP, Nevstrueva EI. The mechanism ofconcentration due to evaporation in the immediate vicinity of the heating surfacein boiling. Future Energy Production Systems: Heat and Mass Transfer Processes,1976:215.
    [52]杨庆峰.传热表面结垢机理和防垢机理研究[博士学位论文].大连:大连理工大学,1999.
    [53]任晓光.在池沸腾和流动沸腾装置中处理表面上硫酸钙结垢过程研究[博士学位论文].大连:大连理工大学,1999.
    [54]孙卓辉.换热面上结垢过程数值模拟[硕士学位论文].北京:中国石油大学,2008.
    [55] Hasson D, Avriel M, Resnick W, et al. Mechanism of calcium carbonate scaledeposition on heat-transfer surfaces. Industrial&Engineering ChemistryFundamentals,1968,7(1):59-65.
    [56] Krause S. Fouling of heat-transfer surfaces by crystallization and sedimentation.International Chemical Engineering,1993,33(3):355-401.
    [57] McCabe WL, Robinson CS. Evaporator scale formation. Industrial&Engineering Chemistry,1924,16(5):478-479.
    [58] Reitzer BJ. Rate of scale formation in tubular heat exchangers. mathematicalanalysis of factors influencing rate of decline of over-all heat transfer coefficients.Industrial&Engineering Chemistry Process Design and Development,1964,3(4):345-348.
    [59] Taborek J, Aoki T, Ritter RB, et al. Predictive methods for fouling behavior.Chemical Engineering Process,1972,7(68):69-78.
    [60] Watkinson AP, Epstein N. Gas oil fouling in a sensible heat exchanger:Chemical Engineering Progress Symposium Series, Salt Lake City, USA,1969.
    [61] Bohnet M. Fouling of heat transfer surfaces. Chemical Engineering&Technology,1987,10(1):113-125.
    [62] Chien WC, Lee CC, Tai CY. Heterogeneous nucleation rate of calciumcarbonate derived from induction period. Industrial&Engineering ChemistryResearch,2007,46(20):6435-6441.
    [63] Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Application of fractaltheory for characterisation of crystalline deposits. Chemical Engineering Science,2006,61(6):2069-2078.
    [64] Zettler HU, Wei M, Zhao Q, et al. Influence of surface properties andcharacteristics on fouling in plate heat exchangers. Heat Transfer Engineering,2005,26(2):3-17.
    [65] Zhao Q, Liu Y. Investigation of graded Ni-Cu-P-PTFE composite coatings withantiscaling properties. Applied Surface Science,2004,229(1-4):56-62.
    [66] Rosmaninho R, Melo LF. Calcium phosphate deposition from simulated milkultrafiltrate on different stainless steel-based surfaces. International Dairy Journal,2006,16(1):81-87.
    [67] Rosmaninho R, Rocha F, Rizzo G, et al. Calcium phosphate fouling onTiN-coated stainless steel surfaces: Role of ions and particles. ChemicalEngineering Science,2007,62(14):3821-3831.
    [68] F rster M, Bohnet M. Modification of molecular interactions at the interfacecrystal/heat transfer surface to minimize heat exchanger fouling. InternationalJournal of Thermal Sciences,2000,39(7):697-708.
    [69] Müller-Steinhagen H, Branch CA. Heat transfer and heat transfer fouling in Kraftblack liquor evaporators. Experimental Thermal and Fluid Science,1997,14(4):425-437.
    [70] Bornhorst A, Müller-Steinhagen H, Zhao Q. Reduction of scale formation underpool boiling conditions by ion implantation and magnetron sputtering on heattransfer surfaces. Heat Transfer Engineering,1999,20(2):6-14.
    [71] Yang QF, Ding J, Shen ZQ. Investigation on fouling behaviors of low-energysurface and fouling fractal characteristics. Chemical Engineering Science,2000,55(4):797-805.
    [72]杨庆峰,丁洁. CaCO3在Cu基Ni—P—PTFE化学复合镀表面结垢行为及分形评价的研究.大连理工大学学报,1999,39(004):504-508.
    [73] Yang QF, Liu YQ, Gu AZ, et al. Investigation of induction period andmorphology of CaCO3fouling on heated surface. Chemical Engineering Science,2002,57(6):921-931.
    [74] Yang QF, Liu YQ, Gu AZ, et al. Investigation of calcium carbonate scalinginhibition and scale morphology by AFM. Journal of Colloid and InterfaceScience,2001,240(2):608-621.
    [75]任晓光,刘长厚.表面离子注入降低池式沸腾条件下CaSO4污垢生成.高校化学工程学报,2001,15(005):415-419.
    [76]任晓光,李铁凤,赵起,等.池式沸腾条件下CaSO4污垢生成的实验研究.化学工程,2006,34(003):13-15.
    [77]余火根.纳米二氧化钛光催化材料的可控制备与光催化活性[博士学位论文].武汉:武汉理工大学,2007.
    [78]黄兵.热处理对低温制备纳米结构二氧化钛薄膜光催化性能的影响[硕士学位论文].杭州:浙江大学,2006.
    [79] Watanabe T, Nakajima A, Wang R, et al. Photocatalytic activity andphotoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films,1999,351(1-2):260-263.
    [80] Gl β D, Frach P, Zywitzki O, et al. Photocatalytic titanium dioxide thin filmsprepared by reactive pulse magnetron sputtering at low temperature. Surface&Coatings Technology,2005,200(1-4):967-971.
    [81] Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews,2000,1(1):1-21.
    [82]邹时平.二氧化钛防污抑菌涂料[硕士学位论文].武汉:武汉理工大学,2007.
    [83]胡彦涛.石英玻璃表面TiO2薄膜的制备及抗菌性能研究[硕士学位论文].天津:天津大学,2006.
    [84] Liu MY, Wang H, Wang Y. Enhancing flow boiling and antifouling withnanometer titanium dioxide coating surfaces. AIChE Journal,2007,53(5):1075-1085.
    [85] Wang Y, Wang LL, Liu MY. Antifouling and enhancing pool boiling by TiO2coating surface in nanometer scale thickness. AIChE Journal,2007,53(12):3062-3076.
    [86] Wang LL, Liu MY. Pool boiling fouling and corrosion properties onliquid-phase-deposition TiO2coatings with copper substrate. AIChE Journal,2011,57(7):1710-1718.
    [87] Takata Y, Hidaka S, Cao JM, et al. Effect of surface wettability on boiling andevaporation. Energy,2005,30(2-4):209-220.
    [88] Takata Y, Hidaka S, Masuda M, et al. Pool boiling on a superhydrophilic surface.International Journal of Energy Research,2003,27(2):111-119.
    [89] Takata Y. Surface wettability effects in heat and fluid flow: ASME4thInternational Conference on Nanochannels, Microchannels, and Minichannels,Limerick, Ireland,2006.
    [90]王红.经过表面处理的蒸发器传热及防除垢研究[硕士学位论文].天津:天津大学,2006.
    [91]王燕.磁控溅射纳米表面池沸腾传热与防垢研究[硕士学位论文].天津:天津大学,2007.
    [92]王琳琳.纳米TiO2传热表面的液相沉积法制备及其池沸腾防垢研究[硕士学位论文].天津:天津大学,2007.
    [93] Brant JA, Childress AE. Assessing short-range membrane-colloid interactionsusing surface energetics. Journal of Membrane Science,2002,203(1-2):257-273.
    [94] Lyklema J, Van Leeuwen HP, Minor M. DLVO-theory, a dynamicre-interpretation. Advances in Colloid and Interface Science,1999,83(1-3):33-69.
    [95] van Oss CJ. Interfacial forces in aqueous media (Second edition). New York:Taylor&Fracis Group,2006.
    [96] Saikhwan P. Sticky business: A review on surface sspects of fouling mitigation.thammasat int j sc tech,2010,15:60-67.
    [97] Oliveira R. Understanding adhesion: A means for preventing fouling.Experimental Thermal and Fluid Science,1997,14(4):316-322.
    [98] Wu W, Zhuang H, Nancollas GH. Heterogeneous nucleation of calciumphosphates on solid surfaces in aqueous solution. Journal of Biomedical MaterialsResearch Part A,1997,35(1):93-99.
    [99] Zhao Q, Wang X. Heat transfer surfaces coated with fluorinated diamond-likecarbon films to minimize scale formation. Surface&Coatings Technology,2005,192(1):77-80.
    [100] Grasso D, Subramaniam K, Butkus M, et al. A review of non-DLVOinteractions in environmental colloidal systems. Reviews in EnvironmentalScience and Biotechnology,2002,1(1):17-38.
    [101] van Oss CJ. Long-range and short-range mechanisms of hydrophobic attractionand hydrophilic repulsion in specific and aspecific interactions. Journal ofMolecular Recognition,2003,16(4):177-190.
    [102] Zhao Q, Liu Y, Wang C, et al. Effect of surface free energy on the adhesion ofbiofouling and crystalline fouling. Chemical Engineering Science,2005,60(17):4858-4865.
    [103] Zhao Q. Effect of surface free energy of graded Ni-P-PTFE coatings onbacterial adhesion. Surface&Coatings Technology,2004,185(2-3):199-204.
    [104]桂泰江.有机硅氟低表面能防污涂料的制备和表征[博士学位论文].青岛:中国海洋大学,2008.
    [105] Rosmaninho R, Visser H, Melo L. Influence of the surface tension componentsof stainless steel on fouling caused by calcium phosphate. Progress in Colloid andPolymer Science,2004,123:203-209.
    [106] Rosmaninho R, Santos O, Nylander T, et al. Modified stainless steel surfacestargeted to reduce fouling-Evaluation of fouling by milk components. Journal ofFood Engineering,2007,80(4):1176-1187.
    [107] Al-Janabi A, Malayeri MR, Müller-Steinhagen H. Minimization of CaSO4deposition through surface modification: Proceedings of International Conferenceon Heat Exchanger Fouling and Cleaning VIII, Schladming, Austria,2009.
    [108] Al-Janabi A, Malayeri MR, Müller-Steinhagen H. Minimization of CaSO4deposition through surface modification. Heat Transfer Engineering,2011,3(4):291-299.
    [109] Roberge PR. Handbook of corrosion engineering. New York: McGraw-HillCompanies, Inc.,2000.
    [110]肖庆峰. TiO2薄膜的电化学沉积及耐蚀性能研究[硕士学位论文].郑州:郑州大学,2007.
    [111] Perez N. Electrochemistry and corrosion science. Boston: Kluwer AcademicPublishers,2004.
    [112] Padhy N, Kamal S, Chandra R, et al. Corrosion performance of TiO2coatedtype304L stainless steel in nitric acid medium. Surface&Coatings Technology,2010,204(16-17):2782-2788.
    [113] Szalkowska E, Gluszek J, Masalski J, et al. Structure and protective propertiesof TiO2coatings obtained using the sol-gel technique. Journal of MaterialsScience Letters,2001,20(6):495-497.
    [114] Shen GX, Chen YC, Lin CJ. Corrosion protection of316L stainless steel by aTiO2nanoparticle coating prepared by sol-gel method. Thin Solid Films,2005,489(1-2):130-136.
    [115] Shanaghi A, Sabour Rouhaghdam A, Shahrabi T, et al. Study of TiO2nanoparticle coatings by the sol-gel method for corrosion protection. MaterialsScience,2008,44(2):233-247.
    [116] Shanaghi A, Sabour AR, Shahrabi T, et al. Corrosion protection of mild steel byapplying TiO2nanoparticle coating via sol-gel method. Protection of Metals andPhysical Chemistry of Surfaces,2009,45(3):305-311.
    [117] Gluzek J, Masalski J, Furman P, et al. Structural and electrochemicalexaminations of PACVD TiO2films in Ringer solution. Biomaterials,1997,18(11):789-794.
    [118] Hu J, Shaokang G, Zhang C, et al. Corrosion protection of AZ31magnesiumalloy by a TiO2coating prepared by LPD method. Surface&CoatingsTechnology,2009,203(14):2017-2020.
    [119]曾振欧,肖正伟,赵国鹏.液相沉积法在304不锈钢上制备纳米二氧化钛涂层.电镀与涂饰,2008,(002):45-47.
    [120] Bendavid A, Martin PJ, Preston EW. The effect of pulsed direct currentsubstrate bias on the properties of titanium dioxide thin films deposited byfiltered cathodic vacuum arc deposition. Thin Solid Films,2008,517(2):494-499.
    [121] Rausch N, Burte EP. Thin TiO2films prepared by low pressure chemical vapordeposition. Journal of the Electrochemical Society,1993,140(1):146-149.
    [122] Ahn KH, Park YB, Park DW. Kinetic and mechanistic study on the chemicalvapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP.Surface&Coatings Technology,2002,171(1-3):198-204.
    [123] Masuda Y, Sugiyama T, Lin H, et al. Selective deposition and micropatterningof titanium dioxide thin film on self-assembled monolayers. Thin Solid Films,2001,382(1-2):153-157.
    [124] Zoppi RA, Trasferetti BC, Davanzo CU. Sol-gel titanium dioxide thin films onplatinum substrates: preparation and characterization. Journal of ElectroanalyticalChemistry,2003,544:47-57.
    [125] Deki S, Aoi Y, Hiroi O, et al. Titanium (IV) oxide thin films prepared fromaqueous solution. Chemistry Letters,1996,25(6):433-434.
    [126] Nagayama H, Honda H, Kawahara H. A new process for silica coating. Journalof the Electrochemical Society,1988,135(8):2013-2016.
    [127] Deki S, Aoi Y, Hiroi O, et al. Titanium (IV) oxide thin films prepared fromaqueous solution. Chemistry Letters,1996,25(6):433-434.
    [128] Yu JG, Yu HG, Cheng B, et al. The effect of calcination temperature on thesurface microstructure and photocatalytic activity of TiO2thin films prepared byliquid phase deposition. Journal of Physical Chemistry B,2003,107(50):13871-13879.
    [129] Pourmand M, Taghavinia N. TiO2nanostructured films on mica using liquidphase deposition. Materials Chemistry and Physics,2008,107(2-3):449-455.
    [130] Herbig B, Lobmann P. TiO2photocatalysts deposited on fiber substrates byliquid phase deposition. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):359-365.
    [131] Yuan JN, Tsujikawa S. Charaterization of sol-gel-derived TiO2coatings andtheir photoeffects on copper substrates. Journal of the Electrochemical Society,1995,142(10):3444-3450.
    [132] Ovenstone J, Yanagisawa K. Effect of hydrothermal treatment of amorphoustitania on the phase change from anatase to rutile during calcination. Chemistry ofMaterials,1999,11(10):2770-2774.
    [133]王晓萍.纳米氧化钛薄膜的制备及其光催化相关性能研究[博士学位论文].上海:中科院上海硅酸盐研究所,2000.
    [134]刘成龙,杨大智,赵红.316L不锈钢表面液相沉积TiO2薄膜的耐蚀性研究.功能材料,2003,34(005):600-602.
    [135]王祖鹓,张凤宝.二氧化钛薄膜的液相沉积法制备研究.分子催化,2003,17(006):421-424.
    [136] Patterson AL. The Scherrer formula for X-ray particle size determination.Physical Review,1939,56(10):978-982.
    [137]余火根.液相沉积TiO2薄膜的制备,表征和光催化活性[硕士学位论文].武汉:武汉理工大学,2004.
    [138]李顺.液相沉积法纳米TiO2光纤薄膜的制备及薄膜结构研究[硕士学位论文].天津:天津大学硕士学位论文,2005.
    [139]胡俊华.液相沉积法制备镁合金负载纳米TiO2薄膜及其性能研究[硕士学位论文].郑州:郑州大学,2006.
    [140]余萍,陈善华,刘思维,等.用液相沉积法在青铜表面制备TiO2薄膜.材料保护,2007,40(005):20-23.
    [141] Dodiuk H, Rios PF, Dotan A, et al. Hydrophobic and self-cleaning coatings.Polymers for Advanced Technologies,2007,18(9):746-750.
    [142] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial.Advanced Materials,2002,14(24):1857-1860.
    [143]段辉,熊征蓉,汪厚植,等.超疏水性涂层的研究进展.化学工业与工程,2006,23(001):81-87.
    [144] Raza MA, Kooij S, Poelsema B. Superhydrophobic surfaces by anomalousfluoroalkylsilane self-assembly on silica nanosphere arrays. Langmuir,2010,26(15):12962-12972.
    [145] Wasserman SR, Tao YT, Whitesides GM. Structure and reactivity ofalkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on siliconsubstrates. Langmuir,1989,5(4):1074-1087.
    [146] Wasserman SR, Whitesides GM, Tidswell IM, et al. The structure ofself-assembled monolayers of alkylsiloxanes on silicon: A comparison of resultsfrom ellipsometry and low-angle X-ray reflectivity. Journal of the AmericanChemical Society,1989,111(15):5852-5861.
    [147]戴克攻,张兴,卢国水,等.一种憎水液及憎水玻璃的制造方法: CN1435392A.
    [148]林昌健,沈广霞.基于表面纳米构筑的金属表面防腐蚀方法: ZL03108161.4.
    [149]林昌健,沈广霞,陈艺聪.一种金属表面超双疏微纳米膜制备方法: CN1663693A.
    [150] Shen GX, Chen YC, Lin L, et al. Study on a hydrophobic nano-TiO2coatingand its properties for corrosion protection of metals. Electrochimica Acta,2005,50(25-26):5083-5089.
    [151]张青红,高濂,林小华.一种可在多种基材表面形成疏水透明薄膜的方法:ZL200610116543.5.
    [152]刘芸.池核沸腾传热与CaCO3垢生成的研究[硕士学位论文].大连:大连理工大学,2007.
    [153]宁佳.强化换热表面盐水污垢特性的研究[硕士学位论文].大连:大连理工大学,2009.
    [154]苏修梁,张欣宇.表面涂层与基体间的界面结合强度及其测定.电镀与环保,2004,24(002):6-11.
    [155]张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社,2005.
    [156] Zhang TH, Huan Y. Nanoindentation and nanoscratch behaviors of DLCcoatings on different steel substrates. Composites Science and Technology,2005,65(9):1409-1413.
    [157] Huang LY, Zhao JW, Xu KW, et al. A new method for evaluating the scratchresistance of diamond-like carbon films by the nano-scratch technique. Diamondand Related Materials,2002,11(7):1454-1459.
    [158] Huang L, Lu J, Xu K. Elasto-plastic deformation and fracture mechanism of adiamond-like carbon film deposited on a Ti-6Al-4V substrate in nano-scratch test.Thin Solid Films,2004,466(1-2):175-182.
    [159] Qi J, Chan CY, Bello I, et al. Film thickness effects on mechanical andtribological properties of nitrogenated diamond-like carbon films. Surface&Coatings Technology,2001,145(1-3):38-43.
    [160] Yaghoubi H, Taghavinia N, Alamdari EK. Self cleaning TiO2coating onpolycarbonate: Surface treatment, photocatalytic and nanomechanical properties.Surface&Coatings Technology,2010,204(9-10):1562-1568.
    [161] Phan HT, Caney N, Marty P, et al. How does surface wettability influencenucleate boiling? Comptes Rendus Mecanique,2009,337(5):251-259.
    [162] Lai YK, Gao XF, Zhuang HF, et al. Designing superhydrophobic porousnanostructures with tunable water adhesion. Advanced Materials,2009,21(37):3799-3803.
    [163] Sermon PA, Leadley JG. Fluoroalkylsilane modification of sol-gel SiO2-TiO2coatings. Journal of Sol-Gel Science and Technology,2004,32(1):293-296.
    [164] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy basedon-CF3alignment. Langmuir,1999,15(13):4321-4323.
    [165] Takata Y, Hidaka S, Uraguchi T. Boiling feature on a super water-repellentsurface. Heat Transfer Engineering,2006,27(8):25-30.
    [166]中华人民共和国国际质量监督检验检疫总局. GB/T15452-2009工业循环冷却水中钙、镁离子的测定EDTA滴定法.北京:中国标准出版社,2009.
    [167]邢晓凯.碳酸钙于换热面上结垢与电磁抗垢的机理及实验研究.北京:北京工业大学,2005.
    [168]刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷).北京:化学工业出版社,2002.
    [169] Behbahani RM, Müller-Steinhagen H, Jamialahmadi M. Investigation of scaleformation in heat exchangers of phosphoric acid evaporator plants. The CanadianJournal of Chemical Engineering,2006,84(2):189-197.
    [170] Rood EP, Telionis DP. Journal fluids engineering policy on reportinguncertainties in experimental measurements and results. Journal of FluidsEngineering,1991,113(3):313-314.
    [171] Kim JH, Simon TW, Viskanta R. Journal of heat transfer policy on reportinguncertainties in experimental measurements and results. Journal of Heat Transfer,1993,115(1):5-6.
    [172] Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids.International Journal of Heat and Mass Transfer,2003,46(5):851-862.
    [173]周立新. TiO2纳米晶和薄膜的制备、表征及薄膜光电性质研究[硕士学位论文].大连:大连海事大学,2006.
    [174] Deki S, Aoi Y. Synthesis of metal oxide thin films by liquid-phase depositionmethod. Journal of Materials Research,1998,13(4):883-890.
    [175] Deki S, Aoi Y, Asaoka Y, et al. Monitoring the growth of titanium oxide thinfilms by the liquid-phase deposition method with a quartz crystal microbalance.Journal of Materials Chemistry,1997,7(5):733-736.
    [176]余萍,陈善华.液相沉积法的应用及发展.广东微量元素科学,2006,13(003):12-16.
    [177] Schmitt RH, Grove EL, Brown RD. The equivalent conductance of thehexafluorocomplexes of group IV (Si, Ge, Sn, Ti, Zr, Hf). Journal of theAmerican Chemical Society,1960,82(20):5292-5295.
    [178] Buslaev YA, Dyer DS, Ragsdale RO. Hydrolysis of titanium tetrafluoride.Inorganic Chemistry,1967,6(12):2208-2212.
    [179] Gao Y, Masuda Y, Koumoto K. Microstructure-controlled deposition of SrTiO3thin film on self-assembled monolayers in an aqueous solution of (NH4)2TiF6-Sr(NO3)2-H3BO3. Chemistry of Materials,2003,15(12):2399-2410.
    [180]丁希楼,张国栋.液相沉积法制备TiO2薄膜的动力学研究.安徽工业大学学报,2003,20(003):195-199.
    [181]丁希楼,张国栋.液相沉积法制备TiO2多孔膜沉积量的计算.安徽工业大学学报,2003,20(002):121-124.
    [182] Ortega Borges R, Lincot D. Mechanism of chemical bath deposition ofcadmium sulfide thin films in the ammonia‐Thiourea system. Journal of theElectrochemical Society,1993,140(12):3464-3473.
    [183] Chou JS, Lee SC. The initial growth mechanism of silicon oxide by liquid‐phase deposition. Journal of the Electrochemical Society,1994,141(11):3214-3218.
    [184] http://www.chemicalbook.com/ProductChemicalPropertiesCB32490004.htm.
    [185] GB/T3505-2009/ISO4287-1997产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数.北京:中国标准出版社,2009.
    [186] Magonov SN, Whangbo MH. Surface analysis with STM and AFM:experimental and theoretical aspects of image analysis. New York: VCHPublishers, Inc.,1996.
    [187]盛国裕. AES测薄膜厚度的误差分析与修正.现代仪器,2000,(005):44-45.
    [188] http://www.new-span.com/products/optinstr/thinfilm.php.
    [189]陈志红.硬质合金基体/HFCVD金刚石薄膜制备及薄膜织构的研究[硕士学位论文].长沙:中南大学,2005.
    [190] Correia NT, Ramos JJM, Saramago BJV, et al. Estimation of the surface tensionof a solid: application to a liquid crystalline polymer. Journal of Colloid andInterface Science,1997,189(2):361-369.
    [191] Michalski MC, Hardy J, Saramago BJV. On the surface free energy ofPVC/EVA polymer blends: comparison of different calculation methods. Journalof Colloid and Interface Science,1998,208(1):319-328.
    [192] Rellick GS, Runt J. A dielectric study of poly (ethylene‐co‐vinylacetate)–poly (vinyl chloride) blends. I. Miscibility and phase behavior. Journal ofPolymer Science Part B: Polymer Physics,1986,24(2):279-302.
    [193] van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals andpolar interactions in macroscopic systems. Chemical Reviews,1988,88(6):927-941.
    [194] Andritsos N, Karabelas AJ. Calcium carbonate scaling in a plate heat exchangerin the presence of particles. International Journal of Heat and Mass Transfer,2003,46(24):4613-4627.
    [195] Wang Z, Neville A, Meredith A. How and why does scale stick-Can the surfacebe engineered to decrease scale formation and adhesion? SPE InternationalSymposium on Oilfield Scale, Aberdeen, United Kingdom,2005.
    [196] Lioliou MG, Paraskeva CA, Koutsoukos PG, et al. Heterogeneous nucleationand growth of calcium carbonate on calcite and quartz. Journal of Colloid andInterface Science,2007,308(2):421-428.
    [197] Najibi SH, Müller-Steinhagen H, Jamialahmadi M. Calcium carbonate scaleformation during subcooled flow boiling. Journal of Heat Transfer,1997,119(4):767-775.
    [198] Kim WT, Cho YI. A study of scale formation around air bubble attached on aheat-transfer surface. International Communications in Heat and Mass Transfer,2002,29(1):1-14.
    [199] Pouilleau J, Devilliers D, Groult H, et al. Surface study of a titanium-basedceramic electrode material by X-ray photoelectron spectroscopy. Journal ofMaterials Science,1997,32(21):5645-5651.
    [200] http://www.lasurface.com/database/elementxps.php.
    [201]余家国,赵修建. TiO2光催化薄膜的XPS研究.材料研究学报,2000,14(002):203-209.
    [202] ISO4287-1997Geometrical product specifications (GPS)-Surface texture:Profile method-Terms, definitions and surface texture parameters.1997.
    [203] Schondelmaier D, Cramm S, Klingeler R, et al. Orientation and self-assemblyof hydrophobic fluoroalkylsilanes. Langmuir,2002,18(16):6242-6245.
    [204]宋小龙,安继儒.新编中外金属材料手册.北京:化学工业出版社,2008.
    [205] Yu BM, Cheng P. A fractal model for nucleate pool boiling heat transfer.Journal of Heat Transfer,2002,124(6):1117-1124.
    [206] Chu H, Yu B. A new comprehensive model for nucleate pool boiling heattransfer of pure liquid at low to high heat fluxes including CHF. InternationalJournal of Heat and Mass Transfer,2009,52(19-20):4203-4210.
    [207] Pioro IL, Rohsenow WM, Doerffer SS. Nucleate pool-boiling heat transfer. I:review of parametric effects of boiling surface. International Journal of Heat andMass Transfer,2004,47(23):5033-5044.
    [208] Rankin BH, Adamson WL. Scale formation as related to evaporator surfaceconditions. Desalination,1973,13(1):63-87.
    [209]宋永吉,任晓光,蒋英杰,等.纳米结构超疏水表面的沸腾传热.化工进展,2006,25(z1):298-301.
    [210] Kang MG. Effect of surface roughness on pool boiling heat transfer.International Journal of Heat and Mass Transfer,2000,43(22):4073-4085.
    [211] Johnson MA, De La Pe a J, Mesler RB. Bubble shapes in nucleate boiling.AIChE Journal,1966,12(2):344-348.
    [212] Jamialahmadi M, Bl chl R, Müller-Steinhagen H. Bubble dynamics and scaleformation during boiling of aqueous calcium sulphate solutions. ChemicalEngineering and Processing: Process Intensification,1989,26(1):15-26.
    [213]全贞花.碳酸钙与换热表面结垢与物理抗垢的实验及机理研究[博士学位论文].北京:北京工业大学,2007.
    [214] Müller-Steinhagen H, Zhao Q, Helalizadeh A, et al. The effect of surfaceproperties on CaSO4scale formation during convective heat transfer andsubcooled flow boiling. The Canadian Journal of Chemical Engineering,2000,78(1):12-20.
    [215] Malayeri MR, Müller-Steinhagen H, Bartlett TH. Fouling of tube bundles underpool boiling conditions. Chemical Engineering Science,2005,60(6):1503-1513.
    [216] Tang QG, Meng JP, Liang JS, et al. Effects of copper based alloys on thenucleation and growth of calcium carbonate scale. Journal of Alloys andCompounds,2010,491(1-2):242-247.
    [217] Turner CW, Smith DW. Calcium carbonate scaling kinetics determined fromradiotracer experiments with calcium-47. Industrial&Engineering ChemistryResearch,1998,37(2):439-448.
    [218] P Kk nen TM, Riihim Ki M, Puhakka E, et al. Crystallization fouling ofCaCO3–effect of bulk precipitation on mass deposition on the heat transfersurface: Proceedings of International Conference on Heat Exchanger Fouling andCleaning VIII, Schladming, Austria,2009.
    [219] Esawy M, Abd-Elhady MS, Malayeri MR, et al. Influence of sintering ondeposit formation during pool boiling of calcium sulphate solutions.Experimental Thermal and Fluid Science,2010,34(8):1439-1447.
    [220]赵亮,邹勇,刘义达,等.温度对换热器析晶污垢形成的影响.化工学报,2009,(008):1938-1943.
    [221] Bansal B, Chen XD, Müller-Steinhagen H, et al. Deposition and removalmechanisms during calcium sulphate fouling in heat exchangers. InternationalJournal of Transport Phenomena,2005,7(1):1-22.
    [222] Mwaba MG, Golriz MR, Gu J. A semi-empirical correlation for crystallizationfouling on heat exchange surfaces. Applied Thermal Engineering,2006,26(4):440-447.
    [223] Najibi SH, Müller-Steinhagen H, Jamialahmadi M. Calcium sulphate scaleformation during subcooled flow boiling. Chemical Engineering Science,1997,52(8):1265-1284.
    [224] Hasson D, Zahavi J. Mechanism of calcium sulfate scale deposition on heattransfer surfaces. Industrial&Engineering Chemistry Fundamentals,1970,9(1):1-10.
    [225] Chibowski E, Gonzalez-Caballero F. Theory and practice of thin-layer wicking.Langmuir,1993,9(1):330-340.
    [226]储鸿,崔正刚.薄板毛细渗透法测定粉体接触角和表面能成分.江南大学学报(自然科学版),2005,4(3):302-305.
    [227] Mullin JW. Crystallization. Oxford: Butterworth-Heinemann,2001.
    [228] Zhao Q, Liu Y, Wang S. Surface modification of water treatment equipment forreducing CaSO4scale formation. Desalination,2005,180(1-3):133-138.
    [229] Derjaguin BV. Theory of the stability of strongly charged lyophobic sols andthe adhesion of strongly charged particles in solutions of electrolytes. ActaPhysicochim. USSR,1941,14(6):633-662.
    [230] Verwey EJW. Theory of the stability of lyophobic colloids. The Journal ofPhysical Chemistry,1947,51(3):631-636.
    [231] Zhao Q, Müller-Steinhagen H. Intermolecular and adhesion forces of depositson modified heat transfer surfaces: Heat Exchanger fouling: FundamentalApproaches&Technical Solutions, Essen, Germany,2003.
    [232] Visser H. The role of surface forces in fouling of stainless steel in the dairyindustry. Journal of Dispersion Science and Technology,1998,19(6):1127-1150.
    [233] Durán JDG, Ontiveros A, Delgado AV, et al. Kinetics and interfacialinteractions in the adhesion of colloidal calcium carbonate to glass in apacked-bed. Applied Surface Science,1998,134(1-4):125-138.
    [234] Boks NP, Norde W, Van der Mei HC, et al. Forces involved in bacterialadhesion to hydrophilic and hydrophobic surfaces. Microbiology,2008,154(10):3122-3133.
    [235] Tang CY, Chong TH, Fane AG. Colloidal interactions and fouling of NF andRO membranes: A review. Advances in Colloid and Interface Science,2011,164(1-2):126-143.
    [236]程守洙,江之永.普通物理学第二册(第五版).北京:高等教育出版社,1998.
    [237] Israelachvili JN. Intermolecular and surface forces. London: Academic PressInc.,1992.
    [238] Myers D. Surfaces, interfaces, and colloids. New York: John Wiley&Sons,Inc.,1999.
    [239] Wu W, Nancollas GH. Kinetics of heterogeneous nucleation of calciumphosphates on anatase and rutile surfaces. Journal of Colloid and InterfaceScience,1998,199(2):206-211.
    [240] Hozumi A, Sugimura H, Yokogawa Y, et al. ζ-Potentials of planar siliconplates covered with alkyl-and fluoroalkylsilane self-assembled monolayers.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,182(1-3):257-261.
    [241] Park JS, Lee HJ, Choi SJ, et al. Fouling mitigation of anion exchangemembrane by zeta potential control. Journal of Colloid and Interface Science,2003,259(2):293-300.
    [242] Altria KD. Capillary electrophoresis guidebook: Principles, operation, andapplications. New Jersey: Humana Pr Inc,1996.
    [243] Rashchi F, Xu Z, Finch JA. Adsorption on silica in Pb-and Ca-SO4-CO3systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,132(2-3):159-171.
    [244] Hermansson M. The DLVO theory in microbial adhesion. Colloids andSurfaces B: Biointerfaces,1999,14(1-4):105-119.
    [245] Bacchin P, Aimar P, Sanchez V. Influence of surface interaction on transferduring colloid ultrafiltration. Journal of membrane science,1996,115(1):49-63.
    [246] Hong S, Elimelech M. Chemical and physical aspects of natural organic matter(NOM) fouling of nanofiltration membranes. Journal of Membrane Science,1997,132(2):159-181.
    [247] Al-Janabi A, Malayeri MR, Müller-Steinhagen H. Minimization of CaSO4deposition through surface modification. Heat Transfer Engineering,2011,32(3):291-299.
    [248] Balkenende AR, Van de Boogaard H, Scholten M, et al. Evaluation of differentapproaches to assess the surface tension of low-energy solids by means of contactangle measurements. Langmuir,1998,14(20):5907-5912.
    [249] Ojaniemi U, P ttikangas T, Riihim K M, et al. CFD model for particulatefouling-modeling particle adhesion on surface with XDLVO theory:6thInternational Conferenc on CFD in Oil&Gas, Metallurgical and ProcessIndustries, Sintef/Ntnu, Trondheim, Norway,2008.
    [250] Liu Y, Zhao Q. Influence of surface energy of modified surfaces on bacterialadhesion. Biophysical Chemistry,2005,117(1):39-45.
    [251] Somerscales E, Kassemi M. Fouling due to corrosion products formed on a heattransfer surface. Journal of Heat Transfer,1987,109(1):267-271.
    [252] Somerscales E. Fundamentals of corrosion fouling. Experimental thermal andfluid science,1997,14(4):335-355.
    [253] Maier B, Frankel GS. Pitting corrosion of bare stainless steel304under chloridesolution droplets. Journal of The Electrochemical Society,2010,157(10):C302-C312.
    [254] Baghery P, Frazam M, Mousavi AB, et al. Ni-TiO2nanocomposite coating withhigh resistance to corrosion and wear. Surface&Coatings Technology,2010,204(23):3804-3810.
    [255] Ma B, Goh GKL, Ma J, et al. Growth kinetics and cracking ofliquid-phase-deposited anatase films. Journal of the Electrochemical Society,2007,154(10): D557-D561.
    [256] Yamabi S, Imai H. Crystal phase control for titanium dioxide films by directdeposition in aqueous solutions. Chemistry of Materials,2002,14(2):609-614.
    [257] Li M, Luo S, Zeng C, et al. Corrosion behavior of TiN coated type316stainlesssteel in simulated PEMFC environments. Corrosion Science,2004,46(6):1369-1380.
    [258]贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社,2006.
    [259] Depenyou Jr F, Doubla A, Laminsi S, et al. Corrosion resistance of AISI1018carbon steel in NaCl solution by plasma-chemical formation of a barrier layer.Corrosion Science,2008,50(5):1422-1432.
    [260] Stern M, Geary AL. Electrochemical polarization: I. A theoretical analysis ofthe shape of polarization curve. Journal of Electrochemical Society,1957,104(1):56-63.
    [261] Gosser DK. Cyclic voltammetry: simulation and analysis of reactionmechanisms. New York: VCH Publishers, Inc,1993.
    [262]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [263] Liu C, Bi Q, Leyland A, et al. An electrochemical impedance spectroscopystudy of the corrosion behavior of PVD coated steels in0.5N NaCl aqueoussolution: Part I. Establishment of equivalent circuits for EIS data modeling.Corrosion Science,2003,45(6):1243-1256.
    [264] Loveday D, Peterson P, Rodgers B. Evaluation of organic coatings withelectrochemical impedance spectroscopy. Part3: Protocols for testing coatingswith EIS. Journal of Coatings Technology,2005,2(13):22-27.
    [265] Aziz-Kerrzo M, Conroy KG, Fenelon AM, et al. Electrochemical studies on thestability and corrosion resistance of titanium-based implant materials.Biomaterials,2001,22(12):1531-1539.
    [266] Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study ofthe passive oxide film on titanium for implant application. Electrochimica Acta,1996,41(7-8):1143-1153.
    [267] Cheng YL, Zhang Z, Cao FH, et al. A study of the corrosion of aluminum alloy2024-T3under thin electrolyte layers. Corrosion Science,2004,46(7):1649-1667.
    [268] Liu C, Bi Q, Matthews A. EIS comparison on corrosion performance of PVDTiN and CrN coated mild steel in0.5N NaCl aqueous solution. CorrosionScience,2001,43(10):1953-1961.
    [269] Pan J, Leygraf C, Jargelius-Pettersson R, et al. Characterization ofhigh-temperature oxide films on stainless steels by electrochemical-impedancespectroscopy. Oxidation of Metals,1998,50(5):431-455.
    [270] Rosborg B, Pan JS. An electrochemical impedance spectroscopy study ofcopper in a bentonite/saline groundwater environment. Electrochimica Acta,2008,53(25):7556-7564.
    [271] William Grips VK, Barshilia HC, Selvi VE. Electrochemical behavior of singlelayer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatingsprepared by reactive direct current magnetron sputtering. Thin Solid Films,2006,514(1-2):204-211.
    [272]张静玉.对天津地热水腐蚀结垢控制途径与效益分析:第三次全国地热学术会议,北京,1989.
    [273]朱家岭.地热能开发与应用技术.北京:化学工业出版社,2006.
    [274]江国胜.天津市河西区第六田园小区WR90D、WR91D地热对井资源评价报告.天津:天津地热勘察开发设计院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700