用户名: 密码: 验证码:
富氢气体中CO选择性甲烷化新型催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO选择性甲烷化具有工艺简单,易于操作,反应产物对燃料电池Pt电极无毒副作用等优点,在燃料电池的富氢原料气中低浓度CO深度脱除方面具有着诱人的应用前景,且其相关研究对竞争加氢反应体系以及其它对反应温度极为敏感的反应过程具有重要理论参考意义。
     本文首先对催化剂活性组分及载体进行了筛选,然后添加催化助剂Zr,成功制备出Ru-Zr/CNTs催化剂。催化剂性能评价结果显示350℃还原的Ru-Zr/CNTs催化剂具有优越的催化活性,可以在较宽的温度区间(180-240℃)内将CO出口浓度降至10ppm以下。XRD、XPS、TEM以及H2-TPR等分析结果表明:添加Zr可以弱化催化剂中Ru活性组分与载体CNTs之间的相互作用,促进催化剂活性粒子在碳纳米管表面的分散;此外,ZrO_2的存在使得活性Ru粒子表面易于发生氧化电荷转移,有利于CO分子在催化剂表面的活化。碳纳米管的结构差异(管壁数,管径以及石墨化程度等)对催化剂活性粒子的分散性以及粒子形态影响并不明显。
     利用CVD法(甲烷为碳源)构建了综合碳纳米管和泡沫镍诸多特性的CNTs-泡沫镍复合结构载体。研究发现采用间接浸渍法可实现Ni活性粒子在SiO_2涂层上高度均匀分散,因而在650℃的反应温度下制得碳纳米管管径分布相对均一的碳纳米管-泡沫镍复合结构载体。提高制备温度和催化剂中Ni负载量的会加剧催化剂渗入碳后的Ni粒子(即NixCy亚稳固溶体)的聚集以及裂解过程,进而导致所制备的碳纳米管的管径增大,管径分布变宽。而改变反应空速,碳纳米管的管径大小及其分布几乎不变。制备过程中,碳纳米管一部分呈现出顶端生长机制,另一部分则为底端生长机制。拉曼光谱结果表明碳纳米管-泡沫镍复合载体中的碳纳米管为多壁碳纳米管。
     选用CNTs-泡沫镍复合载体创制出新型Ru-Zr/CNTs-泡沫镍复合结构催化剂。在这种新型催化剂中,CNTs用来分散活性组分以获得高催化活性,而泡沫镍骨架则用来提供高的导热性和微型反应通道,以消除反应体系中局部热点问题,进而提高反应的CO选择性及稳定性。实验结果表明Ru-Zr/CNTs-泡沫镍复合结构催化剂可以在非常宽的温度范围内(200-300℃)将富氢气体中CO出口浓度降至10ppm以下,且保持较高的CO选择性(>60%)。与Ru-Zr/CNTs相比,Ru-Zr/CNTs-泡沫镍复合结构催化剂将CO出口浓度降至10ppm以下的温度区间更宽,且CO选择性更高。在低温段(<220℃),CO主要经解离吸附反应历程形成CH_4,而高温段时CO则主要经非解离吸附反应历程形成CH_4。
Selective CO methanation has been considered to be a promising strategy in thethorough removal of CO from H2-rich gases for fuel cell, because it is easy to operate, and theproduct is safe to the Pt anodes of the PEMFC. Additionally, many other reaction processesdevelopment such as the competitive hydrogenation reaction and the temperature-sensitivereaction can be benefit greatly from the research of selective CO methanation.
     The Ru-Zr/CNTs catalyst was prepared by using Ru, carbon nanotubes (CNTs) and Zr asactive component, support and promoter, respectively, based on the theory analysis andexperimental results. It was found that the catalyst reduced at350℃presented excellentcatalytic activity, decreasing CO concentration to below10ppm from10000ppm by COselective methanation at the temperature range of180-240℃. Characterizations includingXRD, XPS, TEM and H2-TPR indicate that the Zr modification of Ru/CNTs results in theweakening of the the interaction between Ru and CNTs and a higher Ru dispersion.Additionally, the oxidized charge transfer to surface Ru became more easily, due to theexisitance of ZrO_2, which is benefit to CO activation on catalyst surface. No significantinfluences on the dispersion, structure and morphology of Ru-Zr/CNTs catalyst were found bychanging the CNTs features such as wall number, out diameter (OD) and the degree ofgraphitization.
     The CNTs-Ni foam was configurated by chemical vapor deposition (CVD), in which themethane was employed as carbon source. It was found that the prepared active Ni particleswere well diapersed on the SiO_2coating by indirect impregnation method, leading to thefabrication of CNTs-Ni foam composite with narrow diameter distribution of CNTs at650℃.However, the diameter distribution of CNTs broadened with increasing reaction temperatureand Ni loading, due to the agglomeration and cracking of Ni particles. No significantdifferences in the CNT diameters were observed by changing weight hourly space velocity(WHSV). Some CNTs are formed via tip-mechanism, while the other formed viabottom-mechanism. Raman analysis indicates that the as-formed CNTs are multi-wall CNTs(MCNTs).
     The new Ru-Zr/CNTs-Ni foam composite catalyst was synthesized by using CNTs-Nifoam composite as support. In this catalyst, the CNTs is employed to disperse the activecomponent in nanometer size, assuring a high catalytic activity, while the Ni foam skeletonoffers high thermal conductivity and micro-channels in the size of micrometer order, allowingfor rapid heat transfer and minimizing the possibility of localized hot spots caused by the high exothermic reactions. The performance test shows that Ru-Zr/CNTs-Ni foam compositecatalyst has excellent catalytic performance, decreasing CO concentration to below10ppm byselective CO methanation at the temperature range of200-300℃, and keeping the COselectivity higher than60%. Compared with the results of Ru-Zr/CNTs, the Ru-Zr/CNTs-Nifoam composite catalyst has a wider temperature window where the CO level is less than10ppm and higher CO selectivity. The methanation of CO occurs over Ru-Zr/CNTs-Ni foamcomposite catalyst via two distinct pathways including dissociative reaction pathway andassociative reaction pathway. The first one dominates at low reaction temperature (<220℃),while the second one dominates at high reaction temperature.
引文
[1]陈红庆,基于车载燃料电池的制氢催化剂及反应器的研究[D],华南理工大学,2008.
    [2]黄莎华,刘之景,王支逸.燃料电池开发现状及其发展趋势[J].化学通报.2004,67(7):551-557.
    [3]陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报(北京).2005,23(4):24-28.
    [4] Steele B C, Heinzel A. Materials for fuel-cell technologies [J]. Nature,2001,414:345-352.
    [5]黄倬,屠海令,张冀强等.质子交换膜燃料电池的开发与应用[M].北京:冶金工业出版社,2000.
    [6] Gamburzev S, Appleby A J. Recent progress in performance improvement of the protonexchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources,2002,107(1):5-12.
    [7] Song S Q, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuelcells (DE-PEMFC)[J]. Applied Catalysis B: Environmental,2006,63(3-4):187-193.
    [8] Han J, Kim I S, S C K. Purifier-integrated methanol reformer for fuel cell vehicles [J].Journal of Power Sources,2000,86(1-2):223-227.
    [9] Urban P M, Funke A, Muller J T, Al E. Catalytic processes in solid polymer electrolytefuel cell systems [J]. Appl Catal A: Gen.2001,221(1-2).
    [10]刘其海,富氢重整气中CO选择性甲烷化剂催化剂的研究[D],华南理工大学,2009.
    [11] Holladay J D, Jones E O, Phelps M, Hu J. Microfuel processor for use in a miniaturepower supply [J]. Journal of Power Sources,2002,108(1-2):21-27.
    [12] Trimm D L. Minimisation of carbon monoxide in a hydrogen stream for fuel cellapplication [J]. Applied Catalysis A: General,2005,296(1):1-11.
    [13] Gottesfeld S. A new approach to the problem of carbon monoxide poisoning in fuel cellsoperation at low temperatures [J]. Journal of the Electrochemical Society,1988,135:2651-2652.
    [14]陈冠荣,陈监远,时钧等.“氢能”化工百科全书[M].北京:化学工业出版社,1997:100.
    [15]严菁,马建新,等.用于燃料电池汽车重整器的CO脱除技术[J].天然气化工:C1化学与化工.2002,27(5):35-38.
    [16] Li H, Goldbach A, Li W Z, Xu H Y. PdC formation in ultra-thin Pd membranes duringseparation of H2/CO mixtures[J]. Journal of Membrane Science,2007,299(1-2):130-137.
    [17] Zou H B, Dong X F, Lin W M. Selective CO oxidation in hydrogen-rich gas overCuO/CeO2catalysts [J]. Applied Surface Science,2006,253(5):2893-2898.
    [18] Chen X R, Zou H B, Chen S Z, Dong X F, Lin W M. Selective Oxidation of CO inExcess H2over Ru/Al2O3Catalysts Modified with Metal Oxide [J]. Journal of NaturalGas Chemistry,2007,16(4):409-414.
    [19] Chalk S G, F M J, W W F. Challenges for fuel cells in transport application [J]. Journal ofPower Sources,2000,86:40-51.
    [20] Snytnikov P V, et al. Selective oxidation of carbon monoxide in excess hydrogen overPt-,Ru-and Pd-supported catalyst [J]. Applied Catalysis A,2003,239:149-156.
    [21] Wang Y H, Zhua J L, Zhang J C, et al. Selective oxidation of CO in hydrogen-richmixtures and kinetics investigation on platinum-gold supported on zinc oxide catalyst [J].Journal of Power Sources,2006,155:440-466.
    [22] Ito S, Tanaka H, Minemura Y, et al. Selective CO oxidation in H2-rich gas overK2CO3-promoted Rh/SiO2catalysts: effects of preparation method [J]. Applied CatalysisA:General,2004,273:295-302.
    [23] Sekizawa K, Yano S, Eguchi K, et al. Selective removal of CO in methonal reformed gasover Cu-supported mixed metal oxides [J]. Applied Catalysis A: General,1998,169:291-297.
    [24] Teng H, Sskurai A U. Oxidative removal of CO contained hydrogen by using metal oxidecatalysts [J]. International Journal of Hydrogen Energy,2001,24(4):355-358.
    [25] Huang C P, Jiang R C, Elbaccouch M, Muradov N, Fenton J M. On-board removal of COand other impurities in hydrogen for PEM fuel cell applications [J]. Journal of PowerSources,2006,162(1):563-571.
    [26] Dagle R A, Wang Y, Xia G, Strohm J J, Holladay J, Palo D R. Selective CO methanationcatalysts for fuel processing applications [J]. Applied Catalysis A: General,2007,326(2):213-218.
    [27] Kr mer M, Duisberg M, St we K, et al. Highly selective CO methanation catalysts forthe purification of hydrogen-rich gas mixtures [J]. Journal of Catalysis,2007,251(2):410-422.
    [28] Liu Q H, Dong X F, Mo X M, et al. Selective catalytic methanation of CO inhydrogen-rich gases over Ni/ZrO2catalyst [J]. Journal of Natural Gas Chemistry,2008,17(3):268-272.
    [29]莫欣满,董新法,刘其海,林维明.纳米ZrO2负载Ni催化剂催化CO选择性甲烷化[J].石油化工,2008,37(7):656-661.
    [30] Pettersson L J, Westerholm R. State of the art of multi-fuel reformers for fuel cellvehicles: problem identification and research needs [J]. International Journal ofHydrogen Energy,2001,26(3):255-256.
    [31] Batista M S, Santiago E I, Assaf E M, et al. Evaluation of the water-gas shift and COmethanation progresses for purification of reformate gases and the coupling to a PEMFCsystem [J]. Journal of Power Sources,2005,145(1):50-54.
    [32] Paraskevi P, Dimitris I K, Xenophon E V. Selective methanation of CO over supportedRu catalysts [J]. Applied Catalysis B: Environmental,2009,88:470–478.
    [33] Huang C H, Lin Q H, et al. Process for the selective methanation of carbon monoxide(CO) contained in a hydrogen-rich reformate gas [P]. US20060111456,2006.
    [34]吴浩,潘智勇,宗保宁,沈师孔.非晶态Ni合金催化剂用于低温甲烷化反应的研究[J].化工进展.2005,24(3):299-302.
    [35]宗保宁.非晶态合金催化剂和磁稳定床反应工艺在石油化工技术中的推广应用[J].催化学报.2008,29(9):873-877.
    [36] Takeda H, Tory L. Walsh, Jon P. Wagner. Catalyst for the conversion of carbon monoxide
    [P]. US10/740144.2005.
    [37] Amano T, Takumi A, Zhang S G, Et Al. Carbon Monoxide Removing Catalyst andProduction Process for the Same as Well as Carbon Monoxide Removing Apparatus[P].US20060160697A1,2006.
    [38] Kingsley D, Randhava S. Methanation of carbon monoxide and carbon dioxide [P]. US3787468,2006.
    [39] Londhe V P, Kamble V S, Gupta N M. Effect of hydrogen reduction on the COadsorption and methanation reaction over Ru/TiO2and Ru/Al2O3catalysts [J]. Journalof Molecular Catalysis A: Chem.1997,121(1):33-44.
    [40] A mann J, Loffler E, Birkner A, Et Al. Ruthenium as oxidation catalyst: Bridging thepressure and material gaps between ideal and real systems in heterogeneous catalysis byapplying DRIFT spectroscopy and the TAP reactor [J]. Catalysis Today,2003,85(2-4):235-249.
    [41] Gorke O, Pfeifer P, Schubert K. Highly selective methanation by the use of amicrochannel reacto r[J]. Catalysis Today,2005,110(1-2):132-139.
    [42] Panagiotopoulou P, Kondarides D I, Verykioset X E. Selective methanation of CO oversupported noble metal catalysts: Effects of the nature of the metallic phase on catalyticperformance [J]. Applied Catalysis A: General,2008,344:45–54.
    [43] Yaccato K, Carhart R, Hagemeyer A, Lesik A, et al. Competitive CO and CO2methanation over supported noble metal catalysts in high throughput scanning massspectrometer [J]. Applied Catalysis A: General,2005,296(1):30-48.
    [44] Schoubye P. Methanation of CO on some Ni catalysts [J]. Journal of Catalysis,1969,14(3):238-246.
    [45] Liu Q H, Dong X F, Mo X M, et al. Selective catalytic methanation of CO inhydrogen-rich gases over Ni/ZrO2catalyst [J]. Journal of Natural Gas Chemistry,2008,17:268–272.
    [46]张文胜,戴伟,王秀玲,王红亚.新型甲烷化催化剂的研究[J].石油化工,2005,55:115-116.
    [47] Venter J J, Vannice M A. Carbon-supported Fe3(CO)12, Ru3(CO)12and Os3(CO)12:Decomposition rates, CO adsorption properties and CO hydrogenation behavior [J].Journal of Molecular Catalysis,1989,56(1-3):117-132.
    [48] Vannice M A. The catalytic synthesis of hydroocarbons from H2/CO mixtures over theGroup VIII metals V. The catalytic behavior of silica-supported metals [J]. Journal ofCatalysis,1977,50(2):228-236.
    [49] Takenaka S, Shimizu T, Otsuka K. Complete removal of carbon monoxide inhydrogen-rich gas stream through methanation over supported metal catalysts [J].International Journal of Hydrogen Energy,2004,29(10):1065-1073.
    [50] Resini C, Arrighi L, Concepci Herrera Delgado M, Angeles Larrubia Vargas M, AlemanyL J, Riani P, Berardinelli S, Marazza R, Busca G. Production of hydrogen by steamreforming of C3organics over Pd-Cu/γ-Al2O3catalyst [J]. International Journal ofHydrogen Energy,2006,31(1):13-19.
    [51] Bajpai P K, Bakhshi N N, Liu D C, Et Al. Methanation of carbon monoxide over aluminasupport Ni-Cu Alloys [J]. Canadian Journal of Chemistry Engneering,1982,60(5):613-616.
    [52] Kustov A L, Frey A M, Larsen K E, Johannessen T, Nǒskov J K, Christensen C H. COmethanation over supported bimetallic Ni-Fe catalysts: From computational studiestowards catalyst optimization [J]. Applied Catalysis A: General,2007,320:98-104.
    [53] Choudhury M B I, Ahmed S, Shalabi M A, Inui T. Preferential methanation of CO in asyngas involving CO2at lower temperature range [J]. Applied Catalysis A: General,2006,314(1):47-53.
    [54] Liu Q H, Liu Z L, Liao L W, Dong X F. Selective CO methanation over amorphousNi-Ru-B/ZrO2catalyst for hydrogen-rich gas purification [J]. Journal of Natural GasChemistry,2010,19:497–502.
    [55] Elmasides C, Kondarides D I, Neophytides S G. Partial oxidation of methane to synthesisgas over Ru/TiO2catalysts: Effects of modification of the support on oxidation state andcatalytic performance [J]. Journal of Catalysis,2001,198(2):195-207.
    [56] Xavier K O, Sreekala R, Takehira K, Et Al. Doping effects of cerium oxide on Ni/Al2O3catalysts for methanation [J]. Catalysis Today,1999,49(1-3):17-21.
    [57]沈炳龙,李定一.两种以TiO2为载体的新颖高效催化剂—T205型有机硫加氢催化剂和J107型甲烷化催化剂[J].氮肥设计,1995(33):48-49.
    [58]王文灼,胡常伟,陈豫.低镍甲烷化催化剂及其制备方法[P]. CN1043639A1990.
    [59] Mater T K. Surface and catalytic properties of ZrO2[J]. Chemistry Physical,1985,13(3-4):347-364.
    [60] Mercers P D L, Vanommen J G, Doesburg E B M. Zirconia as a suppprt for catalystsinfluence of additives on the thermal stability of the porous texture of monocliniczirconia [J]. Applied Catalysis A: General,1991,71(2):363-368.
    [61]黎先财,刘康强等.纳米BaTiO3载Ni催化剂在CO2重整CH4中的活性[J].天然气化工:C1化学与化工,2002,27(4):3-6.
    [62]傅小波,碳纳米管负载RuO2的制备表征及性能研究[D],华南理工大学,2008。
    [63] Henning T, Salama F. Carbon in the Universe [J]. Science,1998,282(5397):2204-2210.
    [64] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [65] Wang N, Tang Z K, Li G D, et al. Materials science: Single-walled4angstrom carbonnanotube arrays [J]. Nature,2000,408(6808):50-51.
    [66] Ajayan P M, Ichihashi T, Iijima S. Distribution of pentagons and shapes in carbonnanotubes and nanoparticles [J]. Chemical physics Letters,1993,202:384-388.
    [67] Serp P, Corrias M., Kalck P. Carbon nanotubes and nanofibers in catalysis [J]. AppliedCatalysis A-General,2003,253:337-358.
    [68] Fischer J E, Johnson A T. Electronic properties of carbon nanotubes [J]. Current OpinionIn Solid State&Materials Science,1999,4(1):28-33.
    [69] Bethune D S C, Klang H M, Vries S D, et al. Cobalt catalysed growth of carbonnanotubes [J]. Nature,1993,365:605-606.
    [70] Charlier J C. Defects in carbon nanotubes [J]. Accounts of Chemical Research,2002,35(12):1063-1069.
    [71] Issi J P, Charlier J C, Tanaka K, et al. The science and technology of carbon nanotubes
    [M].1997:107.
    [72] Ulbricht H, Moos G, Hertel T. Physisorption of molecular oxygen on single-wall carbonnanotube bundles and graphite [J]. Physical Review B,2002,66(7):0754041-0754047.
    [73] Ulbricht H, Kriebel J, Moos G, et al. Desorption kinetics and interaction of Xe withsingle-wall carbon nanotube bundles [J]. Chemical Physics Letters,2002,363(3-4):252-260.
    [74] Hilding J, Grulke E A, Sinnott S B, et al. Sorption of butane on carbon multiwallnanotubes at room temperature [J]. Langmuir,2001,17(24):7540-7544.
    [75] Masenelli-Varlot K, McRae E, Dupont-Pavlovsky N. Comparative adsorption of simplemolecules on carbon nanotubes:Dependence of the adsorption properties on the nanotubemorphology [J]. Applied Surface Science,2002,196(1-4):209-215.
    [76] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observedfor individual carbon nanotubes [J]. Nature,1996,381:678-680.
    [77] Corrias M, Serp P, Kalck P, et al. High purity multiwalled carbon nanotubes under highpressure and high temperature [J]. Carbon,2003,41(12):2361-2367.
    [78] Tang J, Qin L C, Matsushita A, et al. Study of carbon nanotubes under high pressure [J].Amorphous and Nanostructured Carbon,2000,593:179-184.
    [79] Moon J M, An K H, Lee Y H, et al. High-yield purification process of singlewalledcarbon nanotubes [J]. Journal of Physical Chemistry B,2001,105(24):5677-5681.
    [80] Martinez M T, Callejas M A, Benito A M, et al. Sensitivity of single wall carbonnanotubes to oxidative processing: structural modification, intercalation andfunctionalisation [J]. Carbon,2003,41(12):2247-2256.
    [81] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [82] Lee S J, Baik H K, Yoo J, et al. Large scale synthesis of carbon nanotubes by plasmarotating arc-discharge technique [J]. Diamond and Related Materials,2002,11:914-917.
    [83]刘云芳,化学气相催化裂解法制备纳米碳管及其应用研究[D].北京化工大学,2004.
    [84] Guo T, Nikolaev P, Thess A, at al. Catalytic growth of single-walled manotubes by laservaporization [J]. Chemical Physics Letters,1995,243(1-2):49-54.
    [85] Yacaman M J,Yoshida M M,Rendon L. Catalytic growth of carbon microtubules withfullerene structure [J]. Apply Physics Letters,1993,62(6):657-659.
    [86] Flahaut E, Govindaraj A, Peigney A, et al. Synthesis of single-walled carbon nanotubesusing binary(Fe,Co,Ni) alloy nano-particles prepared in situ by the reduction of oxidesolid solution [J]. Chemical Physics Letters,1999,300:236-242.
    [87] Ren Z F,HuangZ P,Xu J W,et al. Synthesis of lagre arrays of well-aligned carbonnanotubes on glass [J]. Seienee,1998,282:1105-1107.
    [88]Rodriguez N M, Baker R T K. Carbon nanofibers: A unique catalyst support medium [J].The Journal of Physical Chemistry,1994,98:13108-13111.
    [89]吕德义,徐铸德,徐丽萍等.碳纳米管作为载体在邻硝基甲苯多相催化加氢中的应用[J].浙江工业大学学报,2002,30:464-466.
    [90] Zhang Y, Zhang H B, Lin G D, et al. Preparation, characterization and catalytichydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst [J].Applied Catalysis A-General,1999,187(2):213-224.
    [91] Nhut J M, Vieira R, Pesant L, et al. Synthesis and catalytic uses of carbon and siliconcarbide nanostructures [J]. Catalysis Today,2002,76(1):11-32.
    [92] Onoe T, Iwamoto S, Inoue M. Synthesis and activity of the Pt catalyst supported on CNT[J]. Catalysis Communications,2007,8(4):701-706.
    [93] Ma H X, Wang L C, Chen L Y, et al. Pt nanoparticles deposited over carbon nanotubesfor selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications,2007,8(3):452-456.
    [94] Chen X X, Li N, Eckhard K, et al. Pulsed electrodeposition of Pt nanoclusters on carbonnanotubes modified carbon materials using diffusion restricting viscous electrolytes [J].Electrochemistry Communications,2007,9(6):1348-1354.
    [95] Li W, Han C, Liu W, et al. Expanded graphite applied in the catalytic process as acatalyst support [J]. Catalysis Today,2007,125(3-4):278-281.
    [96] Han X X, Chen Q, Zhou R X. Study on the hydrogenation of p-chloronitrobenzene overcarbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu [J].Journal of Molecular Catalysis A-Chemical,2007,277(1-2):210-214.
    [97] Guczi L, Stefler G, Geszti O, et al. CO hydrogenation over cobalt and iron catalystssupported over multiwall carbon nanotubes: Effect of preparation [J]. Journal ofCatalysis,2006,244(1):24-32.
    [98] Van Herwijnen T, Van Doesburg H, De Jong W A. Kinetics of the methanation of CO andCO2on a nickel catalyst[J]. Journal of Catalysis,1973,28(3):391-402.
    [99] Sughrue E L, Bartholomew C H. Kinetics of carbon monoxide methanation on nickelmonolithic catalysts[J]. Applied Catalysis,1982,2(4-5):239-256.
    [100] Mccarty J G, Wise H. Hydrogenation of surface carbon on alumina-supported nickel [J].Journal of Catalysis,1979,57(3):406-416.
    [101] Mccarty J G, Wise H. Dissociative chemisorption of CO on ruthenium [J]. ChemicalPhysics Letters,1979,61(2):323-326.
    [102]陈绍谦.一氧化碳甲烷化反应研究[J].化学研究与应用,1998,10(2):154-158.
    [103]陈绍谦. Ni催化剂上CO2和CO的TPD及TPSR研究[J].四川大学学报:自然科学版,1998,35(3):441-445.
    [104]江凌,王贵昌,关乃佳,吴杨,蔡遵生,潘荫明,赵学庄,黄伟,李永旺,孙予罕,钟炳. CO在某些过渡金属表面吸附活化的DFT研究[J].物理化学学报,2003,19(5):393-397.
    [105] Stuchly V, Klusacek K. Unsteady-state carbon monoxide methanation on an Ni/SiO2catalyst [J].1993,139(1):62-71.
    [106] Vanderwiel D P, Pruski M, King T S. A kinetic study on the adsorption and reaction ofhydrogen over silica-supported ruthenium and silver-ruthenium catalysts during thehydrogenation of Carbon Monoxide [J]. Journal of catalysis,1999,188(1):186-202.
    [107] G rke O, Pfeifer P, Schubert K. Highly selective methanation by the use of amicrochannel reactor [J]. Catal Today,2005,110(1-2):132-139.
    [108]董新法刘文跃高军林维明.微通道反应器内CO的选择性甲烷化净化[J].华南理工大学学报(自然科学版),2009,37(12):44-48.
    [109]高军,董新法,林维明.泡沫金属微反应器内富氢重整气中CO选择性甲烷化[J],燃料化学学报,2010,38(3):337-342.
    [110] Panagiotopoulou P, Kondarides D I, Verykios X E. Selective methanation of CO oversupported noble metal catalysts: Effects of the nature of the metallic phase on catalyticperformance [J].Applied Catalysis A: General344(2008)45-54.
    [111] Tavares M T, Alstrup I, Bernardo C A, Rostrup-Nielsen J R. Carbon Formation and COMethanation on Silica-Supported Nickel and Nickel-Copper Catalysts in CO+H2Mixtures[J]. Journal of Catalysis,1996,158(2):402-410.
    [112] Batista M S, Santiago E I, Assaf E M, et al. Evaluation of the water-gas shift and COmethanation progresses for purification of reformate gases and the coupling to aPEMFC system[J]. Journal of Power Sources,2005,145(1):50-54.
    [113] Stuchly V, Klusacek K. Unsteady-state carbon monoxide methanation on an Ni/SiO2catalyst [J]. Journal of Catalysis,1993,139(1):62-71.
    [114] Noskov J K, Bligaard T, Logadottir A, et al. Universality in heterogeneous catalysis [J].Journal of Catalysis,2002,209:275-278.
    [115] Bligaard T, Noskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J. TheBrosted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].Journal of Catalysis,2004,224(1):206-217.
    [116] Johnson S, Madix R J. Desorption of hydrogen and carbon monoxide from Ni(100),Ni(100)p(2/2)S, and Ni(100)c(2/2)S surfaces [J].1981,108(1):77-98.
    [117] Fujita S, Nakamura M, Doi T, Takezawa N. Mechanisms of methanation of carbondioxide and carbon monoxide over nickel/alumina catalysts [J]. Applied Catalysis A:General,1993,104(1):87-100.
    [118] Ross J R H. A modified kinetic expression for the methanation of carbon monoxide overgroup VIII metal catalysts [J]. Journal of Catalysis,1981,71(1):205-208.
    [119] Kustov A L, Frey A M, Larsen K E, Johannessen T, Nǒskov J K, Christensen C H. COmethanation over supported bimetallic Ni-Fe catalysts: From computational studiestowards catalyst optimization [J]. Applied Catalysis A: General,2007,320:98-104.
    [120]魏树权,李丽波,商永臣,徐恒泳,徐国林.沉淀型Ni-La2O3/ZrO2催化剂上CO2甲烷化性能的研究[J].天然气化工:C1化学与化工,2004,29(5):10-13.
    [121] Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxidemethanation [J]. Journal of Catalysis,1978,51(1):1-8.
    [122] Chetty R, Xia W, Kundu S, et al. Effect of Reduction Temperature on the Preparationand Characterization of Pt-Ru Nanoparticles on Multiwalled Carbon Nanotubes[J].Langmuir,2009,25:3853-3860.
    [123] Ang, L M, et al. Decoration of activated carbon nanotubes with copper and nickel [J].Carbon,2006,38:363-372.
    [124] Ma L, He D H, Li Z P. Promoting effect of rhenium on catalytic performance of Rucatalysts in hydrogenolysis of glycerol to propanediol [J]. Catalysis Communications2008,9(15):2489-2495.
    [125]罗来涛,王敏炜,李凤仪等. La2O3对Ni2Mo/γ-Al2O3催化剂CO和CO2甲烷化的影响[J].中国稀土学报,1999,17(2):120-124.
    [126] Panagiotopoulou P, Kondarides D I, Verykios X E. Mechanistic study of the selectivemethanation of CO over Ru/TiO2catalyst: Identification of active surface species andreaction pathways [J]. Journal of Physical Chemistry C,2011,115(4):1220-1230.
    [127] Chen A, Miyao T, Higashiyama K, et al. High catalytic performance ofruthenium-doped mesoporous nickel–aluminum oxides for selective CO methanation[J]. Angewandte Chemie International Edition,2010,49:9895-9898.
    [128] Rehmat A, Randhava S S. Methanation of Carbon monoxide [J]. Industrial andEngineering Chemistry Product Research and Development,1970,9:512-515.
    [129] Sun Z Y, Zhang X R, Na N,et al. Synthesis of ZrO2-carbon nanotube composites andtheir application as chemiluminescent sensor material for ethanol [J]. Journal ofPhysical Chemistry B,2006,110(27):13410-13414.
    [130] Wang S J, Yin S F, Li L,et al. Investigation on modification of Ru/CNTs catalyst for thegeneration of COx-free hydrogen from ammonia [J]. Applied Catalysis B:Environmental,2004,52(4):287-299.
    [131] Xie S H, Qiao M H, Li H X,et al. A novel Ru–B/SiO2amorphous catalyst used inbenzene-selective hydrogenation [J]. Applied Catalysis A: General,1999,176(1):129-134.
    [132] Michiaki Y, Hiroki H, Katsuhiko A, et al. Effect of tetragonal ZrO2on the catalyticactivity of Ni/ZrO2catalyst prepared from amorphous Ni-Zr alloys [J]. CatalysisCommunications,2006,7(1):24-28.
    [133] Zhang X J, Jiang W, Song D, et al. Preparation and Catalytic Activity of Co/CNTsNanocomposites via Microwave Irradiation [J]. Propellants, Explosives, Pyrotechnics,2009,34(2):151-154.
    [134] Song H L, Yang J, Zhao J, et al. Methanation of Carbon Dioxide over a HighlyDispersed Ni/La2O3Catalyst [J]. Chinese Journal of Catalysis,2010,31(1):21-23..
    [135] Partanen J, Backman P, et al. Absorption of HCl by limestone in hot flue gases Part II:importance of calcium hydroxychloride [J]. Fuel,2005,84(12):1674-1684.
    [136] El-Khodary A, Oraby A H, Abdelnaby M M. Characterization, electrical and magneticproperties of PVA films filled with FeCl3–MnCl2mixed fillers [J]. Journal ofMagnetism and Magnetic Materials,2008,320(11):1739-1746.
    [137] Jung C H, Tsuboi H, Koyama M, et al. Different support effect of M/ZrO2and M/CeO2(M=Pd and Pt) catalysts on CO adsorption: A periodic density functional study[J].Catal Today,2006,111(3-4):322-327.
    [138] Ishihara T, Harada K, Eguchi K, et al. Electronic interaction between supports andruthenium catalysts for the hydrogenation of carbon monoxide [J]. Journal of Catalysis,1992,136(1):161-169.
    [139] Perkas N, Teo J, Shen S C, et al. Supported Ru catalysts prepared by twosonication-assisted methods for preferential oxidation of CO in H2[J]. PhysicalChemistry Chemical Physics,2011,13(34):15690-15698.
    [140] Matar S F, Campet G, Subramanian M A. Electronic properties of oxides: Chemical andtheoretical approaches [J]. Progress in Solid State Chemistry,2011,39(2):70-95.
    [141]. Liu S C, Wu Y M, Wang Z, et al. Study of a Ru-La/ZrO2Catalyst prepared byprecipitation method for selective hydrogenation of benzene to cyclohexene [J]. Journalof Natural Gas Chemistry,2005,14(4):226-232.
    [142] Guerrero-Ruiz A, Badenes P, Rodr guez-Ramos I, et al. Study of some factorsaffecting the Ru and Pt dispersions over high surface area graphite-supported catalysts[J]. Applied Catalysis A: General,1998,173(2):313-322.
    [143] Zhang Y J, Maroto-Valiente A, Rodriguez-Ramos I, et al. Synthesis and characterizationof carbon black supported Pt–Ru alloy as a model catalyst for fuel cells [J].Catal Today,2004,93(5):619-626.
    [144] Cai M D, Wen J, Chu W, et al. Methanation of carbon dioxide on Ni/ZrO2-Al2O3catalysts: Effects of ZrO2promoter and preparation method of novel ZrO2-Al2O3carrier[J]. Journal of Natural Gas Chemistry,2011,20(3):318-324.
    [145] Castillejos-Lopez E, Maroto-Valiente A, Nevskaia D M, et al. Comparative study ofsupport effects in ruthenium catalysts applied for wet air oxidation of aromaticcompounds [J]. Catal Today,2009,143(3-4):355-363.
    [146] Xu Q C, Lin J D, Li J, et al. Combination and interaction of ammonia synthesisruthenium catalysts [J] Journal of Molecular Catalysis A: Chemical,2006,259(1-2):218-222.
    [147] Wang Y Z, Wu R F, Zhao Y Z. Effect of ZrO2promoter on structure and catalyticactivity of the Ni/SiO2catalyst for CO methanation in hydrogen-rich gases [J].CatalToday,2010,158(3-4):470-474.
    [148] Elmasides C, Kondarides D I, Neophytides S G. Partial Oxidation of methane tosynthesis gas over Ru/TiO2catalysts: Effects of modification of the support onoxidation state and catalytic performance [J]. Journal of catalysis,2001,198(2):195-210.
    [149] Yokoyama A, Komiyama H, Inoue H, Masumoto T, Kimura H M. Catalysis byamorphous Ni0.6Fe0.2P0.2ribbons[J]. Journal of catalysis,1981,15(4):365-368.
    [150] Hou T, Yuan L X, Ye T Q, et al. Hydrogen production by low-temperature reforming oforganic compounds in bio-oil over a CNT-promoting Ni catalyst [J]. InternationalJournal of Hydrogen Energy,2009,34:9095-9107.
    [151] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis [J].AppliedCatalysis A: General,2003,253:337–358.
    [152] Garcia J, Gomes HT, Serp P, et al. Carbon nanotube supported ruthenium catalysts forthe treatment of high strength wastewater with aniline using wet air oxidation [J].Carbon,2006,44:2384-2391.
    [153] Xiong J, Dong X F, Li L L. CO selective methanation in hydrogen-rich gas mixturesover carbon nanotube supported Ru-based catalysts [J]. Journal of Natural GasChemistry,2012,21:445-451.
    [154] Grzelczak M, Correa-Duarte M A, Liz-Marzán LM. Carbon Nanotubes Encapsulated inWormlike Hollow Silica Shells [J]. Small,2006,2:1174-1177.
    [155] Chin P, Sun X L, Roberts G W, et al. Preferential oxidation of carbon monoxide withiron-promoted platinum catalysts supported on metal foams [J].Applied Catalysis A:General,2006,302:22-31.
    [156] Ago H, Uehara N, Yoshihara N, Tsuji M, Yumura M, Tomonaga N, Setoguchi T. Gasanalysis of the CVD process for high yield growth of carbon nanotubes overmetal-supported catalysts[J]. Carbon,2006,44:2912-2918.
    [157] Venugopal A, Naveen Kumar S, Ashok J, et al. Hydrogen production by catalyticdecomposition of methane over Ni/SiO2[J].International Journal of Hydrogen Energy,2007,32:1782-1788.
    [158]段翠云,崔光,刘培生。泡沫镍的制备工艺条件和比表面积[J]。金属功能材料,2011,18(2):28-31.
    [159] Inoue M, Asai K, Nagayasu Y. Formation of multi-walled carbon nanotubes byNi-catalyzed decomposition of methane at600-750℃[J]. Diamond&RelatedMaterials,2008,17:1471-1475.
    [160] Martin-Gullon I, Vera J, Conesa J A, González J L, Merino C. Differences betweencarbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor.Carbon2006;44:1572–80.
    [161] Kumar M, Ando Y. Controlling the diameter distribution of carbon nanotubes grownfrom camphor on a zeolite support[J]. Carbon,2005,43:533-540.
    [162] Snoeck J W, Froment G F, Fowlesy M. Kinetic study of the carbon filament formationby methane cracking on a nickel catalyst [J]. Journal of Catalysis,1997,169:250-262.
    [163] Guevar J C, Wang J A, Chen L F, Ni/Ce-MCM-41mesostructured catalysts forsimultaneous production of hydrogen and nanocarbon via methane decomposition [J].International Journal of Hydrogen Energy,2010,35:3509-3521.
    [164] Snoeck J W, Froment G F, Fowlesy M. Filamentous carbon formation and gasification:thermodynamics, driving Force, nucleation, and steady-state growth [J]. Journal ofCatalysis,1997,169(1):240-249.
    [165] Chai S P, Sharif Zein S H, Mohamed A R. Synthesizing carbon nanotubes and carbonnanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane[J]. Diamond&Related Materials,2007,16:1656–1664.
    [166] Avdeeva L B, Goncharova O V, Kochubey D I, et al. Coprecipitated Ni-alumina andNi-Cu-alumina catalysts of methane decomposition and carbon deposition. II.Evolution of the catalysts in reaction [J]. Applied Catalysis A: General,1996,141:117-129.
    [167] Reshetenko T V, Avdeeva L B, Ismagilov Z R, Chuvilin A L, Ushakov V A. Carboncapacious Ni-Cu-Al2O3catalysts for high-temperature methane decomposition. AppliedCatalysis A: General,2003;247:51-63.
    [168] Chen J L, Li Y D, Li Z Q, Zhang X X. Production of COx-free hydrogen andnanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts.Applied Catalysis A: General,2004;269:179-86.
    [169] Zhan S L, Tian Y J, Cui Y B, Wu H, Wang Y G, Ye S F, Chen Y F. Effect of processconditions on the synthesis of carbon nanotubes by catalytic decomposition of methane[J]. China Part,2007,5:213-219.
    [170] Yu Z X, Chen D, T tdal B, ZhaoT J, Dai Y C,Yuan W K, Holmen A. Catalyticengineering of carbon nanotube production [J]. Applied Catalysis A: General,2005,279:223-33.
    [171] Jablonski G A, Geurts F W, Sacco A, Biederman R R. Carbon deposition over Fe, Ni,and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gasmixtures: I. Morphology [J]. Carbon,1992,30:87-98.
    [172]. Lu A H, Schmidt W, Tatar S D, Spliethoff B, Popp J, Kiefer W G, Schüth F. Formationof amorphous carbon nanotubes on ordered mesoporous silica support [J]. Carbon,2005,43:1778-1814.
    [173] Jeong N, Lee J. Growth of filamentous carbon by decomposition of ethanol on nickelfoam:Influence of synthesis conditions and catalytic nanoparticles on growth yield andmechanism [J]. Journal of Catalysis,2008,260:217-226
    [174] Ago H, Uehara N, Yoshihara N, Tsuji M, Yumura M, Tomonaga N, Setoguchi T. Gasanalysis of the CVD process for high yield growth of carbon nanotubes overmetal-supported catalysts [J]. Carbon,2006,44:2912-2918.
    [175] Dai H B, Gao L L, Liang Y, et al. Promoted hydrogen generation from ammonia boraneaqueous solution using cobalt–molybdenum–boron/nickel foam catalyst [J]. Journal ofPower Sources,2010,195:307–312.
    [176] Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced byhydrolysis of ZrOCl2solutions: Ⅲ.kinetics study for the nucleation and crystal-growthprocesses of primary particles [J]. Journal of the American Ceramic Society,2001,84:2303-2312.
    [177] Matsui K, Ohgai M. Formation Mechanism of Hydrous-Zirconia Particles Produced byHydrolysis of ZrOCl2Solutions: II [J]. Journal of the American Ceramic Society,2000,83(6):1386-1392.
    [178] Shan Y, Gao L. Synthesis and characterization of phase controllable ZrO2–carbonnanotube nanocomposites [J]. Nanotechnology,2005,16:625–630.
    [179] álvarez-Galván M C, Constantinou D A, Navarro R M, et al. Surface reactivity ofLaCoO3and Ru/LaCoO3towards CO, CO2and C3H8: Effect of H2and O2pretreatments [J]. Applied Catalysis B: Environmental,2011,102:291–301.
    [180] Lee S C, Jang J H, Lee B Y, et al. Promotion of hydrocarbon selectivity in CO2hydrogenation by Ru component [J]. Journal of Molecular Catalysis A: Chemical,2004,210:131–141
    [181] Panagiotopoulou P, Kondarides D I, Verykios X E. Mechanistic aspects of the selectivemethanation of CO over Ru/TiO2catalyst [J]. Catalysis Today,2012,181:138–147.
    [182] Alstrup I. On the kinetics of CO methanation on nickel surfaces [J]. Journal of Catalysis,1995,151:216-225.
    [183] Bajusz I G, Goodwin Jr J G. Hydrogen and temperature effects on the coverages andactivities of surface intermediates during methanation on Ru/SiO2[J]. Journal ofCatalysis,1997,169:157-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700