用户名: 密码: 验证码:
连续TiO_2纤维的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前的环境污染状况日益严重,使得无毒、高效的TiO2光催化剂近年来成为新型无机功能材料研究的热点。但目前作为研究主体的TiO2纳米材料,如Ti02纳米粉体、TiO2纳米管及TiO2纳米纤维,仍存在两大基本问题:其一,由于尺寸的纳米化而难以分离回收;其二,仅在紫外光条件下具有光催化活性,可见光利用率低。这两大问题限制了该材料的工业化应用。因此,研究便于回收且光响应范围得到扩展的连续TiO2纤维对于TiO2催化剂的实际应用具有重要意义。本文采用溶胶-凝胶法制备了连续TiO2纤维(CTF),研究了具有可纺性钛溶胶的形成机制和热处理过程中工艺参数对CTF微观结构的影响规律;进行了CTF的表面造孔机理和晶粒生长动力学研究;对CTF进行无机非金属元素的掺杂改性,并以亚甲基蓝溶液和甲醛为目标降解物,研究了CTF的光催化活性。主要研究结果如下:
     (1)研究了TiO2纤维先驱体结构形成机理,精确控制Ti02纤维先驱体的结构及其流变性,实现Ti02纤维先驱体可纺性。研究结果表明,在pH值为5、R小于或等于2、P为0.1%、油浴温度在120℃~135℃和油浴时间为1-2h的条件下制备的溶胶粘度为5-12Pa.s,具有可纺性。当pH值一定(pH=5)时,R≤2(molar ratio)的溶胶为线性结构,其分子式为Ti(OBu)3[OTi(OBu)2]n-1OH,溶胶具有可纺性;R>2(molar ratio)的溶胶形成网络状结构,溶胶失去可纺性。
     (2)将可纺性的钛溶胶通过实验室自制高压纺丝机纺丝,热处理后得到CTF。研究了热处理方式、温度和时间对CTF纤维结构及化学组分的影响。研究发现,空气热处理和水汽活化热处理所制备的CTF直径一致(约为20-30μm),且组成纤维的纳米颗粒尺寸也一致,然而水汽活化热处理制备的CTF比表面积(32.27m2/g)比空气热处理制备的CTF的比表面积(26.66m2/g)大。热处理温度为500℃时,CTF由结晶良好的锐钛矿型和金红石型TiO2纳米晶粒组成,TiO2从锐钛矿转变为金红石型的晶型转变活化能为96kJ/mol。利用水汽活化热处理方式,在500℃下对原丝进行不同时间的热处理,对锐钛矿TiO2晶粒和金红石TiO2晶粒分别进行晶粒生长动力学研究。结果表明,500℃时,锐钛矿的晶粒生长指数为2,品粒生长速率常数为5.34×102nm2/h;金红石晶粒的生长指数为4,品粒生长速率常数为1.91×107nm4/h。水汽活化造孔机理为:CTF表面由于缺氧而碳化的有机物,与水蒸气分解所释放出的氧气发生气化反应,以CO2的形式逸出,从而在CTF表面形成孔隙。
     (3)采用亚甲基蓝(MB)溶液和甲醛的光催化降解实验,评价CTF的光催化活性。在紫外灯功率(25W)和反应温度(25℃)一定的条件下,CTF对MB溶液光催化降解的最佳反应条件是:催化剂CTF的浓度为0.6g/L,pH值为7.0,MB溶液基本降解完全,且在重复使用8次后,降解率仍达到90.3%;对甲醛(10mg/L)光催化降解的最佳反应条件是:催化剂CTF浓度为0.6g/L,pH值为7.0,降解率达到98.6%。
     (4)采用原位法制备了Si掺杂的连续TiO2纤维(Si-CTF),并在N2气氛下热处理,制各了Si、N共掺杂的连续Ti02纤维[(Si,N)-CTF]。结果表明,Si/Ti摩尔比(S)为5%时的溶胶具有可纺性,且在40℃以下Si掺杂可以提高溶胶粘度。Si掺杂能抑制TiO2晶粒的生长。另外,经500℃热处理后,在Si-CTF和(Si,N)-CTF的XRD图谱中仅有锐钛矿相TiO2,并未出现金红石相的衍射峰,说明Si掺杂或者Si、N共掺杂均可以抑制TiO2由锐钛矿相向金红石相转变。在可见光条件下,CTF对MB溶液基本无降解,Si-CTF对MB溶液的降解率为69.2%,(Si,N)-CTF对MB溶液的降解率则达到93.7%。
In recent years, the increasingly serious environment pollution prompts the rapid development in the photocatalytic technology with non-toxicity and high-efficiency. TiO2nano-material is perhaps the most prospecting photo-catalyst. However, the nano meter TiO2materials including TiO2nanopowder, TiO2nanotube and TiO2nanofiber, is hard to separate and recovery from the water. Therefore, a lot of studies on macroscopic and fibrous TiO2catalyst have been recently carried out. In this paper, continuous titanium dioxide fiber (CTF) was successfully synthesized by sol-gel method, and the Ti sol fabrication mechanism and the effects of the processing parameters on the CTF were investigated. The pore formation mechanism on the TiO2surface was analyzed and the grain growth kinetics was brifly investigated. Then methylene blue and formaldehyde were used as the target pollutant to study the photocatalytic activity of the CTF. In addition, the CTF was modified by Si doping and (Si, N) co-doping. The main conclusions were drawn as following:
     Ti sol with spinnability was synthesized by sol-gel technique using the tetrabutyl orthotitanate as Ti source, and absolute alcohol as solvent. The effects of pH value, the molar ratio of distilled water to tetrabutyl orthotitanate (R), the molar ratio of PVP adhesive to tetrabutyl orthotitanate (P), oil bath temperature and time on the viscosity and rheological properties of the Ti sol were investigated, and the formation mechanism of spinning Ti sol was also analyzed. The optimal preparation conditions of Ti sol with spinnability were obtained:pH=5, R≤2, P=0.1%, the oil bath temperature120℃-135℃, and the oil bath time1-2hours. When R>2, the structure of the Ti sol changed from chain-like to three-dimensional network which presents poor spinnability.
     The CTF were successfully prepared by the Ti sol spinning and subsequent calcination treatment. The effects of calcination methods, calcination temperature and time on the microstructure and composition of the CTF were examined by SEM, TEM and XRD. The results showed that the samples obtained by air calcination and steam activation calcination methods had similar fiber diameter (20-30μm) and nano-particle size. The CTF calcined by the two calcination methods at500℃contained anatase and rutile phases. However, the specific surface area of the steam activation sample (32.27m2·g-1) was higher than that of the air calcination one (26.66m2·g-1). Through the kinetics analysis of the DSC curves, the activation energy of phase transformation from anatase phase to rutile phase was about96kJ·mol-1
     The grain growth kinetics of the CTF at500℃was researched. At500℃, the grain growth exponent and the rate constant is2,5.34×102nm2·h-1for anatase and4,1.91×107nm4·h-1for rutile TiO2phase. The carbonated organic on the surface of CTF could react with oxygen resulting from steam decomposition to form CO2. Then, the escape of CO2induced the pores formation on the surface of the CTF.
     Under25℃(reaction temperature) and25W (UV lamp power), the optimal photocatalytic reaction condition for methylene blue was as follows:the CTF concentration is0.6g·L-1, and the pH value is7. Under the same condition, the optimal CTF concentration and pH value for formaldehyde (10mg·L-1) photocatalytic reaction is0.5g·L-1and5, respectively.
     The Si-doped continuous TiO2fiber (Si-CTF) was prepared by in-situ method, then the (Si, N)-codoped continuous TiO2fiber ((Si, N)-CTF) was obtained by calcining the Si-CTF in nitrogen. Si-doping can improve the CTF precursor sol viscosity below40℃, and the sol has spinnability when the molar ratio S=5%(S=Si: TBOT). The diameter of nano-particles in Si-CTF (20nm) was smaller than that of CTF calcined at500℃, which indicate that the Si doping can inhibite the growth of TiO2nano-particle. In addition, XRD results showed that the Si doping or (Si, N) codoping could effectively depress the phase transformation from anatase to rutile. The MB degradation of Si-CTF and (Si, N)-CTF are69.2%and93.7%respectively.
引文
[1]张双全,孙天宇,潘亭亭TiO2/AC复合光催化剂制备及性能研究[J].化工新型材料,2010,38(2):37-40
    [2]Demeestere K., Dewulf J., De Witte B., et al. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2[J]. Building and Environment,2008,43 (4):406-414
    [3]胡裕龙,刘宏芳,郭兴蓬.氮掺杂二氧化钛光催化剂的研究进展[J].硅酸盐学报,2010,38(3):535-541
    [4]Ghadiri E., Taghavinia N., Zakeeruddin S. M., et al. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers [J]. Nanoletters,2010,10:1632-1638
    [5]Zhao T., Liu Z., Nakata K., et al. Multichannel TiO2 hollow fibers with enhanced photocatalytic activity [J]. Journal of Materials Chemistry,2010,20:5095-5099
    [6]Park S. J., Kang Y. C., Park J.Y., et al. Physical characteristics of titania nanofibers synthesized by sol-gel and electrospinning techniques [J]. Journal of engineered fibers and fabrics,2010,5(1):50-56
    [7]魏霄,陈接胜.光生电荷行为与光催化反应[J].中国材料进展,2010,29(1):37-45
    [8]Rajeshwar K., Tacconi N. R., Chenthamarakshan C. R. Semiconductor-based composite materials:preparation, properties, and performance [J]. Chemistry of Materials,2001,13:2765-2782
    [9]周柳江,陈永.纳米二氧化钛改性的研究现状与展望[J].纳米科技,2008,2:71-75
    [10]Serpone N., Lawless D., Khairutdinov R. Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp=1.0-13.4nm) relevance to heterogeneous photocatalysts[J]. Journal of Physical Chemistry,1995,99:16655-16661
    [11]崔毅华.玄武岩连续纤维的基本特性[J].纺织学报,2005,26(5):120-122
    [12]赵雪妮,党新安,张健.用玄武岩矿石为原料生产连续纤维工艺的研究[J].高科技纤维与应用,2007,32(4):8-14
    [13]李东风,王浩静,王心葵.高性能无机连续纤维[J].合成纤维工业2005,28(2):40-43
    [14]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004,9
    [15]丁海燕,王成国,白玉俊,等.碳纤维制备过程中纤维微观组织的变化[J].机 械工程材料,2006,30(4):34-37
    [16]王艳芝,钱畅.聚丙烯腈的合成与碳纤维制备[J].中原工学院学报,2006,17(6):20-22
    [17]潘梅,刘久荣,孟凡青,等.Zr02连续纤维研究进展[J].硅酸盐通报,2001,1:41-45
    [18]翟林峰,史铁钧,于少明.可纺性锆溶胶的制备与应用Ⅰ.氧化锆连续纤维的制备[J].应用化学,2008,25(6):637-641
    [19]刘久荣,潘梅,许东,等Sol-gel法制备Zr02连续纤维的烧结过程的研究[J].山东工业大学学报,2001,31(2):140-146
    [20]刘和义,侯宪钦,王彦玲,等.氧化锆连续纤维的制备进展与应用前景[J].材料导报,2004,18(8):18-21
    [21]张勇,冯涤,陈希春.连续纤维增强SiC复合材料制备工艺与性能研究进展[J].材料导报,2005,19(3):63-66
    [22]Ichikawa H., Okamura K., Seguchi T. Oxygen-free ceramic fibers from organo-silicon precursors and E-beam curing, High Temperature Ceramic Matrix Composites Ⅱ [J]. Ceramic Transactions,1995,58:65
    [23]刘军,冯春祥,宋永才,等.先驱体转化法制备碳化硅纤维[J].现代化工2000,20(10):59-61
    [24]郑春满,李效东,余煜玺,等.SiC陶瓷纤维先驱体设计原则及合成研究进展[J].高分子材料科学与工程,2005,21(6):6-10
    [25]陈江溪,何国梅,何旭敏,等.SiC陶瓷纤维高聚物先驱体的研究进展[J].功能材料,2004,6(35):679-682
    [26]赵大方,李效东,王海哲,等.聚铝硅烷与聚碳硅烷共混先驱体制备SiC(A1)纤维[J].高分子学报,2008,9:831-837
    [27]吴义伯,张国建,刘春佳,等.聚碳硅烷制备连续SiC纤维的不熔化处理工艺研究进展[J].材料导报,2006,20(7):80-87
    [28]Wang Y. G., Zhang X. G.. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites [J]. Electrochimica Acta,2004, 49(12):1957-1962
    [29]You Yang, Wan Long, Zhang Shi-ying, et al. Synthesis of Ce-doped TiO2 nanofibres by hydrothermal method [J]. Journal of Central South University and Technology,2007,14(2):154-157
    [30]Zhang S., Chen Z. H., Li Y. L., et al. Preparation of TiO2 fibers by two-step synthesis method and their photocatalytic activity[J]. Materials Chemistry and Physics,2008,107(1)1-5
    [31]包南,张锋,马志会,等.Si掺杂TiO2纤维的溶胶-凝胶法制备及其光催化活性[J].化学学报,2007,65(3):2786-2792
    [32]Frenota A., Chronakis I. S., Polymer nanofibers assembled by electrospinning [J].Current Opinion in Colloid and Interface Science,2003,8:64-75
    [33]孟庆杰,张兴祥.静电法超细纤维的性能与应用研究[J].高分子材料科学与工程,2004,20(6):15-19
    [34]许云波,延卫,刘湘鄂,等.电喷法合成TiO2纳米纤维与微米球及其光催化制氢性能[J].西安交通大学学报,2005,39(7):693-696
    [35]Zhao J. G., Jia C. W., Duan H. G., et al. Structural properties and photoluminescence of TiO2 nanofibers were fabricated by electrospinning [J]. Journal of Alloys and Compounds,2008,461:447-450
    [36]Seok J. D., Cham K., Se G. L., et al. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants [J]. Journal of Hazardous Materials,2008,154:118-127
    [37]张双虎,董相廷,徐淑芝,等.静电纺丝技术制备TiO2/SiO2复合中空纳米纤维与表征[J].复合材料学报,2008,25(3):138-143
    [38]Fujiki Y., Oota Y. Production of titania hydrate fiber, titania glass fiber and titania fiber:JP,55-003371.1980-01-11
    [39]Hori N, Matsunami Y, Kagohashi W. Potassium titanate filament and production of titania fiber using the same filament, JP,02-164722.1990-06-25
    [40]王福平,宋英,姜兆华,等.KDC法合成纤维四钛酸钾的反应机制研究[J].硅酸盐学报,1999,27(4):471-475
    [41]杨祝红,暴宁钟,刘畅,等.Ti02纤维的制备及其光催化活性研究[J].高等学校化学学报,2002,23(7):1371-1374
    [42]Shi E.W., Wang B., Zhong W., et al. Application and Development of Hydrothomal Method [J]. Inorganic Material Journal,1996,11(2):193-206
    [43]Wang Z. L. Nanowires and Nanobelts-Materials, Properties and Devices, Vol Ⅱ: Nanowires and Nanobelts of Functional Materials (Version Ⅰ) [M]. Beijing: Press of Tsinghua University,2004,157
    [44]韦志仁,张利明,罗小平,等.水热处理钛酸钠制备锐钛相TiO2纤维[J].人工晶体学报,2008,37:1529-1533
    [45]Li Y. X., Guo M., Zhang M., et al. Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates [J]. Materials Research Bulletin, 2009.44:1232-1237
    [46]姚建峰,宋军,李平,等.以廉价Ti(SO4)2为钛源制备锐钛矿型TiO2纤维[J]. 硅酸盐学报,2010,38:425-430
    [47]游洋,张世英,万隆,等.水热法制备TiO2纳米纤维的最佳工艺条件[J].硅酸盐学报,2008,36(11):47-52
    [48]周艺,游洋,张世英,等.水热法制备过程中TiO2纤维成形机理研究[J].无机材料学报,2008,23(5):1075-1079
    [49]姚素薇,陆平,张卫国.硅基AAO模板法制备纳米阵列研究进展[J].化工进展,2007,26(8):1088-1092
    [50]Liu S. Q., Huang K. L. Straight forward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate [J]. Solar Energy Materials and Solar Cells,2005,85:125-131
    [51]Georey I. N., Waterhouse M. Waterland R. Opal and inverse opal photonic crystals:Fabrication and characterization [J]. Polyhedron,2007,26:356-368
    [52]刘洋,吕剑,刘忠文,等.二氧化钛的纤维模板法制备及其光催化降解染料[J].工业催化,2008,16:84-87
    [53]游咏,匡加才.溶胶-凝胶法在材料制备中的研究进展[J].高科技纤维与应用,2000,27(2):12-15
    [55]Kamiya K., Tanimoto K., YoKo T. Preparation of TiO2 fibers by hydrolysis and polycondensation of Ti(O-i-C3H7)4[J]. Journal of Materials Science Letters, 1986,5:402-404
    [55]Kamiya K., Yoko T., Bessho M. Nitridation of TiO2 fibres prepared by the sol-gel method [J]. Journal of Materials Science,1987,22:937-941
    [56]陈奇,崔景委,宋鹂,等[Ti(OC4H9)4]水解制备TiO2纤维的凝胶化和热处理研究[J].无机材料学报,1991,6(2):149-254
    [57]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005
    [58]Matthews R. W. Photooxidation of organic impurities in water using thin films of titanium dioxide [J]. Journal of Physical Chemistry,1987,91(12):3328-3333
    [59]Dfollis. Photocatalytic purification and remediation of contaminated air and water [J]. Comptes Rendusdel Acad6mie des Sciences-Series Ⅱ C-Chemistry, 2000.3(6):405-411
    [60]Yu J.C., Ho W.K., Yu J.G., et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environmental Science and Technology,2005,39(4):1175-1179
    [61]Viswanathamurthi P., Bhattarai N., Kim C.K., et al. Ruthenium doped TiO2 fibers by electrospinning [J]. Inorganic Cheations,2004,7:676-682
    [62]Yu J. C., Ho W., Yu J. G., et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environmental Science and Technology,2005,39:1175-1179
    [63]沈伟韧,赵文宽,贺飞,等.Ti02光催化反应及其在废水处理中的应用[J].化学进展,1998,4:1-14
    [64]张丹,张学俊.Ti02光催化剂掺杂改性的研究进展[J].化工中间体,2010,7:18-22
    [65]Sano T., Negishi N., et al. Photocatalytic degradation of gaseous acetaldehyde on TiO2 with photodeposited metals and metal oxides [J]. Journal of Photochemistry and Photobiology A,2003,160 (122):931
    [66]Yu J. G., Dai G. P., Huang B. B., et al. Fabrication and characterization of visible-light-driven Plasmonic Photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. Journal of Physical Chemistry C,2009,113:16394-16401
    [67]黄柏标,王泽岩,王朋,等.光催化材料微结构调控的研究[J].中国材料进展,2010,29(1):25-36
    [68]Choi W., Termin A., Hoffmann M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. Journal of Physical Chemistry,1994,98 (51): 13669-13679
    [69]Paola A., Marci G., Palmisano L., et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for the degradation of 4-nitrophenol [J]. Journal of Physical Chemistry B,2002,106(3):637-645
    [70]熊裕华,李风仪.Fe3+掺杂TiO2光催化降解聚乙烯薄膜的研究[J].物理化学学报,2005,21(6):607-611
    [71]Cerrato G.. Marchese L., Morterra C. Structural and morphological modifications of sintering microcrystalline TiO2:an XRD, HRTEM and FTIR study [J]. Applied Surface Science,1993,70:200-205
    [72]Lin J.. Jimmy C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air [J]. Journal of Photochemistry and Photobioligy A:Chemistry,1998,116:63-67
    [73]周艺,徐协文,刘其城,等.TiO2纳米粒子在自然光下的催化氯化性能[J].中南工业大学学报,2002,33(4):371-373
    [74]吴玉程,陈挺松,解挺,等.纳米Ti02稀土元素掺杂改性与光催化性能研究[J].功能材料,2005,36(1):124-126
    [75]朱晓东.毛健,侯廷红,等.稀土元素掺杂纳米TiO2Zcta电位的研究[J].功 能材料,2007,38:2418-2420
    [76]吴中杰,万涛,吴秀玲,等.掺钇纳米二氧化钛光催化降解甲基橙的研究[J].应用化工,2007,36(12):1221-1223
    [77]袁昌来,董发勤.银镨复合掺杂二氧化钛纳米材料的光催化活性[J].硅酸盐学报,2007,35(6):736-740
    [78]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271
    [79]Sato S., Nakamura R., Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping [J]. Applied Catalysis A:General,2005,284:131-137
    [80]Kumar S., Fedorov A. G., Gole J. L. Photo degradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries[J]. Applied Catalysis B:Environmental,2005,57:93-107
    [81]Hamal D. B., Klabunde K.J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2 [J]. Journal of Colloid and Interface Science,2007,311(2): 514-522
    [82]Mohamed K., Sylvie R., Tatibouet J., et al. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light[J]. Materials Letters,2008,62:4204-4206
    [83]Nakano Y., Morikawa T., Ohwaki T., et al. Electrical characterization of band gap states in C-doped TiO2 films [J]. Applied Physics Letters,2005,87:052111
    [84]Valentin C. D., Pacchioni G., Selloni A. Origin of the different photoactivity of N-doped anatase and rutile TiO2 [J]. Physical Review B,2004,70:1-4
    [85]郑广涛,上官文峰.TiO2光催化剂的掺杂改性作用机理研究[J].功能材料,2004,35:2554-2559
    [86]Umebayashi T., Yamaki T., Itoh H., et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. Applied Physics Letters,2002,81(3):454-456
    [87]丛野.基于非金属掺杂的改性纳米二氧化钛光催化剂的制备与性能研究[D].上海:华东理工大学,2006
    [88]闫世成,罗文俊,李朝升,等.新型光催化材料探索和研究进展[J].中国材料进展,2010,29(1):1-10
    [89]H ara M., Hitoki G., Takata T., et al. TaON and Ta3N5 as new visible light driven photocatalysts [J]. Catalysis Today,2003(78):555-560
    [90]Yan H. J., Yang J. H., Ma G. J., et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PbS/CdS photocatalyst [J]. Journal of Catalysis,2009,266:165-168
    [91]陈旬,王绪绪,付贤智.芳烃污染空气光催化净化材料研究进展与展望[J].中国材料进展,2010,29(1):10-21
    [92]张立武,朱永法.钨钼酸盐复合氧化物新型可见光光催化研究[J].中国材料进展,2010,29(1):45-53
    [93]Dhanalakshmi K.B., Anandan S., Madhavan J., et al. Photocatalytic degradation of phenol over TiO2 powder:The influence of peroxomonosulphate and peroxodisulphate on the reaction rate [J]. Solar Energy Materials and Solar Cells, 2008,92 (4):457-463
    [94]Bae S., Shim E., Yoon J., Joo H. Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode [J]. Solar Energy Materials and Solar Cells,2008,92 (4):402-409
    [95]Schaub R., Wahlstrom E., R(?)nnau A., et al. Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2 (110) Surface [J]. Science,2003,299(5605): 377-379
    [96]Giri, R.R., Ozaki, H., Taniguchi, S., Takanami, R. Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water with a new TiO2 fiber [J]. International Journal of Environmental Science and Technology,2008,5 (1):17-26
    [97]Zhang R.B., Gao L.A., Zhang Q. H. Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium [J]. Chemosphere,2004,54:405-411
    [98]El M., L., Amlouk A., Elaloui E., et al. Preparation and optical characterization of transparent, microporous TiO2 xerogel monoliths [J]. Materials Science and Engineering B:Solid-State Materials for Advanced Technology,2008,146 (1-3):69-73
    [99]Yin S., Sato T. Photocatalytic activity of platinum loaded fibrous titania prepared by solvothermal process [J]. Journal of Photochemistry and Photobiology A,2005,169:89-94
    [100]Wahlstrom E., Vestergaard E. K., Schaub R., et al. Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface[J]. Science,2004, 303(5657):511-513
    [101]徐维正.宇部首创TiO2光催化剂纤维[J].精细与专用化学品.2003,11(7):19
    [102]Madhugiri S., Sun B., Smirniotis P.G., et al. Electrospun mesoporous titanium dioxide fibers [J]. Microporous and Mesoporous Materials,2004,69:77-83
    [103]Li G., Liu, C., Liu, Y. Characteristics of hollow TiO2 fibers via replication of sisal fiber [J]. Journal of the American Ceramic Society,2007,90 (4):1283-1285
    [104]Qiao Y. Y., Xi Y. F., Zhuo D. T., et al. Qualitative phase analysis system for crystalline mixtures based on X-ray powder diffraction file[J]. Powder Diffraction,2004,19(4):340-346
    [105]周利民,王一平,黄群武.pH值对溶胶-凝胶法制备纳米Ti02的影响[J].过程工程学报,2007,7(3):556-560
    [106]陈娜.纳米二氧化钛粉体的制备及其在抗菌方面的应用研究[硕士论文].西北工业大学,2005,3
    [107]扈玫珑,徐盛明,白晨光,等.水解制备球形Ti02及其水解过程动力学[J].物理化学学报,2009,25(8):1511-1516
    [108]何菁萍,张昭,沈俊,等.酸对合成二氧化钛介孔材料的影响[J].无机材料学报,2009,24(1):43-48
    [109]包南,张锋,马志会,等.Ti02纤维制备与应用研究进展[J].化工进展,2007,26(3):345-349
    [110]李春燕,李懋强.Ti02的溶胶-凝胶过程研究[J].硅酸盐学报,1996,24(3):338-341
    [111]窦雁巍,徐明霞,徐廷献.溶胶-凝胶法制备TiO2薄膜中溶胶结构的研究[J],硅酸盐学报,2002,30:87-89
    [112]姚俊,王朝霞.TiO2薄膜的低温制备及紫外光催化降解亚甲基蓝[J],水处理技术,2010,36(5):85-88
    [113]Gao X. T., Bare S. R., Fierro J. L. G., et al. Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica [J], Journal of Physical Chemistry B,1998,102:5653
    [114]沈钟,赵振国,王国庭.胶体与表面化学(第四版)[M].北京:化学工业出版社.2004
    [115]纳薇,柳青菊,朱忠其,等.低温制备锐钛矿型TiO2溶胶的性能研究[J].功能材料,2006,10(37):1667-1669
    [116]樊卫华,王万杰,李贵勋,等.柔性链聚合物及其共混物熔体粘度与温度关系的两种表征方法的研究[J].高分子通报,2010,4:94-99
    [117]Park J. Y., Kim S. S. Effects of processing parameters on the synthesis of TiO2 nanofibers by electrospinning [J]. Metals and Materials International,2009, 15(1):95-99
    [118]司崇殿,郭庆杰.活性炭活化机理与再生研究进展[J].中国粉体技术,2008,14(5):48-52
    [119]Song K.C., Pratsinis S.E. Control of phase and pore structure of titania powders using HC1 and NH4OH catalysts [J], Journal of the American Ceramic Society, 2001,84:92-98
    [120]周锋,梁开明,王国梁.电场热处理条件下Ti02薄膜的晶化行为研究[J].2005,54(6):2863-2867
    [121]彭兵,刘立强,齐萨仁,等.具有可见光光催化活性N掺杂纳米二氧化钛的制备和表征[J].中南大学学报,2009,40(4):944-949
    [122]唐建军,王岳俊,谢炜平,等.N/TiO2光催化剂的制备及掺杂过程分析[J].过程工程学报,2008,8(1):172-176
    [123]Tanaka H. Thermochim. Thermal analysis and kinetics of solid state reactions [J].Acta,1995,267:29-44
    [124]孙丽萍,高山,赵辉,等.纳米二氧化钛的晶型转变及光催化性能研究[J].功能材料,2004,5(35):532-534
    [125]Oliverl G., Ramis G., Busca G, et al. Thermal stability of vanadia titania catalysis[J]. J.Mater. Chem.,1993,3(12):1239-1249
    [126]Suryanarayana C., Boldyrev V. V.. The science and technology of mechanical alloying [J]. Materials Science and Engineering A,2001,304:151-158
    [127]张向超.复合/掺杂金属氧化物纳米晶的机械化学合成及气敏性能研究[D].长沙:中南大学无机材料系,2005年
    [128]Bacsa R. R., Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid [J]. Applied Catalysis B:Environmental,1998,16:19-29
    [129]Lowell S, Shields J E, Thomas M A, et al. Characterization of Porous Solids and Powders:Surface Area, Pore Size and Density [M]. Germany:Springer,2004
    [130]高濂,郑珊,张青红.纳米光触媒[M].台湾:五南图书出版公司,2004
    [131]Li Y. W., Wang P. L., Chen W. W., et al. Grain Growth of a-SiAlON in the Calcium-Doped System [J]. Journal of the American Ceramic Society,2002,85 (10):2545-9
    [132]刘河洲,胡文彬,顾文元,等.纳米TiO2晶粒生氏动力学研究[J].无机材料学报,2002,17(3):429-436
    [133]Kim H., Choi Y., Kanuka N., et al. Preparation of Pt-loaded TiO2 nanofibers by electrospinning and their application for WGS reactions [J]. Applied Catalysis A:General,2009,352:265-270
    [134]Chandraskar R., Zhang L. F., Howe J. Y., et al. Fabrication and characterization of electrospun titania nanofibers[J]. Journal of Materials Science,2009,44: 1198-1205
    [135]Zhu L. Y., Yu G., Wang X.Q., et al. Preparation and characterization of TiO2 fiber with a facile polyorganotitanium precursor method [J]. Journal of Colloid and Interface Science,2009,336:438-442
    [136]Inagaki M., Kondo N., Nonaka R., et al. Structure and photoactivity of titania derived from nanotubes and nanofibers [J]. Journal of Hazardous Materials, 2009,161:1514-1521
    [137]Reddy M.V., Jose R., Teng T.H., et al. Preparation and electrochemical studies of electrospun TiO2 nano fibers and molten salt method nanoparticles [J]. Electrochimica Acta,2010,55:3109-3117
    [138]张世英,周武艺,周艺,等.纳米二氧化钛纤维的制备及其光催化活性[J].硅酸盐学报,2006,34(1):55-59
    [139]Anandan S., Sathish Kumara P., Pugazhenthiran N., et al. Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88[J]. Solar Energy Materials and Solar Cells,2008,92:929-937
    [140]高原,马永祥,力虎林,等.用模板法制备TiO2纳米线阵列膜及光催化性能的研究[J].高等学校化学学报,2003,6(24):1089-1092
    [141]Yuan R. S., Guan R. B., Shen W. Z., et al. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers [J]. Journal of Colloid and Interface Science,2005,282:87-91
    [142]Zhang M. H., Shi L. Y., Yuan S. A., et al. Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 Hydrosol [J]. Journal of Colloid and Interface Science,2009,330:113-118
    [143]吴泳,张辉,刘明兴,等.几种空气净化技术对室内甲醛污染净化效果对比研究[J].现代预防医学,2007,34(4):754-756
    [144]赵毅,许勇毅,赵莉,等.纳米级TiO2光催化氧化机理及其在污染治理中的应用[J].电力环境保护,2005,21(4):43-47
    [145]刑丽贞,冯雷,陈华东,等.TiO2光催化氧化技术在水处理中的研究进展[J].山东建筑大学学报,2007,22(6):551-556
    [146]Guillard C., Lachheb H., Houas A., et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2 [J]. Journal of Photochemistry and Photobiology A,2003,158(1):27-36
    [147]Chen D. W., Ray A. K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension[J]. Wat. Res.,1998,32(11):3223-3234
    [148]Zhu C. M., Wang L.Y., Kong L.R., et al. Photocatalytic degradation of azo dyes by supported TiO2+UV in aqueous solution[J]. Chemosphere,2000, 41(3):303-309
    [149]陈小泉,李芳柏,李新军,等.二氧化钛/蒙脱土复合光催化剂制备及对亚甲基蓝的催化降解[J].土壤与环境,2001,10(1):30-32
    [150]蒋贞贞.Ti02复合膜的制备及对空气中甲醛的降解性能研究[D].重庆:重庆工商大学,2010年
    [151]魏凤玉,曾华灵,师彬,等.硫与铁共掺杂对二氧化钦光催化性能的影响[J].硅酸盐学报,2008(09):1272-1276
    [152]Guo S., Wu Z. B., Wang H. Q., et al. Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances[J]. Catalysis Communications,2009,10(13):1766-1770
    [153]石建稳,郑经堂,胡燕,等.纳米TiO2光催化剂共掺杂的研究进展[J].化工进展,2006,25(6):604-607
    [154]Marc G., Augugliaro V., Lpez-Muoz M. J., et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1.surface and bulk characterization [J]. Journal of Physical Chemistry B,2001,105: 1026-1032
    [155]Shu Yin, Tsugio Sato. Photocatalytic activity of platinum loaded fibrous titania prepared by solvothermal process [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,169:89-94
    [156]夏启斌,李忠,奚红霞,等.Fe3+和Ce3+掺杂对TiO2光催化剂性能的影响.化工学报,2005,56(9):1666-1672
    [157]曹锡章,宋天佑,王杏乔.无机化学第三版[M].北京:高等教育出版社,2003,1071
    [158]Ihara T., Miyoshi M., Iriyama Y., et al. Visible-light-active tita-nium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Applied Catalysis B,2003,42(4):403-409
    [159]赵景华.正硅酸乙酯的应用[J].天津师大学报,1991,1:85-89
    [160]冀晓静,汤井会,贾万瑾,等Ho-Si-TiO2复合光催化剂的性能研究[J].工业催化,2008,16(11):68-72
    [161]Guerfi K., Lagerge S., Meriziani M., et al. Influence of the oxidation on the surface properties of silicon carbide [J]. Thermochimica Acta,2005,434(1-2): 140-149
    [162]王韵芳,孙彦平.Si掺杂TiO2光催化材料的制备、活性及其机理[J].硅酸盐学报,2011,39(2):204-209
    [163]Xie C., Yang Q., Xu Z., et al. New Route to Synthesize Highly Active Nanocrystalline Sulfated Titania-Silica:Synergetic Effects between Sulfate Species and Silica in Enhancing the Photocatalysis Efficiency [J]. Journal of Physics Chemistry B,2006,110:8587
    [164]陈其凤,姜东,徐耀,等.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J].物理化学学报,2009,25(4):617-623
    [165]Li D., Ohashi N., Hishita S., et al. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. Journal of Solid State Chemistry,2005,178:3293-3302
    [166]Lin Y. X., Lin S., Luo M. H., et al. Enhanced visible light photocatalytic activity of Zn2SnO4 via sulfur anion-doping [J]. Materials Letters,2009,63: 1169-1171
    [167]Deanna C. H., Kimberly A. G., Tijana R., et al. Photoinitiated Reactions of 2,4,6 TCP on Degussa P25 Formulation TiO2:Wavelength-Sensitive Decomposition [J]. Journal of Physical Chemistry B,2004,108 (42):16483-16487
    [168]史卫梅,陈其凤,徐耀,等.Si掺杂锐钛矿Ti02的第一性原理研究[J].原子与分子物理学报,2011,28(2):359-366
    [169]潘湛昌.N掺杂锐钛矿二氧化钛光响应红移的模拟计算[D].中国科学院上海冶金研究所,2000年
    [170]李佑稷,宋慧娟,李志平.活性炭负载Cu离子掺杂纳米Ti02颗粒的制备及光催化性能[J].高等学校化学学报,2007,28(9):1710-1715
    [171]朱磊,段学臣,蒋波ZnO/TiO2-纳米管光催化剂的制备与表征[J].中国有色金属学报,2010,20(7):1382-1340
    [172]Zhang C X, Chen R F, Zhou J. Synthesis of TiO2 films on glass slides by the sol-gel method and their photocatalytic activity [J]. Rare Metals, 2009,28(4):378-384
    [173]贾进义,刘晶冰,张文熊.掺钒二氧化钛中空微球的制备和光催化性能研究[J].无机材料学报.2009.24(4):671-674
    [174]赵宏生,胡红坡,张凯红,等.氮掺杂二氧化钛薄膜的制备与光催化性能[J].稀有金属材料与工程,2009,38(10):1815-1817
    [175]Hong J Y, Hao X Y. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation [J]. Journal of Alloys,2011,509:26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700