用户名: 密码: 验证码:
考虑尺度效应的泥沙颗粒周围水动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
考虑尺度效应的泥沙颗粒周围水动力特性研究对泥沙的运动起着重要作用。尺度效应基于几何尺度和动力尺度两个方面。从几何尺度的角度看,可划分为细颗粒与粗颗粒情况。从动力尺度的角度看,可划分为低雷诺数与高雷诺数情况。本文通过理论分析、数值模拟和试验研究的方法对考虑尺度效应的泥沙颗粒周围的水流结构进行详细研究,重点进行了以下几个方面的工作:
     1.小尺度细颗粒情况,主要针对其受扰动的冲淤及流动结构情况进行分析。
     首先,基于有限体积法的立面二维数值模型,同时结合了经典的泥沙起动流速公式和冲刷深度近似的计算理论,考虑进口流速、管径和泥沙粒径的影响,对南海管线周围的小尺度泥沙床面的冲淤进行了预测,结果可供工程应用借鉴;
     其次,基于曲线坐标下有限差分法的立面二维数值模型,对小尺度泥沙床面受扰动的流动特性做进一步模拟,对不同大小扰动物影响的情况进行对比分析,得出了不同管径尺度下的冲刷深度公式;
     最后,通过水槽试验对小尺度细颗粒受扰动形成的床面演化进行研究,得到了冲淤演变、流场分布及能量谱等。
     2.大尺度粗颗粒情况,主要针对卵石在不同隐蔽度下的流动结构进行分析。
     首先,基于有限差分法的立面二维数值模型,考虑到纵向与垂向的隐蔽度,针对线性波作用于大尺度粗颗粒的流动特性做了细致分析;
     其次,基于有限体积法的立面二维数值模型,考虑到纵向与垂向的隐蔽度,颗粒起动采用滚动模式,结合水流结构进一步探讨其在高雷诺数下的起动规律,通过比较9种情况下阻力与升力的数值结果分析表明,纵向隐蔽度对水动力因素亦有较大影响;
     再次,基于有限体积法的平面二维数值模型,考虑到纵向与横向的隐蔽度,对低雷诺数时横向颗粒在不同隐蔽情况下的绕流结构、涡动力特性、升阻力系数进行了研究;
     最后,通过水槽试验得到了不同纵向与垂向隐蔽度下粗颗粒周围的流场分布、断面流速、紊动强度、雷诺应力、紊动动能等。同时还应用了EEMD-HHT的理论与方法到水流结构的研究中,得到了相应的边际谱、边际能量谱、瞬时能量谱以及总能量。
Studying on flow dynamics characteristics around sediment particles withconsideration of scale effect is of great significance to research the movement ofsediment. Scale effect is based on the two aspects: geometric scale and dynamicalscale. From the view of the geometric scale, it can be divided as fine grains and coarsegrains. From the view of the dynamical scale, it can be divided as low Reynoldsnumber and high Reynolds number conditions. This paper investigates the flowstructure around sediment particles briefly considering the scale effect by means oftheoretical analysis, numerical simulation and experimental investigation, especiallyon the following issues:
     1. For fine grains, the erosion and deposition and flow structure in the perturbedcase by pipe are mainly analyzed.
     To begin with, based on finite volume method, a vertical two-dimensional (2D)numerical model is presented, formulas of incipient velocity of various sediments,approximate calculation on theoretical scour depths are put forward for pipelines’scour and deposit in the South China Sea for engineering application with theconsideration of effects of incipient velocity, pipe diameter and sediment particle size.
     Additionally, based on finite difference method, a vertical two-dimensional (2D)numerical model has been performed to do further simulation about flow structure forlocal scour around pipeline, and compare two final results under the disturbance ofdifferent pipes, and the corresponding scour formula is obtained.
     Finally, this paper obtains sediment transportation, flow field distribution andenergy spectrum through flume experiment on bed evolution resulted by disturbanceof fine grains.
     2. For coarse grains, the flow structures of the pebbles in different hiddendegrees are analyzed.
     Firstly, based on finite difference method, a vertical two-dimensional (2D)numerical model has been performed to investigate the flow characteristics of thecoarse grains under linear wave considering longitudinal and vertical hidden degrees.
     Secondly, based on finite volume method, a vertical two-dimensional(2D)numerical model has been performed to investigate the flows around one or more circular pebbles in meticulous arrangements at high Reynolds number, which givesconsideration to longitudinal and vertical hidden degree, and the rolling model isincorporated to further explore the start rule combined with water flow structure.Comparison numerical results show that longitudinal hidden degree also has arelatively significant effect on hydrodynamic forces factors in view of9cases.
     Newly, based on finite volume method, a horizontal two-dimensional(2D)numerical model has been performed to investigate flow structure around pebbles atlow Reynolds numbers with numerical analysis via the non-staggered grids. Takinginto account the longitudinal and lateral hidden degree, the flow structure and thedynamic characteristics of vortex around pebbles, lift and drag force are simulatedrigorously considering effects of different Reynolds number and different relativehidden degree.
     Lastly, flow field distribution, section velocity, turbulent intensity, Reynoldsstress, as well as turbulent kinetic energy around the coarse grains of different hiddendegree in longitudinal and vertical are obtained by flume experiments. Meanwhile,theory and method of EEMD-HHT are employed to study the flow structure, and thecorresponding marginal spectrum, the marginal energy spectrum, the instantaneousenergy spectrum and the total energy are obtained.
引文
[1] Einstein H A, Barbarossa N L. River channel roughness[J]. Trans., Amer. Soc.Civil Engrs.,1952(117):1121-1146.
    [2] Chien N. The present status of research on sediment transport[J]. Trans., Amer.Soc. Civil Engrs.,1956,121:833-868.
    [3]椿东一郎,惠遇甲.关于沙纹对于泥沙输移的作用[J].泥沙研究,1957(2):57-66.
    [4] Raudkivi A J. Loose Boundary Hydraulics[M]. Oxford: Pergamon Press,1967.
    [5]郑兆珍,王尚毅.沙纹的成因及其计算[J].水利学报,1985(4):37-44.
    [6] Chien N, Wan Z. Mechanics of sediment transport[M]. American Society ofCivil Engineers, Reston, VA (US),1999.
    [7]白玉川,罗纪生.明渠层流失稳与沙纹成因机理研究[J].应用数学和力学,2002(3):254-268.
    [8] Zhou D, Mendoza C. Growth model for sand wavelets[J]. Journal of HydraulicEngineering,2005,131(10):866-876.
    [9]阮伟,黄洁.潮流沙脊和沙波沉积结构特征——以西班牙东北部比利牛斯前陆盆地Roda砂岩组为例[J].沉积学报,2010(1):118-127.
    [10]栾锡武,彭学超,王英民,等.南海北部陆架海底沙波基本特征及属性[J].地质学报,2010(2):233-245.
    [11]詹小涌.天然河道沙波分类研究[J].地理科学,1984(2):177-182.
    [12]王士强.沙波运动与床沙交换调整[J].泥沙研究,1992(4):14-23.
    [13]王士强.沙波运动与推移质测验[J].泥沙研究,1988(4):23-29.
    [14]赵连白,袁美琦.沙波运动与推移质输沙率[J].泥沙研究,1995(4):65-71.
    [15]赵冲久,秦崇仁.波浪作用下沙波的运动速度和沙波床面的底沙输移[J].水道港口,1995(4):9-15.
    [16]詹义正,刘金阳,陆晶,等.沙波运动与推移质输沙率[J].武汉大学学报(工学版),2008(3):1-4.
    [17]魏炳乾,孙小军,早川博.基于沙粒佛汝德数相似原理推算沙波河床上推移质输沙率[J].西北农林科技大学学报(自然科学版),2007(6):207-210.
    [18]程和琴,王宝灿.波、流联合作用下的近岸海底沙波稳定性研究进展[J].地球科学进展,1996(4):42-46.
    [19]彭学超,吴庐山,崔兆国,等.南海东沙群岛以北海底沙波稳定性分析[J].热带海洋学报,2006(3):21-27.
    [20]王伟伟,阎军,范奉鑫.波流联合作用下的海底沙波移动对海底底床稳定性影响的研究进展[J].海洋科学,2007(3):89-93.
    [21]赵月霞,刘保华,李西双,等.胶州湾湾口海底沙波地形地貌特征及其活动性研究[J].海洋与湖沼,2006(5):464-471.
    [22]王文介.南海北部的潮波传播与海底沙脊和沙波发育[J].热带海洋,2000(1):1-7.
    [23]边淑华,夏东兴,陈义兰,等.胶州湾口海底沙波的类型、特征及发育影响因素[J].中国海洋大学学报(自然科学版),2006(2):327-330.
    [24]曹立华,徐继尚,李广雪,等.海南岛西部岸外沙波的高分辨率形态特征[J].海洋地质与第四纪地质,2006(4):15-22.
    [25]白玉川,杨细根,田琦,等.南海北部海域海底沙波演化特征[J].水利学报,2009(8):941-947.
    [26]夏华永,刘愉强,杨阳.南海北部沙波区海底强流的内波特征及其对沙波运动的影响[J].热带海洋学报,2009(6):15-22.
    [27]王永红,沈焕庭,李九发,等.长江河口涨、落潮槽内的沙波地貌和输移特征[J].海洋与湖沼,2011(2):330-336.
    [28] Rifai M F, Smith K V H. Flow over triangular elements simulating dunes[J].Journal of the Hydraulics Division,1971,97(7):963-976.
    [29]蒋昌波,白玉川,赵子丹,等.明渠沙纹形成的试验研究[J].长沙交通学院学报,2002(3):45-48.
    [30]白玉川,许栋.明渠沙纹床面湍流结构实验研究[J].水动力学研究与进展A辑,2007(3):278-285.
    [31] ZHANG X, TANG L, XU T. Experimental study of flow intensity influence on2-D sand ripple geometry characteristics[J]. Water Science and Engineering,2009,2(4):60-68.
    [32]秦崇仁,孙海军,赵冲久.波浪作用下沙纹形态的实验研究[J].天津大学学报,1991:109-113.
    [33]秦崇仁,赵冲久.波浪作用下沙纹床面上底部剪应力的实验研究[J].水利学报,1993(9):2-10.
    [34]程永舟,王永学,蒋昌波,等.浅水非线性波作用下沙纹床面底层流动特性试验研究[J].水科学进展,2007(6):801-806.
    [35] Liu S H. Effect of streamline curvature and some other conditions on theturbulent structures in the outer region of an obstaele[J]. Journal ofHydrodynamics, Ser. B,1994,6(4):74-82.
    [36]熊小元,刘士和,周成成.河道中绕沙波与绕洲滩流动的理论分析与数值模拟[J].武汉大学学报(工学版),2009(4):427-431.
    [37]白玉川,罗纪生. THE LOSS OF STABILITY OF LAMINAR FLOW INOPEN CHANNEL AND THE MECHANISM OF SAND RIPPLEFORMATION[J]. Applied Mathematics and Mechanics(English Edition),2002(3):276-293.
    [38] Xu H J, Bai Y C. Stability characteristics of the open channel flow above theasymmetrical irregular sand ripples[J]. SCIENCE CHINA Physics, Mechanics&Astronomy,2010,53(8):1515-1529.
    [39]蒋建华,张立人.沙波湍流场数值模拟及沙波运动趋势探讨[J].海洋通报,1995(1):29-36.
    [40]蒋昌波,白玉川,赵子丹,等.波浪作用下沙纹床面底层流动特性研究[J].水科学进展,2003(3):333-340.
    [41]蒋昌波,白玉川,赵子丹,等.沙纹床面上波流共同作用的数值模拟[J].水利学报,2005(1):62-68.
    [42]程永舟,王永学,蒋昌波.非线性波作用下非对称沙纹床面流场特性数值分析[J].大连理工大学学报,2008(3):423-429.
    [43]佟鼎,蒋红,黄宁.非稳态沙波纹流场的数值模拟[J].计算力学学报,2008:29-32.
    [44]陶慧刚,张效龙.沙波区海底电缆的埋设[J].海岸工程,2005(4):48-52.
    [45]张效龙,徐家声,陶慧刚.中国海海底沙波对海缆埋设施工的影响分析[J].海岸工程,2006(3):39-43.
    [46] Hansen E A, Freds e J, Ye M, et al. Two-dimensional scour belowpipelines[M].1985.
    [47] Mao Y. The interaction between a pipeline and an erodible bed[R]. Institute ofHydrodynamics and Hydraulic Engineering, Technical University of Denmark,1986(39).
    [48] Leeuwenstein W, Wind H G. The computation of bed shear in a numericalmodel[C], Proceedings of the Coastal Engineering Conference,1984.
    [49] Li F, Cheng L. Numerical simulation of pipeline local scour with lee-wakeeffects[J]. International Journal of Offshore and Polar Engineering,2000,10(3):195-199.
    [50] Liang D, Cheng L. Numerical modeling of flow and scour below a pipeline incurrents. Part I. Flow simulation[J]. Coastal Engineering,2005,52(1):25-42.
    [51] Liang D, Cheng L, Li F. Numerical modeling of flow and scour below apipeline in currents. Part II. Scour simulation[J]. Coastal Engineering,2005,52(1):43-62.
    [52] Dey S, Singh N P. Clear-water scour depth below underwater pipelines[J].Journal of Hydro-environment Research,2007,1(2):157-162.
    [53] Zhao M, Cheng L. Numerical modeling of local scour below a piggybackpipeline in currents[C], Proceedings of the International Conference on OffshoreMechanics and Arctic Engineering-OMAE, Hamburg, Germany,2006.
    [54]杨兵,高福平,吴应湘.单向海流载荷下海底管道局部冲刷试验研究[J].工程力学,2008(3):206-210.
    [55]张丛丽,喻国良,谢锦波.单向流定床床面上水平管道周围流场与切应力分布特性[J].海洋科学,2009(3):27-30.
    [56] Zhao M, Cheng L. Numerical investigation of local scour below a vibratingpipeline under steady currents[J]. Coastal Engineering,2010,57(4):397-406.
    [57]顾辉.散粒体地基上建碾压混凝土重力坝的研究[J].河北水利水电技术,2001(1):8-10.
    [58]秦焕,崔洪敬,郁国庆,等.散粒体地基上均质土坝混凝土防渗墙施工问题分析[J].水利水电技术,2005(4):77-78.
    [59]杨庆华,姚令侃,杨明,等.散粒体斜坡地震崩塌规律离心模型试验研究[J].兰州交通大学学报,2009(1):6-10.
    [60]姚令侃,李仕雄,蒋良潍.自组织临界性及其在散粒体研究中的应用[J].四川大学学报(工程科学版),2003(1):8-14.
    [61]蒋良潍,姚令侃,李仕雄.非均匀散粒体自组织临界性机制初探[J].岩石力学与工程学报,2004(18):3178-3184.
    [62]苏凤环,姚令侃,何越磊.散粒体的自组织临界性与非均匀介质的元胞自动机模型[J].岩石力学与工程学报,2005(23):4239-4246.
    [63]何越磊,姚令侃,苏凤环.散粒体自组织临界性的多重分形分析[J].科技通报,2006(4):519-523.
    [64]杨胜发,王涛,赵晓马.筲箕背卵石急滩碍航特征以及卵石沙波形态分析[J].水运工程,2007(11):69-74.
    [65]黄义,尹冠生.考虑地基-结构-散粒体相互作用时贮仓结构的静、动力研究
    [Ⅱ]——有限元分析[J].应用力学学报,2003(2):124-128.
    [66] Jiang S Y, Yang X T, Tang Z W, et al. Experimental and numerical validationof a two-region-designed pebble bed reactor with dynamic core[J]. NuclearEngineering and Design,2012,246:277-285.
    [67] Li X, Ren S, Lv J, et al. Effect of Structural and Import Parameters on SolarEnergy Regenerator Performance[J]. Energy Procedia,2012,14:1232-1237.
    [68] Mandal D, Sathiyamoorthy D, Vinjamur M. Experimental measurement ofeffective thermal conductivity of packed lithium-titanate pebble bed[J]. FusionEngineering and Design,2012,87(1):67-76.
    [69] Shams A, Roelofs F, Komen E M J, et al. Optimization of a pebble bedconfiguration for quasi-direct numerical simulation[J]. Nuclear Engineering andDesign,2012,242:331-340.
    [70] Moss A J, Walker P H, Hutka J. Movement of loose, sandy detritus by shallowwater flows: An experimental study[J]. Sedimentary Geology,1980,25(1–2):43-66.
    [71] López-Gamundí O R. Pebbly mudstones in the Cretaceous Pigeon PointFormation, western California: a study in the transitional stages from submarineslumps to cohesive debris flows[J]. Sedimentary Geology,1993,84(1–4):37-50.
    [72] Leitch E C, Cawood P A. Olistoliths and debris flow deposits at ancientconsuming plate margins: an eastern Australian example[J]. SedimentaryGeology,1980,25(1–2):5-22.
    [73] Kim S B, Chough S K, Chun S S. Bouldery deposits in the lowermost part ofthe Cretaceous Kyokpori Formation, SW Korea: cohesionless debris flows anddebris falls on a steep-gradient delta slope[J]. Sedimentary Geology,1995,98(1–4):97-119.
    [74] Major J J. Pebble orientation on large, experimental debris-flow deposits[J].Sedimentary Geology,1998,117(3–4):151-164.
    [75] Bersezio R, Bini A, Giudici M. Effects of sedimentary heterogeneity ongroundwater flow in a Quaternary pro-glacial delta environment: joining faciesanalysis and numerical modelling[J]. Sedimentary Geology,1999,129(3–4):327-344.
    [76] Lowey G W. Sedimentary processes of the Kusawa Lake torrent system, Yukon,Canada, as revealed by the September16,1982flood event[J]. SedimentaryGeology,2002,151(3–4):293-312.
    [77] Swanson S K. Lithostratigraphic controls on bedding-plane fractures and thepotential for discrete groundwater flow through a siliciclastic sandstone aquifer,southern Wisconsin[J]. Sedimentary Geology,2007,197(1–2):65-78.
    [78] Curtis K E, Renshaw C E, Magilligan F J, et al. Temporal and spatial scales ofgeomorphic adjustments to reduced competency following flow regulation inbedload-dominated systems[J]. Geomorphology,2010,118(1–2):105-117.
    [79] Carling P A. Flow-separation berms downstream of a hydraulic jump in abedrock channel[J]. Geomorphology,1995,11(3):245-253.
    [80] Thomas B B, Roy A G. Effects of a pebble cluster on the turbulent structure ofa depth-limited flow in a gravel-bed river[J]. Geomorphology,1998,25(3–4):249-267.
    [81] Lamarre H, Roy A G. Reach scale variability of turbulent flow characteristics ina gravel-bed river[J]. Geomorphology,2005,68(1–2):95-113.
    [82] Lacey R W J, Roy A G. The spatial characterization of turbulence around largeroughness elements in a gravel-bed river[J]. Geomorphology,2008,102(3–4):542-553.
    [83]张植堂,姚于丽.长江上游河床卵石起动流速表达式的讨论[J].长江科学院院报,1989(2):1-10.
    [84]钟恩清.泥沙起动条件与卵石浅滩航道整治线宽度的确定[J].地理研究,1992(2):17-25.
    [85]冷魁.天然河流卵石起动规律研究述评[J].河海科技进展,1993(2):43-50.
    [86]韩其为,何明民,王崇浩.卵石起动流速研究[J].长江科学院院报,1996,13(002):17-22.
    [87]韩其为,何明民.泥沙起动规律及起动流速[M].科学出版社,1999.
    [88]何文社,方铎,刘兴年,等.砾卵石起动临界条件[J].四川水力发电,2003(1):64-65.
    [89]聂锐华,刘兴年,刘正平,等.宽级配卵石起动规律研究[J].水力发电学报,2004(3):112-115.
    [90]马菲,韩其为,李大鸣.非均匀沙分组起动流速[J].天津大学学报,2010(11):977-980.
    [91] Papanicolaou A N, Diplas P, Evaggelopoulos N, et al. Stochastic incipientmotion criterion for spheres under various bed packing conditions[J]. Journal ofHydraulic Engineering,2002,128(4):369-380.
    [92] Zhong D, Wang G, Ding Y. Bed Sediment Entrainment Function Based onKinetic Theory[J]. Journal of Hydraulic Engineering,2011,137:222.
    [93]曹叔尤,刘兴年,方铎,等.山区河流卵石推移质的输移特性[J].泥沙研究,2000(4):1-5.
    [94]乔昌凯,刘兴年,王涛,等.水深与卵石粒径同量级下的河道糙率分析[J].人民黄河,2009(3):26-27.
    [95]夏文颖.长江上游卵石起动规律研究[D].重庆交通大学,2010.
    [96]孟震,杨文俊.基于二维泥沙颗粒的相对隐蔽度初步研究[J].长江科学院院报,2011(5):1-4.
    [97]孟震,杨文俊.基于三维泥沙颗粒的相对隐蔽度初步分析[J].泥沙研究,2011(3):17-22.
    [98]孟震,杨文俊.均匀沙相对隐蔽度分布形式初探[J].人民长江,2011(10):10-12.
    [99]孟震,杨文俊.泥沙颗粒相对隐蔽度在散体沙起动研究中的应用[J].长江科学院院报,2011(7):1-6.
    [100] Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisteddata analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [101] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: TheHilbert Spectrum1[J]. Annual Review of Fluid Mechanics,1999,31(1):417-457.
    [102] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition andthe Hilbert spectrum for nonlinear and non-stationary time series analysis[C],Proceedings of the Royal Society of London, London,1998.
    [103]张鑫,吴亚锋,朱帅琦.基于EEMD-HHT边际谱的轴承故障诊断[J].科学技术与工程,2011(31):7625-7629.
    [104]李文彪,陈真诚,刘福彬.基于EMD的指端光电容积脉搏波中呼吸波提取方法研究[J].航天医学与医学工程,2010,23(4):279-282.
    [105]薛习.基于无线传感器网络的心音,脉搏信号采集分析研究[D].汕头大学,2009.
    [106]汤宝平,钟佑明,程发斌.基于HHT的非平稳信号分析仪的研究[J].仪器仪表学报,2007,28(1):29-33.
    [107] Cohen L. Time-frequency analysis: theory and applications[M]. Prentice-Hall,Inc.,1995.
    [108] Hahn S L. Hilbert transforms in signal processing[M]. Artech House Norwood,MA,1996.
    [109]王学敏.基于Hilbert-Huang变换的桥梁监测信号分析与处理和时变模态参数识别[D].中南大学,2008.
    [110] Kizhner S, Flatley T P, Huang N E, et al. On the Hilbert-Huang transform dataprocessing system development[C], Aerospace Conference Proceedings,2004.IEEE Aerospace Conference Proceedings.
    [111]薛年喜. MATLAB在数字信号处理中的应用[M].清华大学出版社,2003.
    [112]陈建群.基于信号分析的结构模态参数提取方法[D].长安大学,2009.
    [113]齐天,裘焱,吴亚锋.利用聚合经验模态分解抑制振动信号中的模态混叠[J].噪声与振动控制,2010(2):103-106.
    [114] Whitehouse R. Scour at marine structures: A manual for practicalapplications[M]. Inst of Civil Engineers Pub,1998.
    [115] Zhao Z, Fernando H J S. Numerical simulation of scour around pipelines usingan Euler–Euler coupled two-phase model[J]. Environmental Fluid Mechanics,2007,7(2):121-142.
    [116] Tan G M, Jiang L, Shu C W, et al. Experimental study of scour rate inconsolidated cohesive sediment[J]. Journal of Hydrodynamics, Ser. B,2010,22(1):51-57.
    [117]韦雁机,叶银灿.床面上短圆柱体局部冲刷三维数值模拟[J].水动力学研究与进展A辑,2008(6):655-661.
    [118]张瑞谨.河流泥沙工程学(上册)[Z].北京:水利出版社,1981.
    [119]唐存本.泥沙起动规律[J].水利学报,1963,2:1-12.
    [120]窦国仁.再论泥沙起动流速[J].泥沙研究,1999(6):1-9.
    [121] Wang S. Incipient sediment motion and riprap design[J]. Journal of HydraulicEngineering,1985,111:520.
    [122]蒋昌波,白玉川,姜乃申,等.海河口粘性淤泥起动规律研究[J].水利学报,2001(6):51-56.
    [123]沙玉清.泥沙运动学引论[M].中国工业出版社,1965.
    [124] Herbich J B. Offshore pipeline design elements[M]. M. Dekker,1981.
    [125]王尚毅,顾元棪,郭传镇.河口工程泥沙数学模型[M].海洋出版社,1990.
    [126] Chao J L, Hennessy P V. Local scour under ocean outfall pipelines[J]. Journalof the Water Pollution Control Federation,1972:1443-1447.
    [127] LOVERA F, KENNEDY J F. Friction Factors for Flat-Bed Floors in SandChannels[J]. Journal of the Hydraulics Division,1969,95(4):1443-1447.
    [128] Soulsby R. Dynamics of marine sands: a manual for practical applications[M].Thomas Telford,1997.
    [129] Richardson J F. Sedimentation and fluidisation: Part I[J]. Trans. Inst. Chem.Eng.,1954,32:35-53.
    [130] Van R, L. C. Mathematical modeling of morphological processes in the case ofsuspended sediment transport[M]. Delft Hydraulics communication,1987.
    [131] Soulsby R L, Whitehouse R. Threshold of sediment motion in coastalenvironments[C],1997. Centre for Advanced Engineering, University ofCanterbury.
    [132] Allen J. Simple models for the shape and symmetry of tidal sand waves:(1)statically stable equilibrium forms[J]. Marine Geology,1982,48(1):31-49.
    [133] Lei C, Cheng L, Kavanagh K. A finite difference solution of the shear flow overa circular cylinder[J]. Ocean Engineering,2000,27(3):271-290.
    [134] Thompson J F, Warsi Z U A, Wayne Mastin C. Boundary-fitted coordinatesystems for numerical solution of partial differential equations--a review[J].Journal of Computational Physics,1982,47(1):1-108.
    [135] Thompson J F, Warsi Z U A, Mastin C W. Numerical grid generation:foundations and applications[M]. North-holland,1985.
    [136] Lin P. Numerical modeling of breaking waves[D]. Cornell University, Aug.,1998.
    [137] Lin P, Liu P L F. A numerical study of breaking waves in the surf zone[J].Journal of fluid mechanics,1998,359(1):239-264.
    [138] Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions andturbulence flows in front of a composite breakwater[J]. Coastal Engineering,2002,46(1):25-50.
    [139] Cheng L, Xiao-qing L, Chang-bo J. Numerical simulation of wave field nearsubmerged bars by PLIC-VOF model[J]. China Ocean Engineering,2005,19(3):509-518.
    [140]刘诚,蒋昌波,刘晓平.潜堤附近波浪场精细模拟的PLIC-VOF模型[J].水科学进展,2006(5):671-675.
    [141]谷汉斌.波浪与建筑物作用的数学模型研究与应用[D].天津大学,2005.
    [142]曹永港.波浪通过双列梯形潜堤的水动力特性研究[D].长沙理工大学,2009.
    [143] Lin P, Liu P L F. Internal wave-maker for Navier-Stokes equations models[J].Journal of waterway, port, coastal, and ocean engineering,1999,125:207.
    [144]许栋,刘召平,乾爱国,等.弯曲河道中水流运动的三维数值模拟[J].水利学报,2010(12):1423-1431.
    [145] Kim J, Moin P. Application of a fractional-step method to incompressibleNavier-Stokes equations[J]. Journal of Computational Physics,1985,59(2):308-323.
    [146] Chorin A J. Numerical solution of the Navier-Stokes equations[J]. Math. Comp,1968,22(104):745-762.
    [147] Harlow F H, Welch J E. Numerical calculation of time-dependent viscousincompressible flow of fluid with free surface[J]. Physics of fluids,1965,8(12):2182.
    [148] Choi H, Moin P. Effects of the computational time step on numerical solutionsof turbulent flow[J]. Journal of Computational Physics,1994,113(1):1-4.
    [149] Armfield S, Street R. The pressure accuracy of fractional-step methods for theNavier-Stokes equations on staggered grids[J]. ANZIAM Journal,2003,44:20-39.
    [150] Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoilwith trailing edge separation[J]. AIAA journal,1983,21(11):1525-1532.
    [151] Davis T A. Algorithm832: UMFPACK V4.3---an unsymmetric-patternmultifrontal method[J]. ACM Transactions on Mathematical Software (TOMS),2004,30(2):196-199.
    [152] Barrett R. Templates for the solution of linear systems: building blocks foriterative methods[M]. Society for Industrial Mathematics,1994.
    [153] Gottlieb S, Shu C W. Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation,1998,67(221):73-85.
    [154] Shu C W. Total-variation-diminishing time discretizations[J]. SIAM Journal onScientific and Statistical Computing,1988,9:1073-1084.
    [155] Beam R M, Warming R F. An implicit factored scheme for the compressibleNavier-Stokes equations[C],1977.
    [156]王尚锦,倪明玖,席光.用四阶Runge-Kuta法和TVD格式求解两维跨超音流场[J].航空动力学报,1995(3):18-21.
    [157]郑华盛,丁荣华.一类基于通量分裂的二阶精度TVD差分格式[J].南昌大学学报(理科版),2005(2):119-121.
    [158]姚征,陈康民. CFD通用软件综述[J].上海理工大学学报,2002(2):137-144.
    [159] Erturk E, Corke T C, G k l C. Numerical solutions of2-D steadyincompressible driven cavity flow at high Reynolds numbers[J]. InternationalJournal for Numerical Methods in Fluids,2005,48(7):747-774.
    [160]吕林.海洋工程中小尺度物体的相关水动力数值计算[D].大连:大连理工大学,2006.
    [161] Williamson C. Oblique and parallel modes of vortex shedding in the wake of acircular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics,1989,206:579-627.
    [162] Zhao M, Cheng L, Teng B, et al. Numerical simulation of viscous flow past twocircular cylinders of different diameters[J]. Applied Ocean Research,2005,27(1):39-55.
    [163]徐元利,徐元春,梁兴,等. FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械,2005(1):39-41.
    [164]严恺.海岸工程[M].海洋出版社,2002.
    [165] Sumer B M, Freds e J. The mechanics of scour in the marine environment[M].World Scientific Pub Co Inc,2002.
    [166] Xie S L. Scouring patterns in front of vertical breakwaters and their influenceson the stability of the foundations of the breakwaters[D]. Coastal Eng. Group,Dep. of Civil Engineering, Delft University of Technology, Delft,1981:61.
    [167]陈国平,左其华.波浪作用下桩桩周围局部冲刷研究[J].海洋工程,2000,18(4):21-26.
    [168]陈国平,左其华,黄海龙.波浪作用下大尺径圆柱周围局部冲刷[J].海洋工程,2004,22(1):46-51.
    [169]周益人,陈国平.不规则波作用下墩柱周围局部冲刷研究[J].泥沙研究,2007,10(5):17-23.
    [170] Ataie-Ashtiani B, Aslani-Kordkandi A. Flow field around side-by-side pierswith and without a scour hole[J]. European Journal of Mechanics-B/Fluids,2012,3(7):1-15.
    [171] Kitagawa T, Ohta H. Numerical investigation on flow around circular cylindersin tandem arrangement at a subcritical Reynolds number[J]. Journal of Fluids andStructures,2008,24(5):680-699.
    [172] Kazeminezhad M H, Yeganeh-Bakhtiary A, Etemad-Shahidi A. Numericalinvestigation of boundary layer effects on vortex shedding frequency and forcesacting upon marine pipeline[J]. Applied Ocean Research,2010,32(4):460-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700