用户名: 密码: 验证码:
东天山黄山—镜儿泉超镁铁岩带地球物理特征研究及找矿应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄山-镜儿泉超镁铁岩带位于新疆著名的康古尔深大断裂的东段,全长200多千米。康古尔断裂是一条多期次多级别的断裂带。在这个断裂带上分布有许多大大小小的镁铁-超镁铁岩和30多个岩浆型铜镍硫化物矿床(点),表明断裂切割深度大,具备幔源岩浆活动的条件。对这个地区地球物理场的特征进行研究,有助于提高物探异常的解释水平和探矿能力、解决深部构造问题、圈定岩体范围和评价岩体的含矿性,为这个地区的深部找矿研究发挥重要的作用。
     在1:20万的重磁异常图上,黄山-镜儿泉超镁铁岩带对应着走向完全一致、长度相近的重磁梯度带异常。这个梯度带异常南低北高,具有“台阶”异常特征,表明在这个超镁铁岩带的两边存在有南低北高的密度和磁性界面。通过模型计算,证明了“台阶”重力布格异常(Δg)的方向导数Vxz极大值位置与密度界面的地面投影位置相一致,而与“台阶”的倾向无关,与倾角关系不大。由Δg计算出Vxz,根据其极大值位置确定了这个密度界面在地面的投影位置与黄山-镜儿泉断裂(F11)基本一致。针对梯度带的Δg和计算的Vxz,以“台阶”模型正演拟合出顶端埋深h=2~3km,底端延伸H在10km以上,密度差σ=(0.1~0.2)×10~3kg/m~3。说明这个密度界面向下延伸很大,密度差异明显。通过航磁法异常ΔT的化极处理和分量换算,以及不同高度的上延等处理,得出AM-2和AM-3磁性体向北陡倾,顶端埋深5-6km,向下有较大延伸。区域重磁异常显示这个超镁铁岩带下存在巨大密度界面和磁性体,具有成为深大断裂和幔源岩浆的通道的可能。
     论文通过三个典型铜镍硫化物矿床含矿岩体的形态、规模和产状、岩相组合和矿物组合特征以及矿区岩、矿石的物性参数,对比分析了三个矿区的磁力、重力、极化率和电阻率的异常强度和规模,揭示出含矿岩体能够形成高磁力、高重力、高极化率和低电阻率“三高一低”的物探组合异常的内在原因和外界条件。总结出寻找这类含矿岩体的最佳物探方法组合为“重力、磁法和电法”。针对岩浆型硫化物矿床“小岩体成矿”的特点,提出了“一要尽可能地接近场源,二要尽可能地加密点距,三要尽可能地提高场的测量精度和定位精度”的“一近二密三精确”的物探找矿模式。最大限度地发挥物探方法在这个岩带上的找矿作用。
Huangshan-Jingerquan ultramafic complex zone is located in the eastern part of thefamous Kanggur large-scale fault belt, eastern Tianshan, which is over200kilometers longand a ductile shear zone of multi-phases and-levels. There are many mafic and ultramaficcomplexes with over30magma Cu-Ni sulfide deposits along the fault belt. The fault may cutat much depth and the mantle-derived magma intruded evidently. It is helpful to carry out theresearch on the geophysical field’s characteristics for improving the interpretation level of thegeophysical anomaly and the prospecting detectability, and resolving the deep structuralproblems understanding and delineating the intrusions range and evaluating the ore-bearingability of the rock mass, also which will make a significant propelling for the furtherprospecting studies on the regional resources.
     On the gravitational and magnetic anomaly map with the scale of1to200,000,Huangshan--Jingerquan ductile shear zone corresponds to the anomalies of gravity andmagnetic gradient belt exactly with the same trends and approximate length. The values of thegradient zonal anomalies is higher from south to north with the characteristics of "step"anomalies, and which indicated that there is a density and magnetic interface with the lowervalue southwards and the higher value northwards between the both sides of the shear zone.The model calculation prove that the position of maximum Vxz of directional derivative ofthe "step" Bouguer Anomaly (Δg) is in accordance with the projection location of the densityinterface on the ground, and which is unrelated to the tendency of the "step” and relatedslightly to the dip of the "step”. It is defined that the projection position of the densityinterface on the surface accords to the location of Huangshan-Jingerquan Fracture (F11)basically, according to location of the maximum Vxz that is calculated Δg. According to theforward modeling for the “step” from Δg and Vxz, the buried depth (h) of the top of the step isfrom2km to3km underneath, and the extending depth (H) of the bottom is more than10kmwith the density contrast (σ) of0.1to0.2×10~3kg/m3. All the above indicate that this densityinterface extends very deeper downward with obvious difference of density. It is concludedthat the magnetic bodies of AM-2and AM-3is tilt to north steeply with the buried top depthof5km to6km and extend downward greatly, through the processing of “reduce to magnetic pole”and “conversion between field components” and “upward continuation” for theaeromagnetic ΔT. The regional gravity and magnetic anomalies show that the huge densitycontrast interface and a magnetic body exist beneath this ductile shear belt, therefore it ispossible that there is a deep faults and channels for mantle-derived magma in this ductileshearing belt.
     Based on the characteristics of the shape and scale and occurrence of ore-bearing rockmass in three typical copper-nickel sulfide deposits and their lithofacies and mineralassemblage, as well as the physical parameters of rock and ore, it is compared and analyzedfor the intensity and scale of anomalies of gravity and magnetic and resistivity andpolarizability within the three mines area in this thesis, revealing the internal causes andexternal conditions of the generation of geophysical composite anomalies of "three higher andone lower" formed in the capable ore-bearing rock mass with higher magnetic force andhigher gravity and higher polarizability and lower resistivity. The optimal methods ofgeophysical prospecting for searching of this type rock mass is summed up, of whichcomprises the surveying of "gravity and magnetic and electric method". As for thecharacteristic of these magmatic sulfide deposits that “mineralization occurred in the smallerintrusive”, the geophysical prospecting model is is put forward with that “closer and smallerand higher”,which is "Approach the field source as close as possible, shorten the pointspacing as smaller as possible, increase the accuracy of the field measurement and thepositioning as higher as possible", of which means to maximize the effect of geophysicalprospecting method on this belt.
引文
1殷定泰,周守云、李德惠等。黄山铜镍成矿带地质地球物理地球化学综合研究及找矿靶区优选报告.国家三0五项目75-56-03-01课题.1989.
    2秦克章,徐兴旺,梁光河等.东天山黄山-镜儿泉镁铁-超镁铁岩型铜镍矿深边部定位预测和找矿靶区优选与评价.国家科技支撑计划重点项目:编号2003BA612A-06-07,2005.
    3陈云龙,康进芳,朱仰岩等.黄山东黄山东铜镍矿16-26勘探线补充地质报告.哈密市天隆镍业有限责任公司.2009.
    4邓和亮等,新疆镜儿泉葫芦铜镍矿区普查地质报告.新疆地矿局第六地质大队三分队.1991
    [1]Barnes S J, van Achterbergh E, and Makovicky E. Proton microprobe results for the partitioning ofplatinum-group elements between monosulfide solid solution and sulphide liquid. S. Afr. J. Geol,2001,104:275~286.
    [2]Ander, Mark E., Grauch, V. J. S., et al. Historical Development of the gravity method in exploration.Geophysics,2005:70(6):63~89
    [3]Bilich, Andria, Axelrad et. Scientific utility of the signal-to-noise ratio (SNR) reported by geodeticGPS receivers.20th International Technical Meeting of the Satellite Division of The Institute ofNavigation, ION GNSS2007,(2)1999~2010
    [4]Cabri LJ. Platinum-group elements: Mineralogy, geology, recovery. Canadian Institute of Mining andMetallurgy,1981,23:267.
    [5]Chai FM, Zhang ZC, Mao JW, Dong LH, Zhang ZH and Wu H. Geology, petrology andgeochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China:Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences,2008,32:218~235.
    [6]Chai G and Naldrett AJ. Petrology and geochemistry of the Jinchuan ultramafic intrusion: Cumulateof a high-Mg basaltic magnin. Journal of Petrology,1992,33:1~27.
    [7]Chusi L, Edward MR and Anthony JN. Compositional variations of olivine and sulfur isotopes in theNoril’sk and Talnakh intrusions, Siberia: implications for ore-forming processes in dynamicmagma conduit. Economic Geology,2003,98:69~86.
    [8]Cornwall MG (Cornwall, M. G.). Where on earth am I?: Global navigation satellite systems.Measurement&Control JUL,2008,41(6)174~178.
    [9]Doyle CD, Naldrett AJ.1986. Ideal mixing of divalent cations in mafic magma and its effect on thesolution of ferrous oxide. Geochim Cosmochim Acta,50:435~443.
    [10]Ebel DS and Naldrett AJ.1996. Fractional crystallization of sulfide ore liquids at high temperature.Econ Geol,91:607~621.
    [11]Gain SB. The geologic setting of the platiniferous UG2chromitite layer on Maandagshoek, EasternBushveld Complex. Econ. Geol,1985,80:925~943.
    [12]Gili, Josep A. et. Using Global Positioning System Techniques in Landslide Monitoring.Engineering Geology,2000,55(3):167~192
    [13]Gu LX, Zhu JL, Guo JCH. Geology and Genesis of the Mafic-Ultramafic Complexes in theHuangshan-Jingerquan(HJ)Belt, East Xinjiang. Chinss Journal of Geochemistry,1995,14(2):97~116.
    [14]Hrovoic, I. Myzyk, J. High Sensitivity Portable/Base Station Magnetometer Based on OverhauserEffect, Miscellaneous Paper–Ontario. Geological Survey,1983,75(3):39~43,
    [15]James EM and Su SG. Interfacial tension between magmatic sulfide and silicate liquids: Constraintson kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth and PlanetaryScience Letters,2005,234:135~149.
    [16]José Luis, Villaverde Antonio. Biomedical Applications of Distally Controlled magnetic Nanoparticles Corchero. Trends in Biotechnology,2009,27(8):468~476
    [17]Lambert DD, Forster JG and Frick LR. Geodynamics of Magmatic Cu-Ni-PGEsulfide deposits:New insights from the Re-Os isotopic System. Economic Geology,1998,93(2):121~136.
    [18]Lambert DD, Foster Frick LR, Li C and Naldrett AJ.1999. Re–Os isotopic systematics of theVoisey’s Bay Ni–Cu–Co magmatic ore system, Labrador, Canada. Lithos,47:69~88.
    [19]Lesher, C. M., Stone, W. E.. Exploration geochemistry of komatiites. In: Wyman, D. A._Ed..,Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration.Geological Association of Canada, Short Course Notes,1996,12:153~204.
    [20]Li C, Barnes SJ and Makovicky E. Partitioning of Ni Cu Ir Rh Pt and Pd between monosulfidesolid solution and sulfide liquid: Effects of composition and temperature. Geochim CosmochimActa,1996,60:1231~1238.
    [21]Li C, Naldrett AJ, Ripley EM. Critical factors for the formation of a Ni-copper deposit in anevolved magmatic system: lessons from a comparison of the Pants Lake and Voisey_s Bay sulfideoccurrences in Labrador, Canada. Miner Deposita,2001,36:85~92.
    [22]Li C, Maier W D, de Waal, SA. Magmatic Ni–Cu versus PGE deposits: contrasting genetic controlsand exploration implications. S. Afr. J. Geol,2001,104:309~318.
    [23]Li C, Ripley E M, Maier W D, et al. Olivine and sulfur isotopic compositions of the UitkomstNi-Cu sulfide ore-bearing complex, South Africa: evidence for sulfur contamination and multiplemagma emplacements. Chemical Geology,2002,188:149~159.
    [24]Li C, Ripley EM, Naldrett AJ. Compositional variations of olivine and sulfur isotopes in theNoril_sk and Talnakh intrusions, Siberia: implications for ore forming processes in dynamicmagma conduits. Econ Geol,2003,98:69~86.
    [25]Li C, Ripley EM, Mathez E A. The effect of S on the partitioning of Ni between olivine and silicatemelt in MORB. Chemical Geology,2003,201:295~306
    [26]Li C, Xu Zhanghua, Sybrand A de Waal, Edward M. Ripley, Maier WD. Compositional variationsof olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis.Mineralium Deposita,2004,39:159~172.
    [27]Li C, Ripley E M. Empirical equations to predict the sulfur content of mafic magmas at sulfidesaturation and applications to magmatic sulfide deposits. Mineralium Deposita,2005,40:218~230
    [28]Lightfoot P C, Naldrett A J, Gorbachev N S, et al. Chemostratigraphy of the Siberian Trap lava,Noril’sk district, Russia: Implications and source of flood basalt magma of Sudbury_Noril’sksymposium. Ontario Geological Survey(Special Publication),1994,5:283~312.
    [29]Maier W D, Barnes S J, De Waal S A.1998. Exploration for magmatic Ni-Cu-PGE sulphidedeposits:A review of recent advances in the use of geochemical tools, and their application to somesouth African ores. South African Geol.,101(3):237~253.
    [30]Naldrett AJ. Ni-Cu ores of the Sudbury Igneous Complex. Ontario Geological Survey,1984,1:302~307.
    [31]Naldrett A J, Keats H, Sparkes K, Moore R.1996. Geology of the Voisey's Bay Ni-Cu-Co depositLabrador Canada. Exploration and Mining Geology J,5:169~179.
    [32]Naldrett A J.1999. World class Ni-Cu-PGE Deposits: Key factors in their genesis. MineraliumDeposita,34:227~240.
    [33]Naldrett A J, Asif M, Schandl E. Platinum-group elements in the Sudbury ores: Significance withrespect to the origin of different ore zones and to the exploration for footwall ore bodies. Econ.Geol,1999,94:185~210.
    [34]Prichard HM, Hutchinson D and Fisher PC. Petrology and crystallization history of multiphasesulfide droplets in a mafic dike from Uruguay: Implications for the origin of Cu-Ni-PGE sulfidedeposits. Economic Geology,2004,99:365~376.
    [35]Qin KZ, Sun H, San JJ, Xu XW, Tang DM, Ding KS, Xiao QH and Su BX. Tectonic setting,geological features and evaluation of ore-bearing property for magmatic Cu-Ni deposits in easternTianshan, NW China. Proceedings of Xi’an International Ni-Cu(Pt) Deposit Symposium,Northwestern Geology,2009,42(S):95~99.
    [36]Richard JH and Watkinson DH. Cu-Ni-PGE mineralization within the copper cliff offset dike,copper cliff north mine, Sudbury, Ontario: evidence for multiple stages of emplacement. Explor.Mining Geol.,2001,10:111~124
    [37]Ripley E. M and Alawi JA. Petrogenesis of politic xenoliths at the Babbitt Cu-Ni deposit, DuluthComplex, Minnesota, USA. Lithos,1988,21:143~159.
    [38]Sun He, Qin Kezhang, San Jinzhu, Tang Dongmei, Xiao Qinghua, Su Benxun. Magma evolutionand ore-forming mechanism of Tulargen Cu-Ni-Co sulfide deposit: evidence from olivine, Re-Osand sulfur isotopic data. Northwestern Geology,2009,42(Sup):103~106.
    [39]Tang Z L and Li W Y. Studies of metallogenic regularity of nickel sulfide deposits in China and theprospects. Mineral Deposits,1991,10(3):193~203.
    [40Tong Xiao-Zhong, Liu Jian-Xin, Xie Wei, et al. Three-dimensional forward modeling formagnetotelluric sounding by finite element method. Journal of Central South University ofTechnology (English Edition),2009,16(1):136~142
    [41]Waeselynck, M. Magnetotellurics Principle and Outline of the Recording Techniqe. GeophysicalProspecting,1996,22(1):107~121
    [42]Wang YW, Qin KZ, Tan YG and Hou ZQ.2000. The Derni Cu-Co Massive Sulfide Deposit,Qinghai Province, China: Ultramafic Volcanic-Hosted Submarine-Exhalative Mineralization.Exploration and Mining Geology,2000, l.9(3~4):253~264.
    [43]Wang, W Y. Spatial variation law of the extreme value positions of total horizontal derivative forpotential field data. Chinese J. Geophys(in Chinese),2010,53(9):2257~2270
    [44]Wang Z H, Wang R M, Li C S and Zhou Z D. The study of chemical compositions of the Cu-Nisulfide ore in Huangshandong magmatic deposit Hami, Xinjiang, China. Minerals and Rocks,1986,6(3):92~94.
    [45]Wendlandt RF. Sulfur saturation of basalt and andesite melts at high pressures and temperatures.Amer Mineral,1982,67:877~885.
    [46]Woloszyn. M. Modern magnetometric systems. Przeglad Electrotechniczny,2007,83(1):45~48
    [47]Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. Middle Cambrian toPermian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implicationsfor the tectonic evolution of central Asia. Journal of Asian Earth Sciences,2008,32,102~117.
    [48]Zhang ZC and Dong SY. Were Large Igneous Provinces Caused by Mantle Plumes? Geosciences,2007,21(2):247~254.
    [49]Zhang ZC, Jonhn J. M, Mao JW and Wang FS. Geochemistry of picritic and associated basaltflowsof the western Emeishan flood basalt province, China. Journal of Petrology,2006,47:1997~2019.
    [50]Zhang ZC, Mao JW, Chai FM, Yan SH and Chen BL. Geochemistry of the Permian Kalatongkemafic intrusions, Northern Xinjiang, Northwest China: Implications for the genesis of magmaticNi-Cu sulfide deposits. Economic Geology,2009,104:185~203.
    [51]Zhou Mei-Fu, Lesher C. Michael, Yang Zhengxi, Li Jianwei, Sun Min. Geochemistry andpetrogenesis of270Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district,Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asianorogenic belt. Chemical Geology,2004,209:233~257
    [52]Edward. M, Ripley, Chusi Li.稳定和放射性同位素在Cu-Ni-PGE岩浆矿床研究中的应用:实例及需要注意的问题.地学前缘,2007,14(5):124~132.
    [53]白登海, Maxwell, A. Meju,卢健.时间域瞬变电磁法中心方式全程视电阻率的数值计算.地球物理学报,2003,46(5):697~704.
    [54]白云来,陈启林,汤中立,等.塔里木板块东北边缘弧后裂谷系统基性、超基性岩特征.中国地质,2004,31(3):254~261.
    [55]长春地质学院磁法教研室.磁法勘探.北京:地质出版社,1979.
    [56]长春地质学院重力教研室.重力勘探.北京:地质出版社,1980.
    [57]柴凤梅,张招崇,董连慧,等.新疆中天山白石泉含铜镍矿镁铁-超镁铁岩体地球化学特征与岩石成因.岩石学报,2007,023(10):2366~2378.
    [58]陈富文,何国竒,李华芹.论东天山觉罗塔格造山带的大地构造属性.中国地质,2003,30(4):361~366.
    [59]陈乐寿.大地电磁测深-探测地球深部电性和物质状态的一种有效手段.自然杂志,2009,31(1).
    [60]陈世平,王登红,屈文俊,等.新疆葫芦铜镍硫化物矿床的地质特征与成矿时代.新疆地质,2005,23(3):230~233.
    [61]陈陶成.新疆哈密黄山-镜儿泉超镁铁岩带成矿地质背景及矿例介绍.西北地质,1990,(1):20~25.
    [62]陈文,张彦,秦克章,等.新疆东天山剪切带型金矿床时代研究.岩石学报,2007,23(8):2007~2016.
    [63]陈毓川,刘德权,唐延龄,等.中国天山矿产及成矿体系.北京:地质出版社,2008.
    [64]陈郑辉,王登红,龚羽飞.新疆哈密镜儿泉伟晶岩型稀有金属矿床40Ar-39Ar年龄及其地质意义.矿床地质,2006,25(4):470~476.
    [65]程志平,刘家远.乌伦布拉克铜钼矿床地质地球物理特征及扩大找矿前景.桂林工学院学报,2007,27(4):463~468.
    [66]崔彬,和志军,赵磊.新疆东天山中段金铜成矿系统研究.地学前缘,2008,15(4):13~17.
    [67]丁奎首,秦克章,许英霞,等.东天山主要铜镍矿床中磁黄铁矿的矿物标型特征及其成矿意义.矿床地质,2007,26(1):109~119.
    [68]高辉, JHronsky,曹殿华,等.金川铜镍矿床成矿模式_控矿因素分析与找矿.地质与勘探,2009,45(3):218~228.
    [69]顾连兴,张遵忠,吴昌志,等.东天山黄山-镜儿泉地区二叠纪地质-成矿-热事件:幔源岩浆内侵及其地壳效应.岩石学报,2007,023(11):2869~80.
    [70]管志宁.地磁场与磁法勘探.北京:地质出版社,2005.
    [71]韩春明,毛景文,杨建民,等.东天山晚古生代内生金属矿床成矿系列和成矿规律.地质与勘探,2002,38(5):5~10.
    [72]郝天珧, SUHMANCHEOL,王谦身.根据重力数据研究黄海周边断裂带在海区的延伸.地球物理学报,2002,45(3):385~397.
    [73]贺献艺.全球定位系统在矿业方面的应用.有色金属报,2008,增2,50~51.
    [74]华东师范大学数学系.数学分析.北京:高等教育出版社,2006.
    [75]姬金生,张连昌,曾章仁,等.东天山康古尔塔格金矿带年代学研究.地质科学,1996,31(1):80~89.
    [73]江在森,马宗晋,牛安福等. GPS技术应用于中国地壳运动研究的方法及初步结果.地学前缘,2003,10(1):71~78.
    [77]姜常义,夏明哲,钱壮志,等.新疆喀拉通克镁铁质岩体群的岩石成因研究.岩石学报,2009,025(04):749~764.
    [78]焦建刚,汤中立,钱壮志,等.中国镍铜铂族岩浆矿床矿产地空间数据库建设及其开发应用.地球科学与环境学报,2007,29(1):22~25.
    [79]李德仁.多学科交叉中的大测绘科学.测绘学报,2007,36(4):363~365.
    [80]李鸿儒.新疆坡北基性超基性岩带控岩构造特征及成矿专属性.中国区域地质,1994,(3)227~233.
    [81]李华芹,梅玉萍,屈文俊,等.新疆坡北基性-超基性岩带10号岩体SHRIMP U-Pb和矿石Re-Os同位素定年及其意义.矿床地质,2009,28(5):633~642.
    [82]李金铭.地电场与电法勘探.北京:地质出版社,2005,1~33.
    [83]李锦轶,王克卓,李文铅,等.东天山晚古生代以来大地构造与矿产勘查.新疆地质,2002,20(4):295~301.
    [84]李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变.地质论评,2004,50(3):304~319.
    [85]李莲英,孟宪英.方向导数及应用.山东工业大学学报,1992,2:95~100.
    [86]李文勇,夏斌,路文芬.东秦岭的地球物理、构造分带特征及演化.地质与勘探,2004,40(1):36~40.
    [87]李文渊,汤中立.阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征.岩石矿物学杂志,2004,23(2):117~126.
    [88]梁光河,徐兴旺,肖骑彬,等.大地电磁测深法在铜镍矿勘查中的应用-以与超镁铁质岩有关的新疆图拉尔根铜镍矿为例.矿床地质,2007,26(1):120~127.
    [89]梁英.三维三分量采区地震勘探应用效果.中国高新技术企业,2009,126(15):26~27.
    [90]梁月明,黄旭钊,徐昆,等.新疆康古尔塔格断裂带地球物理场及深部地质特征.中国区域地质,2001,20(4):398~403.
    [91]刘德权,唐延龄,周汝洪.中国新疆铜矿床和镍矿床(国家三0五项目系列从书).北京:地质出版社,2005,283-287.
    [92]刘光鼎.回顾与展望-21世纪的固体地球物理.地球物理学进展,2002,17(2):191~197.
    [93]刘悟辉,廖启林,等.阿尔泰山南缘典型铜、镍、铅锌矿床成矿模式初探.地质找矿论丛,2006,21(3):173~177.
    [94]马宗晋,高祥林,宋正范.中国布格重力异常水平梯度图的判读和构造解释.地球物理学报,2006,49(1):106~114.
    [95]毛景文,杨建民,韩春明,等.东天山铜金多金属矿床成矿系统和成矿地球动力学模型.地球科学-中国地质大学学报,2002,27(4):413~424.
    [96]毛启贵,肖文交,韩春明,等.新疆东天山白石泉铜镍矿床基性-超基性岩体锆地球化学特征及其对古亚洲洋闭合时限的制约.岩石学报,2006,022(01):153~162.
    [97]慕纪录.新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制.矿物岩石,1996,16(1):58~67.
    [98]倪守斌,满发胜,陈江峰.新疆菁布拉克基性超基性岩带的Sm-Nd同位素年龄.岩石矿物学杂志,1994,13(3):227~231.
    [99]牛宏,吕新彪,惠卫东,等.哈密图拉尔根铜镍矿Ⅰ号岩体矿床特征及成矿研究.新疆地质,2009,27(2):136~140.
    [100]潘成泽,李月臣,颜启明,等.新疆东天山晚古生代地壳增生和成矿作用.地质科学,2010,45(1):30~40.
    [101]潘玉玲,张昌达.核磁共振技术应用的新领域-探测地下水. CT理论与应用研究,1999,8(4):5~8.
    [102]潘长云,王润民,等.新疆喀拉通克矿区I号含贵金属硫化铜镍矿床的成岩成矿模式.矿床地质,1992,11(2):113~124.
    [103]钱壮志,孙涛,汤中立,等.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义.地质评论,2009,55(6):873~884.
    [104]秦克章,韩春明,三金柱,等.东天山主要矿床类型、成矿区带划分与成矿远景区优选.新疆地质,2003,21(2):143~150.
    [105]秦克章,徐兴旺,梁光河,等.东天山东段大型铜、镍、金矿床成矿规律研究、靶区优选与隐伏矿定位预测的重要进展矿床地质,2006,25卷(增刊):301-304.
    [106]三金柱,惠卫东,秦克章,等.新疆哈密图拉尔根全岩矿化岩浆铜-镍-钴矿床地质特征及找矿方向.矿床地质,2007,26(3):307~316.
    [107]三金柱,惠卫东,魏俊瑛等.新疆哈密市图拉尔根①号杂岩体成矿远景探讨.新疆地质,2007,25(1):59~63.
    [108]三金柱,秦克章,苏本勋,等.东天山地区图拉尔根大型铜镍矿区镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义.岩石学报,2010,26(10):3028~3035
    [109]邵行来,薛春纪,戴德文,等.新疆哈密葫芦岩浆Cu-Ni矿勘查地球物理异常特征.现代地质,2010,24(2):383~391.
    [110]邵行来,薛春纪,严育通,等.地面高精度连续磁测在西天山群吉萨依铜矿勘查中的运用.新疆地质,2011,29(3):342~347.
    [111]申茂德.东天山香山铜镍矿区构造特征与成岩成矿.新疆地质,2003,21(2):195~198.
    [112]沈远超,申萍,刘铁兵,等.东天山镜儿泉铜镍矿床成矿预测及EH4地球物理测量依据.地质与勘探,2007,43(2):922~946.
    [113]苏尚国,邓晋福,汤中立,等.镁铁-超镁铁质岩浆作用与成矿作用的新进展.现代地质,2004,18(4):454~459.
    [114]孙赫,秦克章,李金祥,等.地幔部分熔融程度对东天山镁铁质~超镁铁质岩铂族元素矿化的约束-以图拉尔根和香山铜镍矿为例.岩石学报,2008,024(05):1079~1086.
    [115]孙燕,肖渊甫,王道永,等.新疆北山坡北基性-超基性杂岩特征及成矿远景.成都理工大学学报,2009,36(4):402~408.
    [116]汤中立.中国岩浆硫化物矿床的主要成矿机制.地质学报,1996,70(3):237~243.
    [117]汤中立.超大型Ni-Cu(Pt)岩浆矿床的划分与找矿.地质与勘探,2002,38(3):1~7.
    [118]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化.地学前缘,2004,11(1):113~119.
    [119]汤中立,闫海卿,焦建刚.中国岩浆硫化物矿床新分类与小岩体成矿作用.地质学报,2006,80(3):1~9.
    [120]唐冬梅,秦克章,孙赫,等.天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约.岩石学报,2009,025(04):817~831.
    [121]唐俊华,顾连兴,张遵忠,等.东天山黄山~镜儿泉过铝花岗岩矿物学、地球化学及年代学研究.岩石学报,2008,024(05):922~946.
    [122]田晓振,陈正阳. Galileo系统组合观测值研究.测绘科学,2009,34(3):14~16.
    [123]田毓龙,包国忠,汤中立,等.金川铜镍硫化物矿床岩浆通道型矿体地质地球化学特征.地质学报,2009,83(10):1515~1525.
    [124]同济大学应用数学系.高等数学(第六版下册).北京:高等教育出版社,2007.
    [125]王厚庭.新疆黄山-镜儿泉铜镍成矿带典型矿床特征及成因分析.中国西部科技,2009,08(171):8~10.
    [126]王京彬,王玉柱,周涛发,等.新疆北部后碰撞与幔源岩浆有关的成矿体系.岩石学报,2008,24(4):743-52.
    [127]王静波,熊盛青,周锡华,等.航空重力测量系统研究进展.物探与化探,2009,33(4):368~373.
    [128]王世称,陈永良,夏立显,等.综合信息矿产预测理论与方法.北京:科学出版社,2000
    [129]王瑞廷,毛景文,赫英,等.金川超大型铜镍硫化物矿床的铂族元素地球化学特征.大地构造与成矿学,2004,28(3):279~286.
    [130]王瑜,李锦轶.东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据.新疆地质,2002,20(4):315~319.
    [131]王玉往,王京彬,王莉娟,等.新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义.岩石学报,2004,20(4):935~948.
    [132]王玉往,王京彬,王莉娟,等.岩浆铜镍矿与钒钛磁铁矿的过渡类型--新疆哈密香山西矿床.地质学报,2006,80(11):61~73.
    [133]王志良,毛景文,吴金国,等.东天山康古尔金矿成矿晚阶段地幔流体参与成矿作用的碳氢氧同位素证据.地质学报,2004,78(2):195~202.
    [134]吴安楚.宽方位三维地震采集技术.油气地质与采收率,2009,16(3):65~67.
    [135]吴华,徐兴旺,莫新华,等.东天山白石泉矿区地球物理多方法联合探查与隐伏铜镍矿定位预测.中国地质,2006,33(3):672~681.
    [136]夏明哲,姜常义,钱壮志等.新疆东天山葫芦岩体岩石学与地球化学研究.岩石学报,2008,24(12):2749~2760.
    [137]肖骑彬,蔡新平,徐兴旺,等.浅层地震与MT联合技术在隐伏金属矿床定位预测中的应用-以新疆哈密图拉尔根铜镍矿区为例.矿床地质,2005,24(6):676~683.
    [138]肖序常,何国琦,徐新等.中国新疆地壳结构与地质演化.北京:地质出版社,2010.
    [139]徐丽萍,杨勤勇.多波多分量地震技术与展望.勘探地球物理进2002,25(3):47~52.
    [140]徐章华,汤中立..金川铜,镍(含PGE)岩浆硫化物矿床母岩浆成分的估计..现代地质,1998,12(4):506~514.
    [141]薛春纪,祁思敬,魏合明,等.基础矿床学.北京:地质出版社,2007.
    [142]薛春纪.杨建国.东天山康古尔金矿带金矿床基本类型及成矿规律.西北地质,1995,16(4):30~36.
    [143]薛国强,李貅,底青云.瞬变电磁法正反演问题研究进展.地球物理学进展,2008,23(4):1165~1172.
    [144]杨建民,张玉君,邓刚,等.中国天山铜矿带找矿靶区优选(国家三0五项目系列从书).北京:地质出版社,2008,1-11.
    [145]杨轩柱.硫化铜镍矿床的研究现状和发展趋势.西北地质,1990,(1):43~47.
    [146]姚敬金,张素兰,曹洛华,等.东天山色尔特能东部大型铜镍矿成矿条件分析.地质与勘探,2002,38(增刊):69~73.
    [147]叶其孝,王耀东,唐兢.托马斯微积分.北京:高等教育出版社,2004.
    [148]翟裕生,王建平,邓军,等.成矿系统时空演化及找矿意义.现代地质,2008,22(2):143~150.
    [149]张昌达.量子磁力仪研究和开发近况.探与化探,2005,29(4):283~287.
    [150]张成范翁爱华孙世栋等.计算矩形大定源回线瞬变电磁测深全区视电阻率.吉林大学学报(地球科学版)2009,39(4):755~758.
    [151]张大海,徐世浙.带相位信息的一维大地电磁曲线对比反演法.地震地质,2001,23(2):227~231.
    [152]张天阁,王庆华,蔡玉梅等.综合航空物探方法在金矿勘查中的应用研究-以新疆康古尔塔格地区金矿勘查为例.地质科技情报,1999,18(4):79~84.
    [153]张翔,赵晓平,谢志峰.重磁方法在金川铜镍矿东延M-15异常勘查中的应用.物探与化探,2010,34(2):139~143.
    [154]张兆京.大功率多源充电法在黄山铜镍矿区的应用.物探与化探,1997,21(5):363~365,347.
    [155]张征,庄道泽,高长荣.利用.激电异常-铜矿体-磁异常.有序分带的模式判断铜矿体赋存位置.物探与化探,2007,31(增刊):81~84.
    [156]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪.岩石矿物学杂志,2005,24(4),285-293.
    [157]赵文津.中国大陆动力学研究进展-纪念中国地球物理学会成立60周年.地球物理学进展,2007,22(4):1113~1121.
    [158]钟立平,罗长青,朱军平,等.利用瞬变电磁系统进行深部隐伏矿体的定位预测-以吉林省某矿3号岩体为例.吉林地质,2005,28(3):87~91.
    [159]钟清,孟小红,姚敬金,等.地物化综合信息在东天山西段的找矿预测结果.物探与化探,2006,30(1):21~25.
    [160]周平,施俊法.瞬变电磁法(TEM)新进展及其在寻找深部隐伏矿中的应用.地质与勘探,2007,43(6):63~69.
    [161]庄道泽,孟贵祥,陈蜀雁,等.成矿带1:5万激发极化法普查的初步尝试_以东天山铜矿带1:5万电法快速普查示范为例.地质通报,2004,23(7):707~713.
    [162]庄道泽,王世称,焦学军,等.土屋、延东铜矿田综合信息预测模型.新疆地质,2003,21(3):293~297.
    [163]曾华霖.重力场与重力勘探.北京:地质出版社,2005,26~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700